
N-body issues:
softening, tree codes, falcON

Walter Dehnen

Leicester (UK)

Los Angeles, 19th April 2005 – p.1/16

contents

foundations of collisionless N-body methods

force softening: motivation and limitation

force approximation: tree code and FMM

force approximation: falcON

Los Angeles, 19th April 2005 – p.2/16

the collisionless N-body code
want to solve:

dt f = ∂t f + v · ∂x f − ∂xΦ · ∂v f = 0

∂2
xΦ(x, t) = 4πG

∫
f (x, v) d3v

f (x, v) continuous, one-particle DF (lowest in BBGKY hierarchy)

Phase-mixing of 104 points in 1D
Hamiltonian H = p2/2 + |q| of a
point mass in 1D gravity. The
fine-grained DF is either 1 or 0,
but at late times a smooth distri-
bution appears.

Los Angeles, 19th April 2005 – p.3/16

the collisionless N-body code
want to solve:

dt f = ∂t f + v · ∂x f − ∂xΦ · ∂v f = 0

∂2
xΦ(x, t) = 4πG

∫
f (x, v) d3v

f (x, v) continuous, one-particle DF (lowest in BBGKY hierarchy)

applicable if trelax � age⇒ N � 10 age/tdyn

no analytic non-trivial non-equilibrium solutions exist
f (x, v) is 6D & very inhomogeneous⇒ grid methods difficult
mixing invalidates continuum limit ⇒ grid methods fail
instead: use the Lagrangian ‘method of characteristics’

Phase-mixing of 104 points in 1D
Hamiltonian H = p2/2 + |q| of a
point mass in 1D gravity. The
fine-grained DF is either 1 or 0,
but at late times a smooth distri-
bution appears.

Los Angeles, 19th April 2005 – p.3/16

the collisionless N-body code
want to solve:

dt f = ∂t f + v · ∂x f − ∂xΦ · ∂v f = 0

∂2
xΦ(x, t) = 4πG

∫
f (x, v) d3v

f (x, v) continuous, one-particle DF (lowest in BBGKY hierarchy)

Phase-mixing of 104 points in 1D
Hamiltonian H = p2/2 + |q| of a
point mass in 1D gravity. The
fine-grained DF is either 1 or 0,
but at late times a smooth distri-
bution appears.

Los Angeles, 19th April 2005 – p.3/16

How to solve the CBE?
sample N trajectories {µi, xi, vi} from f (x, v, t = 0)
solve equations of motion ẍi = −∂xΦ(xi, t)
CBE: µi = const along trajectories

this implies

f (x, v, t) is unknown (except f (xi, vi, t) = f (xi, vi, t = 0)),
but represented by {µi, xi(t), vi(t)}
automatic coarse-graining (⇒ no problems with mixing)
moments of f can be estimated
N � N is a numerical parameter (unlike collisional N-body)
⇒ artificial two-body relaxation

Los Angeles, 19th April 2005 – p.4/16

How to solve the CBE?
sample N trajectories {µi, xi, vi} from f (x, v, t = 0)
solve equations of motion ẍi = −∂xΦ(xi, t)
CBE: µi = const along trajectories

this implies

f (x, v, t) is unknown (except f (xi, vi, t) = f (xi, vi, t = 0)),
but represented by {µi, xi(t), vi(t)}
automatic coarse-graining (⇒ no problems with mixing)
moments of f can be estimated
N � N is a numerical parameter (unlike collisional N-body)
⇒ artificial two-body relaxation

Los Angeles, 19th April 2005 – p.4/16

How to solve Poisson’s equation?
grid techniques (FFT, multigrid)

fast: O(ngrid log ngrid)
periodic (⇒ cosmology)
problem: inhomogeneity (but: adaptive multigrid)

basic functions (using Ylm)

fast: O(Nnbasis)
problems: central singularity, assumed symmetry

Greens-function approach:

Φ(x, t) = −G
∫

f (x′, v′, t)
|x − x′| d3x′ d3v′

general & adaptive
problem: f (x, v, t) unknown⇒ estimate

Φ(xi, t) ≈ Φ̂(xi, t) = −
N∑

j=1

Gµ j

ε
ϕ

(|xi − x j|
ε

)

with softening kernel ϕ(r) & softening length ε

ϕ(r) ∼ r−1 for r � 1
slow: O(N2), but fast approximations

Los Angeles, 19th April 2005 – p.5/16

How to solve Poisson’s equation?
Greens-function approach:

Φ(x, t) = −G
∫

f (x′, v′, t)
|x − x′| d3x′ d3v′

general & adaptive
problem: f (x, v, t) unknown⇒ estimate

Φ(xi, t) ≈ Φ̂(xi, t) = −
N∑

j=1

Gµ j

ε
ϕ

(|xi − x j|
ε

)

with softening kernel ϕ(r) & softening length ε

ϕ(r) ∼ r−1 for r � 1
slow: O(N2), but fast approximations

Los Angeles, 19th April 2005 – p.5/16

Why softening?
Without softening (ε=0): N-body instead of N-body problem
close encounters are

hard to integrate (ask Sverre Aarseth)
artificially so, since F ∝ µ/d2 ∝ N−1/(N−1/3)2 ∝ N−1/3.

thus, softening

significantly simplifies the time integration
avoids artifacts due to close encounters
(such as formation of binaries)
but does not avoid artificial two-body relaxation,
because that is driven by encounters on all scales
⇒ softening can only reduce it by a factor ∼2

Los Angeles, 19th April 2005 – p.6/16

Why softening?
Without softening (ε=0): N-body instead of N-body problem
close encounters are

hard to integrate (ask Sverre Aarseth)
artificially so, since F ∝ µ/d2 ∝ N−1/(N−1/3)2 ∝ N−1/3.

thus, softening

significantly simplifies the time integration
avoids artifacts due to close encounters
(such as formation of binaries)
but does not avoid artificial two-body relaxation,
because that is driven by encounters on all scales
⇒ softening can only reduce it by a factor ∼2

Los Angeles, 19th April 2005 – p.6/16

Softening as Optimal Force Estimation
The estimated force

F̂(x) = −
N∑

j=1

Gµ j

ε2 ϕ′
(|x − x j|

ε

)
x − x j

|x − x j|
is a random variable (like the xi) with mean-square error

MSE(F̂) ≡
〈(

F̂(x) − F(x)
)2
〉

= bias
(
F̂(x)

)2
+ var

(
F̂(x)

)

with
bias

(
F̂(x)

)
= 〈F̂(x)〉 − F(x)

var
(
F̂(x)

)
=

〈(
F̂(x) − 〈F(x)〉)2

〉
= 〈F̂2

(x)〉 − 〈F̂(x)〉2

Los Angeles, 19th April 2005 – p.7/16

Softening as Optimal Force Estimation
The estimated force

F̂(x) = −
N∑

j=1

Gµ j

ε2 ϕ′
(|x − x j|

ε

)
x − x j

|x − x j|
is a random variable (like the xi) with mean-square error

MSE(F̂) ≡
〈(

F̂(x) − F(x)
)2
〉

= bias
(
F̂(x)

)2
+ var

(
F̂(x)

)

with
bias

(
F̂(x)

)
= −a0ε

2G∂xρ(x) − a2ε
4G∂x(∂2

xρ(x)) + O(ε6)

N var
(
F̂(x)

)
= bFε

−1G2Mρ(x) + O(ε0)
and

ak =
4π

(k + 1)!

∫ ∞

0
dr rk+2(r−1 − ϕ(r)

)

bF = 4π
∫ ∞

0
dr r2ϕ′2(r)

Los Angeles, 19th April 2005 – p.7/16

Softening as Optimal Force Estimation
MSE(F̂) ≈ a2

0ε
4G2(∂xρ)2 + bFN−1ε−1G2Mρ

is minimal at
εopt ∝ N−1/5

with
MSEopt(F̂) ∝ N−4/5

Is εopt the best choice for the dynamics?

Top: mean integrated squared error (MISE) of the force for
N = 104 and N = 105 and a Hernquist sphere plotted vs. ε for
various softening kernels. Bottom: run of bias and variance
at minimal MISE(F̂).

Los Angeles, 19th April 2005 – p.8/16

Force Approximation
force estimation error is unavoidable
we can tolerate an approximation as long as
approximation error� estimation error

approximating direct summation: tree code

use hierarchical tree (usually: oct-tree) ⇒ fully adaptive
faster than direct sumation: O(N log N)
Fi→ j + F j→i , 0⇒ total momentun not conserved

approximating direct summation: fast multiple method

use hierarchy of cartesian grids ⇒ not fully adaptive
uses spherical multipoles & complex Ylm

numerics complicated & cumbersome
high orders⇒ high accuracy
formally O(N) but slower than tree code

Los Angeles, 19th April 2005 – p.9/16

Force Approximation
force estimation error is unavoidable
we can tolerate an approximation as long as
approximation error� estimation error
approximating direct summation: tree code

use hierarchical tree (usually: oct-tree) ⇒ fully adaptive
faster than direct sumation: O(N log N)
Fi→ j + F j→i , 0⇒ total momentun not conserved

approximating direct summation: fast multiple method

use hierarchy of cartesian grids ⇒ not fully adaptive
uses spherical multipoles & complex Ylm

numerics complicated & cumbersome
high orders⇒ high accuracy
formally O(N) but slower than tree code

Los Angeles, 19th April 2005 – p.9/16

Force Approximation
force estimation error is unavoidable
we can tolerate an approximation as long as
approximation error� estimation error
approximating direct summation: tree code

use hierarchical tree (usually: oct-tree) ⇒ fully adaptive
faster than direct sumation: O(N log N)
Fi→ j + F j→i , 0⇒ total momentun not conserved

approximating direct summation: fast multiple method

use hierarchy of cartesian grids ⇒ not fully adaptive
uses spherical multipoles & complex Ylm

numerics complicated & cumbersome
high orders⇒ high accuracy
formally O(N) but slower than tree code

Los Angeles, 19th April 2005 – p.9/16

tree code: details
preparation phase

build a hierarchical tree ⇒ cost: O(N log N)
pre-compute multipole moments etc

force computation: ‘tree walk’

for each body: compute forces due to root cell
to compute force from a cell:

if body is well-separated from cell:
compute force from multipole moments
otherwise: forces from daughter cells (recursive)

cost: O(log N) per body⇒ O(N log N)

this algorithm clearly is sub-optimal:
forces of neighbours similar yet independently computed

Los Angeles, 19th April 2005 – p.10/16

fast multipole method: details
preparation phase

build a hierarchy of cartesian grids
pre-compute multipole moments etc (upward pass)

force computation
on each grid level: ‘intermediate-field’ interactions:
compute & accumulate multipoles of gravity field
downward pass

pass field-multipoles down the hierarchy
compute forces on finest grid

interaction criterion purely geometric ⇒ errors unbalanced
theoretically O(N), but not demonstrated in practice
not competetive with tree code in low-accuracy regime

Los Angeles, 19th April 2005 – p.11/16

falcON: details
falcON = force algorithm with complexity O(N)
hybrid of tree & FMM, takes the better of each.

preparation phase (same as for tree code)

build a hierarchical tree ⇒ cost: O(N log N)
pre-compute multipole moments etc

interaction phase:

compute root-root interaction
cost: (better than) O(N), dominates

evaluation phase:

pass field tensors down the tree
compute forces at body positions
cost: O(N)

∼ 10 times faster than tree or FMM (at low accuracy)
simple error balancing (could be done with tree too)

Los Angeles, 19th April 2005 – p.12/16

falcON: details
falcON = force algorithm with complexity O(N)
hybrid of tree & FMM, takes the better of each.

preparation phase (same as for tree code)
interaction phase:

compute root-root interaction
to compute node-node interaction:

if node-node interaction well-separated:
accumulate field tensors
otherwise: split & continue with child interactions
(recursive)

cost: (better than) O(N), dominates

evaluation phase:

pass field tensors down the tree
compute forces at body positions
cost: O(N)

∼ 10 times faster than tree or FMM (at low accuracy)
simple error balancing (could be done with tree too)

Los Angeles, 19th April 2005 – p.12/16

falcON: details
falcON = force algorithm with complexity O(N)
hybrid of tree & FMM, takes the better of each.

preparation phase (same as for tree code)
interaction phase:

compute root-root interaction
cost: (better than) O(N), dominates

evaluation phase:

pass field tensors down the tree
compute forces at body positions
cost: O(N)

∼ 10 times faster than tree or FMM (at low accuracy)
simple error balancing (could be done with tree too)

Los Angeles, 19th April 2005 – p.12/16

falcON: numerics
wanted: Φ(xi) = −∑

j,i µ j g(xi − y j). Taylor expand g about R = x0 − y0:

g(x − y) =

p∑

n=0

1
n!

(x − y − R)(n) � ∂(n)
x g(R) + Rp(g).

Insert & sum over source cell B (Warren & Salmon 1995, CPC, 87, 266):

ΦB→A(x) = −
p∑

m=0

1
m!

(x − x0)(m) � Cm,p + Rp(ΦB→A)

evaluation

Cm,p =

p−m∑

n=0

(−1)n

n!
∂(n+m)

x g(R) �Mn
B,

interaction

Mn
B =

∑

yi∈B
µi (yi − y0)(n).

preparation

∑
m : evaluation of gravity, represented by the field tensors Cm,p, at position x

∑
n : interaction between source cell B, represented by the multipoles Mn

B, and the sink cell A.

Difference to tree code:
expansion in x (tree code: x ≡ x0)
mutuality of interactions

Los Angeles, 19th April 2005 – p.13/16

falcON: numerics
wanted: Φ(xi) = −∑

j,i µ j g(xi − y j). Taylor expand g about R = x0 − y0:

g(x − y) =

p∑

n=0

1
n!

(x − y − R)(n) � ∂(n)
x g(R) + Rp(g).

Insert & sum over source cell B (Warren & Salmon 1995, CPC, 87, 266):

ΦB→A(x) = −
p∑

m=0

1
m!

(x − x0)(m) � Cm,p + Rp(ΦB→A) evaluation

Cm,p =

p−m∑

n=0

(−1)n

n!
∂(n+m)

x g(R) �Mn
B, interaction

Mn
B =

∑

yi∈B
µi (yi − y0)(n). preparation

∑
m : evaluation of gravity, represented by the field tensors Cm,p, at position x

∑
n : interaction between source cell B, represented by the multipoles Mn

B, and the sink cell A.

Difference to tree code:
expansion in x (tree code: x ≡ x0)
mutuality of interactions

Los Angeles, 19th April 2005 – p.13/16

falcON: error balancing
cells are well-separated if
|R|> rA,crit+rB,crit with rcrit=rmax/θ,
⇒ |x − y − R| < θ|R| ∀ x∈A, y∈B
⇒ Taylor series converges

error of individual interaction:

|∂xRp(ΦB→A)| ≤ (p + 1)θp

(1 − θ)2

MB

R2 ∝
θp+2

(1 − θ)2 M1/3
B

with θ = const: relative error constant, absolute error ∝ M1/3
B

⇒ total error dominated by few interactions with large cells
better: balance absolute errors by θ = θ(M) with

θp+2

(1 − θ)2 =
θ

p+2
min

(1 − θmin)2

(
M

Mtot

)1/3

Los Angeles, 19th April 2005 – p.14/16

falcON: error balancing
cells are well-separated if
|R|> rA,crit+rB,crit with rcrit=rmax/θ,
⇒ |x − y − R| < θ|R| ∀ x∈A, y∈B
⇒ Taylor series converges

error of individual interaction:

|∂xRp(ΦB→A)| ≤ (p + 1)θp

(1 − θ)2

MB

R2 ∝
θp+2

(1 − θ)2 M1/3
B

with θ = const: relative error constant, absolute error ∝ M1/3
B

⇒ total error dominated by few interactions with large cells
better: balance absolute errors by θ = θ(M) with

θp+2

(1 − θ)2 =
θ

p+2
min

(1 − θmin)2

(
M

Mtot

)1/3

Los Angeles, 19th April 2005 – p.14/16

falcON: complexity analysis
eight-folding N⇒NI → 8NI + N+ and thus

dNI

dN
' NI

N
∆ ln NI

∆ ln N
≈ NI

N
+

N+

N8 ln 8
,

with solution

NI = c0N +
N

8 ln 8

∫
N+

N2 dN

tree code: N+ ∝ N⇒ NI ∝ N log N
falcON: N+(N) grow less than O(N)⇒ NI ∝ N
with error-balancing: at error ' const: NI ∝ N0.91

typical for N = 106 CPU time: 0.5 + 4.5 sec (Opteron)

Los Angeles, 19th April 2005 – p.15/16

falcON: complexity analysis
eight-folding N⇒NI → 8NI + N+ and thus

dNI

dN
' NI

N
∆ ln NI

∆ ln N
≈ NI

N
+

N+

N8 ln 8
,

with solution

NI = c0N +
N

8 ln 8

∫
N+

N2 dN

tree code: N+ ∝ N⇒ NI ∝ N log N
falcON: N+(N) grow less than O(N)⇒ NI ∝ N
with error-balancing: at error ' const: NI ∝ N0.91

typical for N = 106 CPU time: 0.5 + 4.5 sec (Opteron)

Los Angeles, 19th April 2005 – p.15/16

to-do & yet-to-understand list

softening: dynamical effects, resolution & noise
force approximation:

effects of approximation errors, shadow forces (grid)
non-conservative force approximation: a problem?

time integration: what is right & wrong?
comparative N-body studies (Katrin Heitmann)
initial conditions

Los Angeles, 19th April 2005 – p.16/16

	contents
	the collisionless N-body code
	How to solve the CBE?
	How to solve Poisson's equation?
	Why softening?
	Softening as Optimal Force Estimation
	Softening as Optimal Force Estimation
	Force Approximation
	tree code: details
	fast multipole method: details
	falc{
ed ON}: details
	falc{
ed ON}: numerics
	falc{
ed ON}: error balancing
	falc{
ed ON}: complexity analysis
	to-do & yet-to-understand list

