Lipschitz regularity of solutions of nonlinear elliptic integro-differential equations

joint work with Barles, Chasseigne, Ciomaga

C. Imbert

CNRS, Université Paris-Est Créteil (France)

IPAM, UCLA, February 27 – March 2, 2012 Nonlocal PDEs, Variational Problems and their Applications

Equations with composed/mixed ellipticity

A "composed" elliptic integro-differential equation

(1)
$$\begin{cases} \Lambda_1(x)(-\Delta)u + (1-\Lambda_1(x))(-\Delta)^{\frac{\beta}{2}}u + f(x) = 0 & \text{in } \mathbb{R}^d \\ (-\Delta)^{\frac{\beta}{2}} = \text{fractional Laplacian} \\ 0 \le \Lambda_1(x) \le 1, \text{H\"older continuous} \end{cases}$$

A "mixed" elliptic integro-differential equation

(2)
$$\begin{cases} (-\Delta_{x_1})u + (-\Delta_{x_2})^{\frac{\beta}{2}}u = f(x_1, x_2) & \text{in } \mathbb{R}^d \\ (-\Delta_{x_2})^{\frac{\beta}{2}} = \text{partial fractional Laplacian} \end{cases}$$

Question: are solutions Hölder/Lipschitz continuous in \mathbb{R}^d ?

▶ Main results ▶ Composed and Mixed

Equations with composed/mixed ellipticity

A "composed" elliptic integro-differential equation

(1)
$$\begin{cases} \Lambda_1(x)(-\Delta)u + (1-\Lambda_1(x))(-\Delta)^{\frac{\beta}{2}}u + f(x) = 0 & \text{in } \mathbb{R}^d \\ (-\Delta)^{\frac{\beta}{2}} = \text{fractional Laplacian} \\ 0 \le \Lambda_1(x) \le 1, \text{H\"older continuous} \end{cases}$$

A "mixed" elliptic integro-differential equation

(2)
$$\begin{cases} (-\Delta_{x_1})u + (-\Delta_{x_2})^{\frac{\beta}{2}}u = f(x_1, x_2) & \text{in } \mathbb{R}^d \\ (-\Delta_{x_2})^{\frac{\beta}{2}} = \text{partial fractional Laplacian} \end{cases}$$

Question: are solutions Hölder/Lipschitz continuous in \mathbb{R}^d ? Generalization to non-linear versions of these standing examples.

▶ Main results ▶ Composed and Mixed

Outline of the talk

Motivations

2 Main results

3 The Ishii-Lions method

Outline of the talk

Motivations

2 Main results

3 The Ishii-Lions method

Fractional Laplacian

Fractional Laplacian $(\beta \in (0,2))$

- Fourier multiplier: $(-\Delta)^{\frac{\beta}{2}}u = \mathcal{F}^{-1}(|\xi|^{\beta}\mathcal{F}u)$
- Singular integral: $(-\Delta)^{\frac{\beta}{2}}u = -c\int [u(x+z)-u(x)]\frac{dz}{|z|^{d+\beta}}$
- "Dirichlet-to-Neumann" formula

Properties

- Regularizing effect
- Positive max principle: $u(x) = \max u \Rightarrow (-\Delta)^{\frac{\beta}{2}} u(x) \geq 0$.

"Nice" singular integral operators

Lévy measure μ

$$\int \min(1,|z|^2)\mu(dz) < +\infty$$

Lévy operators

$$L[u](x) = -\int [u(x+z) - u(x)]\mu_x(dz)$$

with $\forall x, \mu_x = \text{L\'evy measure}$

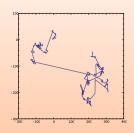
Lévy-Itô operators

$$L_{\text{LI}}[u](x) = -\int [u(x+j(x,z)) - u(x)]\mu(dz)$$

with $\mu = \text{L\'evy measure}$

Lévy processes

Stochastic processes with stationary and independent increments



$$X_t = drift + diffusion + jumps$$

Infinitesimal generators

$$Lu = \underbrace{b \cdot Du}_{\text{drift}} + \underbrace{AD^2 u}_{\text{diffusion}} + \underbrace{L[u]}_{\text{jumps}}$$

Stochastic control

Control of a SDE

$$dX_t = \underbrace{b(X(t), \gamma(t))dt}_{\text{drift}} + \underbrace{\sigma(X(t), \gamma(t))dW_t}_{\text{diffusion}} + \int \underbrace{j(X(t), \gamma(t), z)\tilde{N}(dt, dz)}_{\text{jumps}}$$

Cost functional

$$J(x,\gamma(\cdot)) = \mathbb{E}\left[\int_0^\infty e^{-\lambda t} f(X(t),\gamma(t)) dt\right].$$

Value function

$$u(x) = \inf_{\gamma(\cdot)} J(x, \gamma(\cdot)).$$

Bellman equation

General form

$$\sup_{\gamma} \left\{ L_{\mathsf{LI}}^{\gamma}[u] - \mathsf{Tr}(A_{\gamma}D^2u) - b_{\gamma} \cdot Du - f_{\gamma} \right\} + \lambda u = 0$$
 with $A_{\gamma} = \frac{1}{2}\sigma_{\gamma}\sigma_{\gamma}^{T}$

Example

$$(-\Delta)^{\frac{\beta}{2}}u + b(x)|Du|^{k+\tau} + |Du|^r + \lambda u = f(x)$$

Elliptic nonlinear PIDE

Partial Integro-Differential Equations (PIDE)

Wide range of applications

- Finance
- Dislocations
- Hydraulic fractures
- Combustion
- Fluid dynamics
- Life sciences
- Image
- Statistical Physics
- ...

```
(cf. Monneau's talk)
```

(cf. Mellet's talk)

(cf. Kiselev's talk)

(cf. Bertozzzi's, Carillo's, Gonzalez's and Topaz's talks)

(cf. Guidotti's and Osher's talks)

(cf. Lebowitz's talk)

Regularity for PIDE

Linear equations (probability)

• Bass, Kassmann, Levin, Song, Vondracek...

Viscosity solutions

 Sayah, Jakobsen, Karlsen, CI, Barles, Chasseigne, Ciomaga, CI...

Fully non-linear elliptic equations

• Caffarelli, Silvestre ...

Quasi-geostrophic equation

 Caffarelli, Vasseur, Kiselev, Nazarov, Volberg, Silvestre, Dabkowski, Lemarié-Rieusset ...

Fractional Burgers

Biler, Funaki, Karch, Woyczynski, Alibaud, Droniou, Vovelle,
 CI, Kiselev, Nazarov, Chan, Czubak, Silvestre, Du, Dong, Li ...

"Under divergence form"

 Komatsu, Kassmann, Barlow, Bass, Chen, Caffarelli, Chan, Vasseur...

Outline of the talk

Motivations

2 Main results

3 The Ishii-Lions method

Main result

Recall equations • Equations

Theorem

Assume Λ_1 is Hölder continuous. Solutions of Equations (1) and (2) are Hölder continuous if $\beta \leq 1$ and Lipschitz continuous if $\beta > 1$.

Remarks

- Non-linear equations (Bellman etc)
- Explicit Hölder exponent $(\forall \alpha < \beta \leq 1)$
- First order terms: "Ellipticity-Growth conditions"
- General Lévy measures
- General Lévy-Itô operators

Extension (I): Lévy Vs. Lévy-Itô

$$x$$
-dependent Lévy measures x -dependent jumps $-\int (u(x+z)-u(x))\mu_x(dz) -\int (u(x+j(x,z))-u(x))\mu(dz)$ Comparison principle: ok? Comparison principle: ok!

Hölder continuity of coefficients

$$\int_{B(0,\delta)} |z|^2 |\mu_x - \mu_y|(dz) \le C\delta^{2-\beta} |x - y|^{\gamma}$$

$$\int_{\mathbb{R}^d \setminus B(0,\delta)} |z| |\mu_x - \mu_y|(dz) \le C\delta^{1-\beta} |x - y|^{\gamma} \qquad (\beta \ne 1)$$

Extension (II): Composed Vs. Mixed

Recall equations • Equations

- Eq. (1): composed Barles-Chasseigne-Cl (JEMS, 2011)
- Eq. (2): mixed Barles-Chasseigne-Ciomaga-Cl (JDE)

General form of the equation

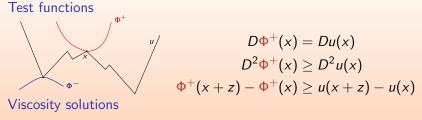
$$F_0(u, Du, D^2u, L_0[u]) + \sum_{i=1,2} F_i(x_i, D_{x_i}u, D_{x_i}^2u, L[x_i, u]) = 0$$

- F₀ is proper and Lipschitz w.r.t the last variable
- F₁ satisfies a Growth-Ellipticity condition
- F₂ satisfies a uniqueness-type condition
 - \Rightarrow partial regularity w.r.t. x_1 variables

Viscosity solutions for PIDE

- Soner (1986)
- Sayah, Lenhart
- Arisawa, Pham
- Ishii, Koike
- Alvarez, Tourin, Karlsen, Jakobsen
- Barles, Cl
- Barles, Chasseigne, Ciomaga
- ...

Definition of viscosity solutions



- (Subsolution) Φ^+ touches u from above at $x \Rightarrow F[\Phi^+](x) \le 0$
- (Supersolution) Φ^- touches u from below $\Rightarrow F[\Phi^-](x) \ge 0$

Examples

$$(-\Delta)^{\frac{\alpha}{2}} \Phi^{+}(x) - \text{Tr}(A(x)D^{2}\Phi^{+}(x))$$
$$-b(x) \cdot D\Phi^{+}(x) - f(x) + \lambda u(x) \le 0$$

(Linear equation)

Definition of viscosity solutions

Test functions
$$D\Phi^{+}(x) = Du(x)$$

$$D^{2}\Phi^{+}(x) \geq D^{2}u(x)$$

$$\Phi^{+}(x+z) - \Phi^{+}(x) \geq u(x+z) - u(x)$$
Viscosity solutions

- (Subsolution) Φ^+ touches u from above at $x \Rightarrow F[\Phi^+](x) \le 0$
- (Supersolution) Φ^- touches u from below $\Rightarrow F[\Phi^-](x) \ge 0$

Examples

$$\inf_{\gamma_1} \sup_{\gamma_2} \left\{ (-\Delta)^{\frac{\alpha}{2}} \Phi^+(x) - \text{Tr}(A_{\gamma}(x)D^2 \Phi^+(x)) - b_{\gamma}(x) \cdot D\Phi^+(x) - f_{\gamma}(x) \right\} + \lambda u(x) \le 0$$

(Bellman equation)

Definition of viscosity solutions

Non-local equations Φ^{\pm} should be *globally* above or below *u*

$$-\int [\Phi^+(x+z)-\Phi^+(x)]\mu(dz) \leq -\int [u(x+z)-u(x)]\mu(dz)$$

Equivalent definition split the integral

$$-\int_{B(0,r)} [\Phi^{+}(x+z) - \Phi^{+}(x)] \mu(dz) - \int_{\mathbb{R}^{d} \setminus B(0,r)} [u(x+z) - u(x)] \mu(dz)$$

$$\leq -\int [u(x+z) - u(x)] \mu(dz)$$

References Sayah'91, Cl'05, Barles-Cl'08

Outline of the talk

Motivations

2 Main results

3 The Ishii-Lions method

The Ishii-Lions method: local case (I)

Linear equation

$$-\Delta u - b \cdot Du - f + \lambda u = 0$$

What we want

$$u(x) - u(y) \le L_1|x - y|^{\alpha}$$

Localization

$$u(x) - u(y) \le L_1|x - y|^{\alpha} + L_2|x - x_0|^2$$

Proof by contradiction

Assume
$$M = \sup_{x,y} u(x) - u(y) - \Phi(x - y) - \Gamma(x) > 0$$

for all $\alpha \in (0,1), L_1 > 0, L_2 > 0$

In particular $L_1|x-y|^{\alpha} \leq ||u||_{\infty} + ||v||_{\infty}$

The Ishii-Lions method: local case (II)

$$-\Delta u \underbrace{-b \cdot Du - f + \lambda u}_{\text{lot}} = 0$$

Assume the solution u is smooth

- optimality condition: $Du(x) = D\Phi(x y) + D\Gamma(x)$ $Du(y) = D\Phi(x - y)$
- Second order optimality condition:

$$\begin{pmatrix} X & 0 \\ 0 & -Y \end{pmatrix} \le \begin{pmatrix} Z & -Z \\ -Z & Z \end{pmatrix}$$

with
$$X = D^2 u(x) - D^2 \Gamma(x)$$
, $Y = D^2 u(y)$, $Z = D^2 \Phi(x - y)$.

Use the equation twice and combine them

$$\underbrace{\mathcal{O}(L_2)}_{\mathsf{lot}} \leq \mathsf{Tr}(X) - \mathsf{Tr}(Y)$$

The Ishii-Lions method: local case (III)

Recall

$$\begin{split} &\Phi(z) = L_1 |z|^{\alpha} \text{ and } |x-y|^{\alpha} \leq \frac{1}{L_1} \\ &Z = L_1 D^2 |\cdot|^{\alpha} = L_1 |\cdot|^{\alpha-2} (I - (2-\alpha)\widehat{x-y} \otimes \widehat{x-y}) \end{split}$$

Use the matrix inequality

$$\Rightarrow \operatorname{Tr}(X - Y) \le -\frac{L_1(1-\alpha)}{|x-y|^{2-\alpha}}$$
$$\Rightarrow O(L_2) \le -\frac{L_1(1-\alpha)}{|x-y|^{2-\alpha}}$$

If u is not smooth, use viscosity solution techniques

Jensen-Ishii's lemma needed

The Ishii-Lions method: local case (IV)

Main idea in the previous proof Use the concavity of $|\cdot|^{\alpha}$ to create a "large" negative term

For non-local case

Use the concavity "around" a given direction

Lipschitz regularity Use $\Phi = L_1 |\cdot| - \sigma |\cdot|^{1+\alpha}$.

The Ishii-Lions method: Non-local case (combined - I)

Optimality condition ($\Gamma \equiv 0$)

$$u(x+z)-u(y+z')-\Phi(x-y+z'-z)\leq u(x)-u(y)-\Phi(x-y)$$

This implies

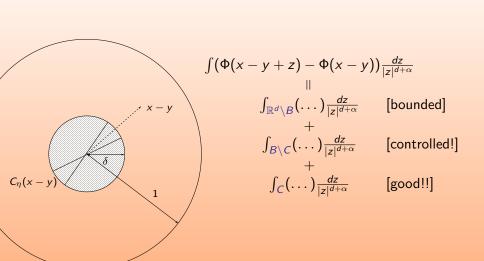
$$u(x + z) - u(x) \le \Phi(x - y - z) - \Phi(x - y)$$

 $u(y) - u(y + z) \le \Phi(x - y + z') - \Phi(x - y)$

From smooth to viscosity solutions

Jensen-Ishii's lemma should be adapted Joint work with G. Barles (Annales IHP, 2008)

The Ishii-Lions method: Non-local case (combined - II)



The Ishii-Lions method: Non-local case (mixed)

Prove

$$u(x_1,x_2)-u(y_1,y_2)\leq L_1|x_1-y_1|^{\alpha}+\frac{|x_2-y_2|^2}{2\varepsilon}.$$

Function Φ

$$\Phi(x_1, x_2) = L_1 |x_1|^{\alpha} + \frac{|x_2|^2}{2\varepsilon}.$$

Assumptions

- F₁ Growth-Ellipticity condition
- F₂ uniqueness-type condition

References

- C. I., A non-local regularization of first order Hamilton-Jacobi equations, J. Differential Equations, 211 (2005), pp. 218–246.
- G. Barles and C. I., Second-order elliptic integro-differential equations: viscosity solutions' theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), pp. 567–585.
- G. Barles, E. Chasseigne, and C. I., Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations, J. Eur. Math. Soc. (JEMS), 13 (2011), pp. 1–26.
- G. Barles, E. Chasseigne, A. Ciomaga, and C. I., Lipschitz regularity of solutions for mixed integro-differential equations, J. Differential Equations (to appear), (2011).