Binary black hole initial data

Harald P. Pfeiffer

California Institute of Technology

Collaborators: Greg Cook (Wake Forest), Larry Kidder (Cornell), Mark Scheel (Caltech), Saul Teukolsky (Cornell), James York (Cornell)

Relativistic Astrophysics Workshop, IPAM, UCLA, May 4, 2005

Harald P. Pfeiffer, Caltech

Black hole evolutions are important

See talks by

Joan Centrella Frans Pretorius Luis Lehner Jerome Novak Oscar Reula Mark Scheel Lee Lindblom Matt Choptuik Tvsi Piran Saul Teukolsky

evolutions need initial data

Initial data for GR

- Initial data consists of metric g_{ij} and extrinsic curvature K_{ij} on one hypersurface Σ.
- It must satisfy the constraints

$$R + K^{2} - K_{ij}K^{ij} = 0$$
$$\nabla_{j}\left(K^{ij} - g^{ij}K\right) = 0$$

• Challenges:

- 1. How to solve the constraints
- 2. How to choose g_{ij} and K_{ij}

Outline of talk

- 1. Construction of any initial data Conformal method
- 2. Some surprising properties Non-uniqueness
- 3. *Construction of* **BBH** *initial data* Quasi-equilibrium method
- 4. *Discussion & Thoughts* How good is good enough?

Conformal method

Problem: Find solutions g_{ij}, K_{ij} of the constraint equations

$$R + K^{2} - K_{ij}K^{ij} = 0$$
$$\nabla_{j}\left(K^{ij} - g^{ij}K\right) = 0$$

Strategy: Split g_{ij} and K_{ij} into smaller pieces, some freely specifiable, the rest completely determined. Specifically, $g_{ij} = \psi^4 \tilde{g}_{ij}$

Choose free data \Rightarrow **Solve** elliptic equations \Rightarrow **Assemble** g_{ij} , K_{ij}

Numerical method: Spectral elliptic solver

(HP, Kidder, Scheel, Teukolsky 2003)

Expand solution in basis-functions & solve for expansion-coefficients Smooth solutions \Rightarrow exponential convergence

- Superior accuracy: Numerical errors << physical effects
- Superior efficiency: Large parameter studies
- Domain decomposition: Multiple length-scales

Standard and extended conformal thin sandwich

Standard CTS

Free data $ilde{g}_{ij}, \partial_t ilde{g}_{ij}, K, ilde{N}$

Four elliptic equations

$$\tilde{\nabla}^2 \psi - \frac{1}{8} \tilde{R} \psi - \frac{1}{12} K^2 \psi^4 + \frac{1}{8} \tilde{A}_{ij} \tilde{A}^{ij} = 0$$
$$\tilde{\nabla}_j \left(\frac{1}{2\tilde{N}} \mathbb{L} \beta^{ij} \right) - \frac{2}{3} \psi^6 \tilde{\nabla}^i K - \tilde{\nabla}_j \left(\frac{1}{2\tilde{N}} \tilde{u}^{ij} \right) = 0$$

Extended CTS

Free data $\tilde{g}_{ij}, \partial_t \tilde{g}_{ij}, K, \partial_t K$

Five elliptic equations

$$\tilde{\nabla}^2 \psi - \frac{1}{8} \tilde{R} \psi - \frac{1}{12} K^2 \psi^4 + \frac{1}{8} \tilde{A}_{ij} \tilde{A}^{ij} = 0$$
$$\tilde{\nabla}_j \left(\frac{1}{2\tilde{N}} \mathbb{L} \beta^{ij} \right) - \frac{2}{3} \psi^6 \tilde{\nabla}^i K - \tilde{\nabla}_j \left(\frac{1}{2\tilde{N}} \tilde{u}^{ij} \right) = 0$$
$$\tilde{\nabla}^2 (\tilde{N} \psi^7) - \tilde{N} \psi^7 \left(\frac{1}{8} \tilde{R} + \frac{5}{12} K^2 \psi^4 + \frac{7}{8} \tilde{A}_{ij} \tilde{A}^{ij} \right) = -\psi^5 (\partial_t - \beta^k \partial_k) K$$

+ Quite a few existence and uniqueness results (especially for K = 0)

- Mathematical terra incognita

Some results on the standard system

Mathematics:

- 1. asymptotically flat
- 2. no inner boundaries
- 3. maximal slice K = 0
- \rightarrow Yamabe constant $\mathcal{Y}[\tilde{g}_{ij}]$:

 $\mathcal{Y}[\tilde{g}_{ij}] > 0 \Leftrightarrow$ existence & uniqueness

(Cantor 1977, Murray & Cantor 1981, Maxwell 2005) Free data based on "Teukolsky wave" ingoing, M = 0, odd parity, centered at r = 20 (HP, Kidder, Scheel, Shoemaker 2005)

Extended system (HP & York, gr-qc/0504142)

$$\tilde{g}_{ij} = \delta_{ij} + \tilde{\mathcal{A}} h_{ij}$$
$$\tilde{u}_{ij} = \tilde{\mathcal{A}} \partial_t h_{ij}$$
$$K = 0, \quad \partial_t K = 0$$

$$\psi$$
 finite as $\tilde{\mathcal{A}} \to \tilde{\mathcal{A}}_c$
Parabolic behavior
 $\psi \approx \psi_c - \text{const.}(\delta \tilde{\mathcal{A}})^{1/2}$

Harald P. Pfeiffer, Caltech

A more comprehensive look

A second branch

• So far
$$\mathbf{u}_{-}(\tilde{\mathcal{A}}) = \mathbf{u}_{c} - \mathbf{v}_{c}\sqrt{\delta\tilde{\mathcal{A}}}, \quad \mathbf{u} = \left(\psi, \beta^{i}, N\right)$$

• *Two* branches??

$$\mathbf{u}_{\pm}(ilde{\mathcal{A}}) = \mathbf{u}_c \pm \mathbf{v}_c \sqrt{\delta ilde{\mathcal{A}}}$$

 Problem: With "simple" initial guess, elliptic solver converges always to u_; need good guess to converge to u₊.

$$\frac{\mathrm{d}\mathbf{u}_{-}(\tilde{\mathcal{A}})}{\mathrm{d}\tilde{\mathcal{A}}} = \frac{1}{2\sqrt{\delta\tilde{\mathcal{A}}}}\mathbf{v}_{c}$$
$$\Rightarrow \mathbf{u}_{+}(\tilde{\mathcal{A}}) \approx \mathbf{u}_{-}(\tilde{\mathcal{A}}) + 4\,\delta\tilde{\mathcal{A}}\,\frac{\mathrm{d}\mathbf{u}_{-}(\tilde{\mathcal{A}})}{\mathrm{d}\tilde{\mathcal{A}}}$$

• Take two numeric solutions u_{-} of five coupled 3-D nonlinear elliptic equations, and finite-difference them !!

Constructing the upper branch \mathbf{u}_+

- Parabolic close to $ilde{\mathcal{A}}_c$
- \mathbf{u}_+ and \mathbf{u}_- meet at $\tilde{\mathcal{A}}_c$
- \mathbf{u}_+ deviates strongly from Minkowski at small $\mathcal{\tilde{A}}$
- Two solutions for arbitrarily small \tilde{A} !!

Energy & Apparent horizon

Unique solutions, nevertheless?

- *Physics* is determined by g_{ij}, K_{ij} . For example $g_{ij} = \psi^4 \tilde{g}_{ij} = \psi^4 \delta_{ij} + \psi^4 \tilde{\mathcal{A}} h_{ij}$
- *Physical* amplitude of perturbation is $\mathcal{A} = \psi^4 \tilde{\mathcal{A}}$
- Question: For given *physical* amplitude *A*, how many solutions exist?

Lessons from journey into mathematical wonderland

- Life is more interesting than expected (HP & York, gr-qc/0504142).
- Similar issues possible in any system containing the extended conformal thin sandwich equations (→ Jerome Novak's talk?).
- Non-unique data sets are very different from BBH initial data. "Just solving" works, so **let's go!**

Astrophysically realistic BBH initial data

Question: How to choose free data and boundary conditions for a binary black hole in a circular orbit?

Traditional approach (conformally flat Bowen-York) has many problems: ISCO wrong, BHs plunge too quickly, ... Need better method!

Quasi-equilibrium method

Basic idea:

Approx. time-independence in corotating frame Approx. helical Killing vector (both concepts essentially equivalent, both useful depending on context)

History:

- Wilson & Matthews 1985: Binary neutron stars
- Gourgoulhon, Grandclement & Bonazzola, 2002a,b BBH ID with inner boundary conditions (basically right, but various details deficient)
- Cook & HP, 2002, 2003, 2004 General quasi-equilibrium method with isolated horizon BCs

Quasi-equilibrium method (the easy pieces)

- Time-independence in corotating frame
 - \Rightarrow natural choice: vanishing time derivatives
- Extented conformal thin sandwich formalism
 - 1. $\partial_t \tilde{g}_{ij} = 0 = \partial_t K$
 - 2. \tilde{g}_{ij} and K still undetermined
- Boundary conditions at infinity from asymptotic flatness & corotation:

$$\psi = 1$$

 $\beta^{i} = (\vec{\Omega}_{\text{orbital}} \times \vec{r})^{i}$
 $N = 1$

• New contribution: *inner boundary conditions* (next slide...)

Quasi-equilibrium excision boundary conditions

 k^{μ} – outward pointing null normal to ${\cal S}$ \tilde{s}^{i} – (conformal) spatial normal to ${\cal S}$

• Excise topological sphere(s) S

• Require

- 1. S be apparent horizon(s)
- 2. When evolved, the coordinate locations of the AH's remain stationary
- 3. The shear $\sigma_{\mu\nu}$ of k^{μ} vanishes
- Item 3 is an isolated horizon condition. It implies for the expansion θ

$${\cal L}_k heta = -rac{1}{2} heta^2 - \sigma_{\mu
u} \sigma^{\mu
u} = 0 \quad {
m on} \; {\cal S}$$

 \Rightarrow AH moves along k^{μ} , and its area is constant (initially)

Quasi-equilibrium excision boundary conditions cont'd

• Rewrite in variables of conformal thin sandwich

$$\partial_r \psi = \dots$$
 on \mathcal{S} (1)

$$\beta^{i} = \psi^{2} N \tilde{s}^{i} + \beta^{i}_{\parallel} \quad \text{on } \mathcal{S}$$
 (2)

Boundary conditions for ψ and β^i

Rotating black holes

"Vanishing shear" restricts β^i_{\parallel} . Freedom to specify spin of BH remains.

- Lapse boundary condition not fixed by IH (also Jaramillo et al, 2004).
- Determine orbital frequency by $E_{ADM} = M_K$.

Numerical solutions: Single black holes I

- \tilde{g}_{ij} , K, S not determined. and lapse-BC.
- For now **arbitrary choices:** Conformal flatness, S = sphere
- **Do not** use knowledge of single BH solutions use single BHs to **test** method

Spherical symmetry

- 1. w.l.o.g. conformally flat
- 2. Try different choices for K and lapse boundary condition
- 3. any spherically symmetric K and any spherically symmetric lapse-BC yield:
 - exact slice through Schwarzschild
 - totally vanishing time-derivatives $\partial_t g_{ij} = \partial_t K_{ij} = 0$
- 4. Full success: Recover Schwarzschild independent of arbitrary choices.

Numerical solutions: Single black holes II

• Spinning/Boosted black holes

Compute quantities that vanish for Kerr:

$$E_{rad} \equiv \sqrt{E_{\text{ADM}}^2 - P_{\text{ADM}}^2} - \sqrt{M_{\text{irr}}^2 + J_{\text{ADM}}^2 / (4M_{\text{irr}}^2)}$$
(3)

$$\Delta \Omega \equiv \Omega_r - \frac{J_{\text{ADM}}/E_{\text{ADM}}^3}{2 + 2\sqrt{1 - J_{\text{ADM}}^2/E_{\text{ADM}}^4}}, \qquad \Delta v \equiv v - \frac{P_{\text{ADM}}}{E_{\text{ADM}}}$$
(4)

Binary black hole solutions (corotating, K = 0)

Lapse positive through horizon

Sequences of quasi-circular orbits (corotating, K = 0)

Three different lapse boundary conditions

Compare to GGB and post-Newtonian results

No difference – solution robust

Excellent agreement

Testing the 2nd law

Normalize sequences such that $dE_{\mathsf{ADM}} = \Omega_0 \, dJ_{\mathsf{ADM}}$

Irreducible mass along these sequences

 $\Leftarrow \text{ corotating sequences} \\ \text{(three different lapse BC's)} \\ M_{\text{irr}} \text{ slightly increasing during inspiral - ok}$

 \Leftarrow irrotational sequences (three different lapse BC's)

- $M_{
 m irr}$ decreasing during inspiral
- Normalization of sequences wrong?
- Remaining free data insufficient?
- Rigidity theorem?

ISCO location

- Excellent agreement between NR and PN
- Superior to Bowen-York w/ effective potential (cf. Cook 1994)

Qualitity of todays QE-BBH initial data

Contains two black holes	of course
ISCO agrees with PN predictions	yes
ID-solve results in lapse & shift	yes
BHs at rest early in evolution	yes
Time-derivatives small	$\psi/\partial_t\psi\sim 50T_{ m orbit}$ $50T_{ m orbit}\gg T_{ m inspiral}$ at large separation!
Spins incorporated exactly?	no
Tidal distortion of BHs correct?	no
Satisfies testmass limit?	no
Correct \dot{r} (slightly negative)?	no
Contains wavetrain of earlier insipral?	no

 \Rightarrow superior to Bowen-York, but room for further improvement

How good is good enough?

Just some thoughts and conjectures — further opinions welcome !!

Harald P. Pfeiffer, Caltech

How good is good enough?

Answer depends on application and desired accuracy.

Short term – improving evolution codes:

• Testing evolution codes

ID doesn't matter.

(But smaller initial transient may well be advantageous for dynamic gauge conditions)

- Qualitative features of plunge wave-forms (→ Frans Pretorius' talk) My feeling is that ID won't matter (must be demonstrated, though!).
- The first evolution of two orbits and plunge

ID must contain BHs in circular-ish orbits. I believe this is the case (no proof). Such evolutions must quantify initial transient caused by initial data.

Long term – gravitational wave science

1. If ID contains significant initial transients, then one must wait until they are beyond wave-extraction radius $R_{
m extract}$

 $T_{\mathrm{wait}} \approx 2R_{\mathrm{extract}} \approx 100M \sim 10^5 \dots 10^6$ CPU-hours

Expensive. But let's assume we're willing to pay...

 Initial transient changes coordinatesystem, masses, spins, orbital elements. Accumulated phase-error very sensitive to (e.g.) eccentricity ε.
 How to measure ε in a dynamical spacetime in an unknown coordinatesystem?

This matters for

- Testing PN-results
- Parameter extraction

May be limited by our knowledge of evolution-parameters.

 Coherent template PN-inspiral+numerical evolution+ringdown Most stringent test of strong field GR.
 Total phase error must be (much) smaller than QN-period. (LISA SMBH removal!)

Summary

- Non-unique solutions exist (and may bite us)
- Quasi-equilibrium initial data vast improvement over Bowen-York...
- ... and contains handles for next round of improvements $(\tilde{g}_{ij}, \mathcal{S})$
- Further improvements essential, especially when evolutions mature
- QE-initial data publicly available soon.

Summary of QE method

- **Framework** for BBH initial data in a kinematical setting (helical Killing vector)
- Explicitly displays the remaining choices \tilde{g}_{ij} , K, S, Lapse-BC
- Close in spirit to GGB, but greatly improved:
 - 1. Constraints are satisfied
 - 2. Incorporates isolated horizon boundary conditions
 - 3. General spins possible
 - 4. Retains freedom to choose any \tilde{g}_{ij}, K, S .
 - 5. Lapse is positive on horizon
- Agrees very well with PN (even with simple choices)
- Data sets will be **publicly available** soon.