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Geometry and Numerical Methods

� Dynamical equations preserve structure

• Many continuous systems of interest have properties that are con-
served by the flow:

◦ Energy

◦ Symmetries, Reversibility, Monotonicity

◦ Momentum - Angular, Linear, Kelvin Circulation Theorem,
Constraint Equations in Relativity

◦ Symplectic Form

• At other times, the equations themselves are defined on a mani-
fold, such as a Lie group, or more general configuration manifold
of a mechanical system, and the discrete trajectory we compute
should remain on this manifold, since the equations may not be
well-defined off the surface.
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Motivation: Geometric Integration

� Main Goal of Geometric Integration:

Structure preservation in order to reproduce long time behavior.

� Role of Discrete Structure-Preservation:
Discrete conservation laws impart long time numerical stability
to computations, since the structure-preserving algorithm exactly
conserves a discrete quantity that is always close to the continuous
quantity we are interested in.
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Geometric Integration: Energy Stability

� Energy stability for symplectic integrators

Continuous energy
Isosurface

Discrete energy
Isosurface

Control on global error
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Discrete Mechanics

� Discrete Variational Principle

q a(  )

q b(  )

dq t( )

Q

q t( ) varied curve

q0

qN

dqi

Q

qi varied point

•Discrete Lagrangian

Ld ≈
∫ h

0
L (q(t), q̇(t)) dt

•Discrete Euler-Lagrange equation

D2Ld(q0, q1) + D1Ld(q1, q2) = 0

• The discrete flows are symplectic and momentum preserving.
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Geometric Integration: Energy Stability

� Energy behavior for conservative and dissipative systems
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Discrete Geometry and Computer Graphics

� Motivation

• Desire robust computation on discrete
meshes.

• Many applications require differential
geometric concepts:

◦ PDE based Image Processing on
Curved Surfaces.

◦ Smoothing, simplification, and
remeshing of triangulated surfaces.

• Little consensus on how to compute ba-
sic surface properties like normals and
curvature.



8

Discrete Geometry and Computer Graphics

� Mean, Gaussian, and Principal Curvatures
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Discrete Geometry and Accurate Simulation

� Exact Sequences and Spectral Properties

• Compatible discretizations of differential operators preserve the ex-
act sequence properties of the corresponding continuous operators.

R � � // H1(Ω)
grad

// H1(curl, Ω) curl // H1(div, Ω) div // L2(Ω, R) // 0

• These exactness properties turn out to be important in ensuring
that the corresponding numerical schemes are stable.

• In computing the modes of an electromagnetic cavity, compatible
discretizations yield more accurate eigenvalues.
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Discrete Geometry and Accurate Simulation

� Exact Sequences and Spectral Properties

• Compatible discretization may be important for accurate predic-
tion of gravitational wave modes.

Computed using edge elements
(compatible discretization)

Computed using linear finite
elements
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Discrete Exterior Calculus

� Motivating Application

• Laplace-Beltrami Operator

� Relevant Formalism

• Primal and Dual Complexes

• Differential Forms and Exterior Derivative

• Hodge Star and Codifferential
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Primal and Dual Complexes

� Why bother?

• Essential for capturing the inherent geometry of the problem.

• In geometric mechanics, we have to conscious of whether an object
is in the tangent bundle or the cotangent bundle.

• While we can identify these spaces through the metric, we do this
näıvely at our own peril.

• This results in a corresponding distinction at the level of discrete
mechanics, where objects may be naturally primal or dual.

� A new idea?

• Arises implicitly or explicitly in various schemes, including finite
volume, finite element and finite difference methods.
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Primal and Dual Meshes in FV, FE, FD Methods

� Finite Volume Method

• Explicit use of two staggered discretization grids.

• Voronoi dual mesh obtained by associating to each point the vol-
ume that is closer to that point than any other point.
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Primal and Dual Meshes in FV, FE, FD Methods

� Finite Element Method

• Can arise implicitly by choice of shape functions.
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• Application to computational electromagnetism hints at underlying
geometry, since the choice of shape functions for field quantities
depend on duality relations between the various field variables.
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Primal and Dual Meshes in FV, FE, FD Methods

� Computational Electromagnetism using Finite Elements

Field Variable
component x y t

φ

Ax

Ay

Ex

Ey

Bz

• The choice of tensor product shape functions in two dimensional
Cartesian traverse magnetic (TM) model.
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Primal and Dual Meshes in FV, FE, FD Methods

� Finite Difference Method

• Primal and dual meshes arise in integration schemes such as the
Verlet leapfrog method.
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Primal and Dual Meshes in FV, FE, FD Methods

� Finite Difference Method

• Staggered Meshes in Space-time used in the Constrained Transport
(CT) Method for Magnetohydrodynamics, implemented in ZEUS-
2D.
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Primal Simplicial Complex

� Simplices

• A k-simplex is the convex span of k + 1 linearly independent
vectors.

• A k-chain is a formal sum of k-simplices.

• The group of k-chains is denoted Ck(K).

• Example of chains,
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Dual Cell Complex

� Constructing the Dual Complex

• The circumcentric duality operator is given by

? (σp) =
∑

σp≺σp+1≺...≺σn

εσp,...,σn

[
c(σp), c(σp+1), . . . , c(σn)

]
• Associates a k-simplex to a (n− k)-cell.

• Satisfies the property,

? ? (σk) = (−1)k(n−k)σk.

• Will be used in constructing the Hodge Star for discrete differ-
ential forms.
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Examples of Primal Simplices and Dual Cells
� Primal Simplex

σ0, 0-simplex

σ1, 1-simplex

� Dual Cell

?σ0, 3-cell

?σ1, 2-cell
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Examples of Primal Simplices and Dual Cells
� Primal Simplex

σ2, 2-simplex

σ3, 3-simplex

� Dual Cell

?σ2, 1-cell

?σ3, 0-cell



22

Differential Forms and Exterior Derivative

� Cochains and Differential Forms

• A Discrete Differential Form is a cochain on the simplicial
complex. That is,

Ωk
d(K) = Ck(K; R) = Hom(Ck(K), R).

• It is a linear functional on simplices, and it defined by assigning
a number to each simplex.

• To discretize a continuous differential form into a discrete differen-
tial form, we assign a number to each simplex by integration,

〈αk
d, σ

k〉 =

∫
σk

αk.

• After the discretization step, we can discard the continuous differ-
ential form.
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Differential Forms and Exterior Derivative

� Exterior Derivative

• The Exterior Derivative is defined by using the Generalized
Stokes Theorem,

〈dαk, σk+1〉 = 〈αk, ∂σk+1〉.
where the boundary operator ∂k : Ck(K) → Ck−1(K) is given
by,

∂kσk = ∂ ([v0, v1, . . . , vk]) =

k∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vp]

• As an example,

∂

( )
= ,

where clearly, orientation must be carefully taken into account.
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Hodge Star and Codifferential

� Hodge Star

• The discrete Hodge Star is a map ∗ : Ωk
d(K) → Ωn−k

d (?K).

For a k-simplex σk and a discrete k-form αk,

1

|σk|
〈αk, σk〉 =

1

| ? σk|
〈∗αk, ?σk〉.

� Codifferential

• The discrete codifferential operator δ : Ωk+1
d (K) → Ωk

d(K)

is defined by δ(Ω0
d(K)) = 0 and on (k + 1)-discrete forms to be,

δβ = (−1)nk+1 ∗ d ∗ β .
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Application

� Laplace-Beltrami

• The Laplace-Beltrami operator is a special case of the more
general Laplace-deRham operator ∆ = dδ + δd.

1

|σ0|
〈∆f, σ0〉 = −〈δdf, σ0〉

= −〈∗d ∗ df, σ0〉

= − 1

| ? σ0|
〈d ∗ df, ?σ0〉

= − 1

| ? σ0|
〈∗df, ∂(?σ0)〉

= − 1

| ? σ0|
〈∗df,

∑
σ1�σ0

?σ1〉

V
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Application

� Laplace-Beltrami

= − 1

| ? σ0|
∑

σ1�σ0

〈∗df, ?σ1〉

= − 1

| ? σ0|
∑

σ1�σ0

| ? σ1|
|σ1|

〈df, σ1〉

= − 1

| ? σ0|
∑

σ1�σ0

| ? σ1|
|σ1|

(f (v)− f (σ0))

V

• This recovers a formula involving cotangents found by Meyer et
al.using a variational approach.
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Variational Formulation of Harmonic Functions

� Inner Product for Differential Forms

• Need an inner product for forms,

〈〈α, β〉〉 =

∫
M

α ∧ ∗β.

• At a discrete level, this involves a primal-dual wedge product, which
we only have for the case of primal k forms and dual (n−k)-forms,

〈αk ∧ ∗βk, Vσk〉 =
|Vσk|

|σk|| ? σk|
〈αk, σk〉〈∗βk, ?σk〉

=
1

n

| ? σk|
|σk|

〈αk, σk〉〈βk, σk〉.
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Variational Formulation of Harmonic Functions

� Discrete Variational Principle

• A discrete Harmonic function is a stationary point of the following
discrete Lagrangian,

L =
∑

σ1∈K

〈df ∧ ∗df, Vσ1〉.

• The corresponding Euler-Lagrange equation is,∑
σ1=[v1,v0]�v0

2

n

| ? σ1|
|σ1|

〈df, σ1〉 = 0.

• This means that the variational formulation of discrete Harmonic
functions is equivalent to the formulation in terms of the Laplace-
Beltrami operator.
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Discrete Electromagnetism

� Discrete Formulation

• Covariant formulation using the 4-vector potential as the funda-
mental variable.

• 3+1 tensor product discretization, K ⊗ N.

• Lorentzian metric structure causes the Laplace-
Beltrami operator to be a hyperbolic operator as
opposed to an elliptic operator.

• Equivalent expressions when applying discretiza-
tion at the level of the variational principle, and
at the level of the equations.

Space

T
im

e

• Discretizing either the Euler-Lagrange equations or the Lagrangian
using DEC yields the same Discrete Euler-Lagrange equations.
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Discrete Electromagnetism

� The effect of the Lorentzian metric on the Hodge Star

• The discrete Hodge star for prismal complexes in Lorentzian
space is given by,

1

| ? σk|
〈∗αk, ?σk〉 = κ(σk)

1

|σk|
〈αk, σk〉,

where the causality sign κ(σk) is defined to be +1 if all the
edges of σk are spacelike, and −1 otherwise.

σ2

κ(σ2) +1 +1 −1 −1 −1
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Multisymplectic Geometry
� Geometry and Variational Mechanics

•Base space X . The independent variables, typ-
ically (n+1)-spacetime, denoted by (x0, . . . , xn).

•Configuration bundle. π : Y → X .

•Configuration q : X → Y . Gives the field variables over each
spacetime point.

• First jet extension J1Y . Consists of the first partials of the
field variables with respect to the independent variables.

• Lagrangian density L : J1Y → Ωn+1(X ).

•Action integral S(q) =
∫
X L(j1q).

•Hamilton’s principle δS = 0.
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Towards Numerical Relativity

� Lagrangian Formulation of Relativity

• Introduce a Lagrangian density that is a 4-form on space-time,
as suggested by Frank Estabrook.

• Discretize the action using Discrete Exterior Calculus.

� Gauge Invariance and Constraints

• The invariance of the discrete Lagrangian under gauge transforma-
tions yields a discrete Noether’s theorem.

• Discrete analogues of the constraint equations are automatically
satisfied, thereby giving long time numerical stability.
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Conclusion

� Summary

• Incorporates discrete forms, vector fields, and related operators

• Construction of canonical discrete differential operators

• Applications to Laplace-Beltrami operator, Harmonic maps, and
Electromagnetism

• Constraint equations are Noether quantities that arise from the
gauge invariance of the Lagangian formulation of relativity.
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