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Black hole evolutions are important
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evolutions need initial data
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Initial data for GR

e Initial data consists of metric g;; and extrinsic curvature K;;

on one hypersurface ..

e |t must satisfy the constraints
R+ K’ — K K" =0

Vj (Kij - gin> =0
e Challenges:

1. How to solve the constraints

2. How to choose g;; and Kj;
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Outline of talk

1. Construction of any initial data — Conformal method
2. Some surprising properties — Non-uniqueness
3. Construction of BBH initial data — Quasi-equilibrium method

4. Discussion & Thoughts — How good is good enough?
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Conformal method

Problem: Find solutions g;;, K;;
of the constraint equations

R+ K’ — K ;K7 =0
Vv (K7 = ¢"K) =0

Strategy: Split g;; and K;; into smaller pieces, some
freely specifiable, the rest completely determined.

Specifically, g;; = ¢4?]ij

Choose free data = Solve elliptic equations = Assemble g;;, K;;
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Numerical method: Spectral elliptic solver
(HP, Kidder, Scheel, Teukolsky 2003)

Expand solution in basis-functions & solve for expansion-coefficients
Smooth solutions => exponential convergence

e Superior accuracy: Numerical errors << physical effects

e Superior efficiency: Large parameter studies

e Domain decomposition: Multiple length-scales
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Standard and extended conformal thin sandwich

Standard CTS

Free data gz’ja 8t§ij, K, N

Four elliptic equations
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+ Quite a few existence and uniqueness
results (especially for K = 0)l
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Extended CTSI
1
Free data gija 8t§7;j, K, oK 1
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Five elliptic equations!
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Some results on the standard system

Mathematics:

1. asymptotically flat
2. no inner boundaries

3. maximal slice K = 0

— Yamabe constant Y[g;;]:

V[gi;] > 0 < existence & uniqueness

(Cantor 1977, Murray & Cantor 1981,

Maxwell 2005)
[

Harald P. Pfeiffer, Caltech

Free data based on “Teukolsky wave”
ingoing, M =0, odd parity, centered at =20
(HP, Kidder, Scheel, Shoemaker 2005)
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Extended system (HP & York, gr-qc/0504142)

gij = 8ij + Ahj
K=0 0K=0

' 1 finite as A — A,

~ Parabolic behavior

: Y & ). — const.(5.A4)/?
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A more comprehensive look
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A second branch
e Sofar u_(A) =u.—v.V5sA, u = (w,ﬁi,N)

e Two branches??

ui(A) =u. £v.VsA

e Problem: With “simple” initial guess, elliptic solver converges always to u_;
need good guess to converge to u..

du_(A) 1
dA 2V 8 A

C

- - ~du_(A

e Take two numeric solutions u_ of five coupled 3-D nonlinear elliptic equations,
and finite-difference them !!
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Constructing the upper branch u,
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Parabolic close to ./Zlc
u; and u_ meet at A,

u, deviates strongly from
Minkowski at small A

Two solutions for
arbitrarily small A!!



Energy & Apparent horizon

ADM energy
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Unique solutions, nevertheless?

e Physics is determined by g;;, K;;. For example g;; = ¢4§ij = ¢45z‘j + rA hij
e Physical amplitude of perturbation is A = ¥*A

e Question: For given physical amplitude A, how many solutions exist?
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Lessons from journey into mathematical wonderland

e Life is more interesting than expected (HP & York, gr-qc/0504142).

e Similar issues possible in any system containing the extended
conformal thin sandwich equations (— Jerome Novak's talk?).

e Non-unique data sets are very different from BBH initial data. “Just solving”
works, so let’s go!
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Astrophysically realistic BBH initial data

Question: How to choose free data and boundary
conditions for a binary black hole in a circular orbit?

Traditional approach (conformally flat Bowen-York) has many problems:
ISCO wrong, BHs plunge too quickly, ...
Need better method!
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Quasi-equilibrium method

Basic idea:
Approx. time-independence in corotating frame //\
Approx. helical Killing vector /

(both concepts essentially equivalent, !
both useful depending on context)

History:

e Wilson & Matthews 1985: Binary neutron stars

e Gourgoulhon, Grandclement & Bonazzola, 2002a,b
BBH ID with inner boundary conditions
(basically right, but various details deficient)

e Cook & HP, 2002, 2003, 2004
General quasi-equilibrium method with isolated horizon BCs
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Quasi-equilibrium method (the easy pieces)

e Time-independence in corotating frame

= natural choice: vanishing time derivatives

e Extented conformal thin sandwich formalism
2. gi; and K still undetermined

e Boundary conditions at infinity from asymptotic flatness & corotation:

v =1
ﬁz — (Qorbital X F)Z
N =1

e New contribution: inner boundary conditions (next slide...)
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Quasi-equilibrium excision boundary conditions

k" — outward pointing null normal to S
5" — (conformal) spatial normal to S

e Excise topological sphere(s) S

e Require

1. S be apparent horizon(s)
2. When evolved, the coordinate locations of the AH's remain stationary

3. The shear o,, of k" vanishes

e Item 3 is an isolated horizon condition. It implies for the expansion 6

1
L0 = —592 —0,,0" =0 onS

= AH moves along k", and its area is constant (initially)
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Quasi-equilibrium excision boundary conditions cont’d

e Rewrite in variables of conformal thin sandwich
Orp = ... on S
B =y’N& 48] onS

Boundary conditions for 1) and 3"

e Rotating black holes
“Vanishing shear” restricts Bﬁ. Freedom to specify spin of BH remains.

e Lapse boundary condition not fixed by IH (also Jaramillo et al, 2004 ).

e Determine orbital frequency by Eapym = Mk
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Numerical solutions: Single black holes |

® g;j, K, S not determined. and lapse-BC.
e For now arbitrary choices: Conformal flatness, S =sphere

e Do not use knowledge of single BH solutions — use single BHs to test methodH

Spherical symmetry

1. w.l.o.g. conformally flat
2. Try different choices for K and lapse boundary condition

3. any spherically symmetric K and any spherically symmetric lapse-BC vyield:
— exact slice through Schwarzschild
— totally vanishing time-derivatives 0;g;; = 0:K;; = 0

4. Full success: Recover Schwarzschild independent of arbitrary choices.
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Numerical solutions: Single black holes Il

e Spinning/Boosted black holes
Compute quantities that vanish for Kerr:
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Binary black hole solutions (corotating, K = 0)

Lapse

Lapse positive through horizon



Sequences of quasi-circular orbits (corotating, K = 0)

Three different lapse boundary conditions
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J/um

No difference — solution
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robust
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Testing the 2nd law

Normalize sequences such that dFEapm = 20 dJapm

Irreducible mass along these sequences
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<= corotating sequences
(three different lapse BC's)
M., slightly increasing during inspiral — ok

< irrotational sequences

(three different lapse BC's)

M, decreasing during inspiral

— Normalization of sequences wrong?
— Remaining free data insufficient?

— Rigidity theorem?



ISCO location

I
Caution: ISCO is not a sharp, - 1,2,3 PN (EOB)
well-defined concept! Anyway... -0.014 v 2.3 PN (standard)
B Cook&Pfeiffer 04
0016 / (3 data points)
O.
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e Excellent agreement between NR and PN

e Superior to Bowen-York w/ effective potential (cf. Cook 1994)
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Qualitity of todays QE-BBH initial data

Contains two black holes of course

ISCO agrees with PN predictions yes

ID-solve results in lapse & shift yes

BHs at rest early in evolution yes

Time-derivatives small Y /0p ~ 50T i B

50T orbit > Tinspiral at large separation!l

Spins incorporated exactly? noll

Tidal distortion of BHs correct? noll

Satisfies testmass limit? noll

Correct 1 (slightly negative)? noll

Contains wavetrain of earlier insipral? noll

= superior to Bowen-York, but room for further improvement F
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How good is good enough?

Just some thoughts and conjectures — further opinions welcome!!
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How good is good enough?
Answer depends on application and desired accuracy.

Short term — improving evolution codes:

e Testing evolution codes
ID doesn’t matter.
(But smaller initial transient may well be advantageous for dynamic gauge conditions)

e Qualitative features of plunge wave-forms (— Frans Pretorius’ talk)
My feeling is that ID won't matter (must be demonstrated, though!) !

e The first evolution of two orbits and plunge
ID must contain BHs in circular-ish orbits. | believe this is the case (no proof).
Such evolutions must quantify initial transient caused by initial data. F
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Long term — gravitational wave science

1. If ID contains significant initial transients, then one must wait until they are beyond
wave-extraction radius Rextract

Tonit = 2Reriract =~ 100M ~ 10°...10°CPU-hours

Expensive. But let's assume we're willing to pay...

2. Initial transient changes coordinatesystem, masses, spins, orbital elements.
Accumulated phase-error very sensitive to (e.g.) eccentricity e.
How to measure ¢ in a dynamical spacetime in an unknown coordinatesystem?

This matters for

e Testing PN-results

e Parameter extraction
May be limited by our knowledge of evolution-parameters.

o Coherent template PN-inspiral+numerical evolution+ringdown
Most stringent test of strong field GR.
Total phase error must be (much) smaller than QN-period. (LISA SMBH removal!)
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Summary

e Non-unique solutions exist (and may bite us)

e Quasi-equilibrium initial data vast improvement over Bowen-York...
e ... and contains handles for next round of improvements (g;;,S)

e Further improvements essential, especially when evolutions mature

e QE-initial data publicly available soon.
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Summary of QE method

e Framework for BBH initial data in a kinematical setting (helical Killing vector)
e Explicitly displays the remaining choices g;;, K, S, Lapse-BC

e Close in spirit to GGB, but greatly improved:
Constraints are satisfied

Incorporates isolated horizon boundary conditions
General spins possible

Retains freedom to choose any g;;, K, S.

Lapse is positive on horizon

ok b=

e Agrees very well with PN (even with simple choices)

e Data sets will be publicly available soon.
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