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the collisionless N-body code

want to solve:
dtf — (9tf+v°(9xf—0xq)°3vf:0

07 0(x, 1) = 47G [ f(x,v)dV

f(x,v) continuous, one-particle DF (lowest in BBGKY hierarchy)
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the collisionless N-body code

want to solve:
dif = O, f +v-0xf—0xD-9,f =0

07 0(x, 1) = 47G [ f(x,v)dV

f(x,v) continuous, one-particle DF (lowest in BBGKY hierarchy)

applicable if fcax > age N > 10age/tqyn

no analytic non-trivial non-equilibrium solutions exist
f(x,v)is 6D & very inhomogeneous  grid methods difficult
mixing invalidates continuum limit  grid methods falil
Instead: use the Lagrangian ‘method of characteristics’
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the collisionless N-body code

want to solve:
dif = O, f +v-0xf—0xD-9,f =0

07 0(x, 1) = 4nG [ f(x,v)dV

f(x,v) continuous, one-particle DF (lowest in BBGKY hierarchy)

Phase-mixing of 10* points in 1D
Hamiltonian H = p?/2 + |g| of a
point mass in 1D gravity. The
fine-grained DF is either 1 or O,
but at late times a smooth distri-
bution appears.
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How to solve the CBE?

sample N trajectories {u;, x;,v;} from f(x,v,t = 0)
solve equations of motion ¥; = -0, ®(x;, 1)
CBE: u; = const along trajectories
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How to solve the CBE?

sample N trajectories {u;, x;,v;} from f(x,v,t = 0)
solve equations of motion x; = —9,®(x;, 1)
CBE: u; = const along trajectories

this implies

f(x,v, 1) Is unknown (except f(x;,v;,1) = f(x;,v;,t = 0)),

but represented by {u;, x;(¢),v;(¢)}

automatic coarse-graining (  no problems with mixing)
of f can be

N< Nisa (unlike collisional N-body)
artificial two-body relaxation

Los Angeles, 19th April 2005 — p.4/16



How to solve Poisson’s equation?

grid techniques (FFT, multigrid)

- fast: O(ngrid log ngrid)
periodic ( cosmology)
problem: inhomogeneity (but: adaptive multigrid)

basic functions (using Y;,,)

- fast: O(Nnbasis)
problems: central singularity, assumed symmetry
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How to solve Poisson’s equation?

Greens-function approach:

f(x",v', 1)

dx’ dy’
x — x’|

O(x,t) = -G

+ general & adaptive
problem: f(x,v,) unknown

N —
(D(x,-,t)zci)(xi’t)_ ZG j (lxl xJ|)

€

J=1

with softening kernel ¢(r) & softening length ¢
co(r) ~rforr>1
. slow: O(N?), fast approximations
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Why softening?

Without softening (e=0): N-body instead of N-body problem
close encounters are

hard to integrate (ask Sverre Aarseth)
artificially so, since F o« u/d* o« N71/(N71/3)? o« N71/3.
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Why softening?

Without softening (e=0): N-body instead of N-body problem
close encounters are

hard to integrate (ask Sverre Aarseth)

artificially so, since F o« u/d* o« N71/(N71/3)? o« N71/3.
thus, softening

significantly simplifies the time integration

avoids artifacts due to close encounters

(such as formation of binaries)

but ,

because that is driven by encounters on  scales
softening can only reduce it by a factor ~2
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Softening as Optimal Force Estimation

The force

Fx)=-

L Gu; (lx—x;\ x—x;
e & € lx — x|
=1 /
IS a random variable (like the x;) with mean-square error
MSE(F) = <(IA7 (x)- F (x))2> = bias(F (x))2 + var(F(x))
with
bias(F(x)) = (F(x)) — F(x)

var(F(x)) = ((F(x) - (F@)))’) = (F(x)) - (F(x))?
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Softening as Optimal Force Estimation

The force

Fx)=-

N
Gu; (lx—x;\ x—x;
2 € Ix — x ||
j=1 /

IS a random variable (like the x;) with mean-square error

MSE(F) = <(IA7 (x)- F (x))2> = bias(F (x))2 + var(F(x))
with

bias(F(x)) = —age’Gdp(x) — ar€* GO (0°p(x)) + O(€®)

Nvar(F(x)) = brpe 'G*Mp(x) + O(€®)

N
e A

ay = (k+1)L[0 dr 2t — o(r))

47Tf dr o' (r)
0

br
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Softening as Optimal Force Estimation

e MSE(F) ~ age*G*(0xp)* + bpN~'e 'G*Mp
IS minimal at "
Eopt X N~
with

MSEqp(F) oc N™*>

IS &« the best choice for the dynamics

Top: mean integrated squared error (MISE) of the force for
N = 10* and N = 10° and a Hernquist sphere plotted vs. € for
various softening kernels. Bottom: run of bias and variance

at minimal MISE(F).
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Force Approximation

force IS unavoidable
we can tolerate an approximation as long as
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Force Approximation

force IS unavoidable
we can tolerate an approximation as long as

approximating direct summation: tree code

use hierarchical tree (usually: oct-tree)  fully adaptive
faster than direct sumation: O(Nlog N)
F,,i+Fi,#0 total momentun not conserved
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Force Approximation

force IS unavoidable
we can tolerate an approximation as long as

approximating direct summation: tree code

use hierarchical tree (usually: oct-tree)  fully adaptive
faster than direct sumation: O(Nlog N)
F,,i+Fi,#0 total momentun not conserved

approximating direct summation: fast multiple method

use hierarchy of cartesian grids  not fully adaptive
uses spherical multipoles & complex Yy,

numerics complicated & cumbersome

high orders  high accuracy

formally O(N) slower than tree code
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tree code: details

preparation phase

build a hierarchical tree  cost: O(NlogN)
pre-compute multipole moments etc

force computation: ‘tree walk’
for each body: compute forces due to root cell
to compute force from a cell:
» if body is from cell:

compute force from multipole moments
» otherwise: forces from daughter cells (recursive)
cost: O(logN) per body O(NlogN)

this algorithm clearly is ;
forces of neighbours similar yet independently computed
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fast multipole method: details

preparation phase

build a hierarchy of cartesian grids
pre-compute multipole moments etc ( )

force computation
on each grid level: ‘intermediate-field’ interactions:
compute & accumulate multipoles of gravity field

» pass field-multipoles down the hierarchy
» compute forces on finest grid

Interaction criterion purely geometric  errors unbalanced
theoretically O(N), but not demonstrated in practice
not competetive with tree code in low-accuracy regime
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falc : details

falc = force algorithm with complexity O(N)
hybrid of tree & FMM, takes the better of each.

preparation phase (same as for tree code)

build a hierarchical tree  cost: O(NlogN)
pre-compute multipole moments etc
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falc : details

falc = force algorithm with complexity O(N)
hybrid of tree & FMM, takes the better of each.

preparation phase (same as for tree code)

compute root-root interaction
to compute node-node interaction:

» If node-node interaction well-separated:
accumulate field tensors
» otherwise: split & continue with child interactions

(recursive)
cost: (better than) O(N), dominates
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falc : details

falc = force algorithm with complexity O(N)
hybrid of tree & FMM, takes the better of each.

preparation phase (same as for tree code)

compute root-root interaction
cost: (better than) O(N), dominates

pass field tensors down the tree
compute forces at body positions
cost: O(N)

times faster than tree or FMM (at low accuracy)
simple error balancing (could be done with tree to0)
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falc : numerics

wanted: @(x;) = — 3. 4j g(x; —y;)- Taylor expand g about R = x¢ — yj:

14

1 ’
sy =) — (x-y-R" oI gR) + Ry(g).

n=0

Insert & sum over source cell B (Warren & Salmon 1995, CPC, 87, 266):

DOp_a(x)

C"?

n
MB

P
1
=) o @=x0) " OC™ + Ry(Dp_n)
m=0 "
p—m
— e
> L meryomy,
— n.

Z Mi (y; — J’o)(n)-

yi€B
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falc : numerics

wanted: @(x;) = — 3. 4j g(x; —y;)- Taylor expand g about R = x¢ — yj:
P

1 :
sy =) — (x-y-R" oI gR) + Ry(g).
n=0 "

Insert & sum over source cell B (Warren & Salmon 1995, CPC, 87, 266):

P
1
Op_a(x) = — Z — (x - x0)™ @ C™P + R,(Pp_p)
=0 m:.
< ="
cmp = Z 4R o ME,
= n!

M’é - Zﬂi()’i—.)’o)(n)-

y;€B
>, -evaluation of gravity, represented by the C"? at position x
>, .interaction between source cell B, represented by the M3, and the sink cell A.

Difference to tree code:
in x (tree code: x = x)
of actions
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falc ' : error balancing

cells are If

|R| > A crit+7B crit With rerit=rmax/6,
x —y — R| < O|R| VY x€A, yeB
Taylor series converges

error of individual interaction:

(p+ 1)6” Mg P+ VI
oC
(1-62 R2 (1-02% °

|axRp((DB—>A)| <
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falc ' : error balancing

cells are If

|R| > A crit+7B crit With rerit=rmax/6,
x —y — R| < O|R| VY x€A, yeB
Taylor series converges

error of individual interaction:

(p+ 16" Mp P+ VI
oC
(1-62 R2 (1-62 °®

[0xR,(Pea)| <

with 6 = const: error constant, error oc M/
dominated by few interactions with large cells
better: absolute errors by 6 = (M) with
op+2 6’”2 M 1/3
(1 _ 9)2 ; (1 i Hmin)z (Mtot)
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falc ' : complexity analysis
eight-folding N  N; — 8N; + N, and thus
dN; N;AlnNg N Ny N,

~Y

dN N AlN N TN8Ing’

with solution

N N
— dN

_ 0N
Nr=oN+e= | v
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falc ' : complexity analysis
eight-folding N  N; — 8N; + N, and thus

@NN]AIHN[ NN]+ N+
dN =~ N AInN N N8Ing§’

with solution

N N
— dN

_ 0N
Nr=oN+e= | v

tree code: Ny « N N;«< NlogN

falc  : N.(N)grow lessthan O(N) N; « N

with error-balancing: at error ~ const: N; o« N*9!
typical for N = 10° CPU time: 0.5 + 4.5 sec (Opteron)
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to-do & yet-to-understand list

softening: dynamical effects, resolution & noise
force approximation:

effects of approximation errors, shadow forces (grid)
non-conservative force approximation: a problem?

time integration: what is right & wrong?
comparative N-body studies (Katrin Heitmann)
initial conditions
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