N-body Dynamics in Stellar Clusters Embedded in Gas

Matthew Bate, University of Exeter

Kurosawa, Harries, Bate & Symington (2004)

Collaborators:

lan Bonnell, Volker Bromm, St Andrews Texas

Star Formation

- Physics
 - Self-gravity
 - Hydrodynamics
 - Radiative transfer
 - Magnetic fields
 - Non-ideal: ambipolar diffusion, Hall effect, resistivity
 - Multi-fluid
 - Chemistry, dust, ionisation

Scales

- Spatial scales: 10 orders of magnitude
 - + 10's of parsecs to less than R_{\odot}
- Timescales: 12 orders of magnitude
 - 10⁷ yrs to <5 minutes
- Densities: >20 orders of magnitude
 - <10⁻²⁰ g cm⁻³ to >1 g cm⁻³
- Sub-problems
 - Turbulence, chaos, accretion discs, jets/outflows, chemical reactions

Star Formation

- Physics
 - Self-gravity
 - Hydrodynamics
 - Radiative transfer (FLD in SPH: Whitehouse & Bate 2004)
 - Magnetic fields (Price & Monaghan 2003)
 - Non-ideal: ambipolar diffusion, Hall conduction, resistivity
 - Multi-fluid
 - Chemistry, dust, ionisation
- Scales
 - Spatial scales: 10 orders of magnitude
 - 10's of parsecs to less than R_{\odot}
 - Timescales: 12 orders of magnitude
 - 10⁷ yrs to <5 minutes
 - Densities: >20 orders of magnitude
 - <10⁻²⁰ g cm⁻³ to >1 g cm⁻³
- Sub-problems

- (5 orders of magnitude) (~5 AU to 0.5 pc)
 (8 orders of magnitude) (~3 hours to 300,000 yrs)
 (8 orders of magnitude) (~10⁻¹⁹ to 10⁻¹¹ g cm⁻³)
- Turbulence, chaos, accretion discs, jets/outflows, chemical reactions

- Variable smoothing/softening lengths
 - Lagrangian so resolution follows mass
- Individual timesteps
 - Essential for following large range of timescales
 - Can follow collapse to stellar densities
 - Bate (1998): 1 solar mass cloud to form stellar core
 - Need > 3x10⁵ particles
- Sink particles
 - Bate, Bonnell & Price (1995)
 - Condensed objects (stars) replaced by point mass
 - Accretes gas that falls within a certain radius
 - Accretion radius 5 AU
 - Spline gravitational softening inside 4 AU
- Parallel
 - OpenMP

Collapse to Stellar Densities

- Bate 1998
 - Collapse of molecular cloud core R~5000 AU to stellar densities
 - Tested to see whether close binaries (separations < 10 AU) could form directly via fragmentation

Goal: Statistical Properties

- Understand the origin of and make predictions for:
 - Star formation timescale
 - Star formation efficiency
 - Initial mass function
 - Kinematics: velocity dispersion
 - Frequency and properties of binaries and multiples
 - Circumstellar disc properties
- Best guess at initial conditions in local SF regions
- How does star formation depend on environment ?
 - Mean Jeans mass of the cloud (density, temperature)
 - Opacity limit for fragmentation
 - Power spectrum of the turbulence, etc

Hydrodynamical Simulations

- Initial supersonic (`turbulent') velocity field
 - E.g. Ostriker, Stone & Gammie 2001
 - Divergence-free random Gaussian velocity field
 - **P(k)** ~ k⁻⁴ so that $\sigma(\lambda) \sim \lambda^{1/2}$ (Larson 1981)
 - Normalised so cloud contains one turbulent Jeans mass
- Resolve down to the opacity limit for fragmentation
 - Local Jeans mass always contains >75 particles (Bate & Burkert 1997; Bate et al. 2003)
 - Limited to 50 M_{\odot} of gas
 - Molecular cloud sizes 0.4-0.8 pc across
 - <100 stars and brown dwarfs</p>
- Four calculations
 - Standard: mean Jeans mass 1 M_{\odot}, Opacity limit at ~3 M_J
 - Bate, Bonnell & Bromm 2002a,b;2003
 - Denser cloud: mean Jeans mass 1/3 M_{\odot} , Opacity limit at ~3 M_{J}
 - Bate & Bonnell 2005
 - Lower metallicity: mean Jeans mass 1 M_{\odot} , Opacity limit at ~10 M_{J}
 - Different power spectrum: $P(k) \sim k^{-6}$

Opacity Limit for Fragmentation

Hoyle 1953; Low & Lynden-Bell 1976; Rees 1976

- Low-density gas collapses isothermally (T~10 K)
- Compressional heating rate << cooling rate
- Collapse accelerates
- Heating rate > cooling rate
- Occurs at ~ 10⁻¹³ g cm⁻³
 - Masunaga & Inutsuka 2000
- Pressure-supported core forms (Larson 1969)
 - Size ~ 5 AU
 - Mass ~ 0.005 M_{\odot} (5 M_{J})
- Minimum mass
 - 0.007 M $_{\odot}$ (7 M_J) Low & Lynden-Bell (1976)
 - 0.01 M $_{\odot}$ (10 M_J) Boss (1988)
- Grows with time due to accretion from envelope

UK Astrophysical

Fluids Facility

UK Astrophysical

Fluids Facility

- Ophiuchus low-mass star-forming region
 - 550 M_{\odot} within area of 2x1 pc (Wilking & Lada 1983)
 - Contains 6 main dense cores
 - Simulation similar to modelling Oph-F core (mass $\sim 8 M_{\odot}$)

Orion Trapezium Cluster

• Stellar densities in this calculation ~10³ pc⁻³

VLT, ESO PR 03a0/1

- Stellar densities in Trapezium Cluster
 - Centre $\sim 2x10^4 \text{ pc}^{-3}$
 - Fall off as (R / 0.07 pc)⁻²
 - Hillenbrand & Hartmann 1997
 - Bate et al. 1998
- Simulation similar to
 - Small region within cluster
 - R ~ 0.3 pc from centre
 - Especially if Orion was originally sub-clustered

Standard Model

Denser Cloud

Standard Model

Denser Cloud

UK Astrophysical Fluids Facility

Low Metallicity Turbulence P(k)~k⁻⁶

Low Metallicity Turbulence P(k)~k⁻⁶

Star Formation Timescale

Star formation occurs on dynamical timescale in localised bursts

- Dense core forms
- Stars form on core's dynamical timescale
- Gas depleted
- Potential well gathers more gas
- Star formation again
- Main core undergoes two bursts ~20000 yr separated ~20000 yr

Star Formation Efficiency

- For each core, local SF efficiency high
 - Bursts
- Overall efficiency for cloud low

Core	Initial Gas M _o	Final M _o	No. Stars	No. Brown Dwarfs	Mass Stars/BD	SF Efficiency
1	3.0	3.7	17	21	5.0	58%
2	0.9	1.0	3	4	0.5	32%
3	1.1	1.1	3	2	0.4	30%
Cloud	50.0	44.1	23+	27-	5.9	12%

Resulting IMFs

Standard calculation

Low metallicity

Denser cloud

UK Astrophysical Fluids Facility

Turbulence P(k)~k⁻⁶

UK Astrophysical

Variations with Initial Conditions?

- Denser cloud (1/3 of original thermal Jeans mass)
 - Median mass decreased by factor of 3.04
 - Higher proportion of brown dwarfs
 - K-S test gives only 1.8% probability of same IMF
- Increasing minimum fragment mass by factor of 3
 - Increases the minimum mass of a brown dwarf
 - Median mass almost unchanged (20% smaller)
 - 45% probability of being drawn from the same populations
- Dramatic change to initial velocity power spectrum
 - No statistically-significant change in the IMF !
 - 95% probability of being drawn from the same population!

Brown Dwarf Formation

How do brown dwarfs form?

- Bate, Bonnell & Bromm 2002
- 3/4 in massive circumstellar discs via disc fragmentation
 - Bonnell 1994; Whitworth et al. 1995; Burkert et al. 1997
- 1/4 in dense collapsing filaments
- Opacity limit for fragmentation sets initial mass
- Must avoid accreting to higher masses
- Ejected from unstable multiple systems (c.f. Reipurth & Clarke 2001)
 - Stops accretion before they attain stellar masses

UK Astrophysical Fluids Facility

Final Masses: Accretion vs Ejection

- Plot time between formation and ejection versus final mass
 - Brown dwarfs have sub-stellar masses because they are ejected soon after they form

Simple Accretion/Ejection Model

- Assumptions (Bate & Bonnell 2005)
 - Initial masses set by the opacity-limit (e.g. 3 M_J), then objects accrete at a constant rate until ejected
 - Individual accretion rates drawn from log-normal distribution with mean \vec{M} and variance σ
 - Ejections occur stochastically with characteristic timescale t_{eiect} (the same for all objects)
 - Probability of not being ejected proportional to exp(-t/t_{eject})
 - See also Basu & Jones 2004
- Three parameters
 - $-\overline{M} = \overline{M} t_{eject}$
 - σ
 - Minimum mass due to opacity limit (metallicity)

Reproduces Hydrodynamical Results

Parameter values taken directly from simulations

UK Astrophysical

Dependence of IMF on Initial Conditions

- Variation of peak mass
 - Accretion rate prop. to c_s³/G
 - Ejection timescale prop. to (Gρ)^{-1/2}
 - ~ crossing time for small groups
 - Varies with mean thermal Jeans mass
 - Definition of Jeans mass: c_s³/ (G³ρ)^{1/2}
 - Stellar groups more compact
 - Ejection time decreases
 - In practice, mean Jeans mass determined by thermodynamic behaviour
 - Jappsen et al. 2004, Larson 2005
- Increase dispersion in accretion rates
 - Shallower slope of high-mass IMF
 - Near Salpeter for $\sigma \sim 0.7$ dex
 - Dispersion higher for denser cloud

Comparison with Observations

- Taurus star-forming region
 - Low density, typical thermal Jeans mass: few M $_{\odot}$
- Trapezium cluster
 - $-\,$ High density, smaller inferred Jeans mass: ~ 1 M_{\odot}
- Taurus has a factor of 1.5-2 fewer brown dwarfs

- Briceno, Luhman, et al. (2002)

• Higher thermal Jeans mass -> fewer brown dwarfs

Close Binary Formation

- Opacity limit for fragmentation sets
 - Minimum initial binary separation of ~10 AU
 - 2 x Jeans length when gas becomes non-isothermal
- 7 close binaries (< 10 AU) out of 50 objects
- Close binaries form through combination of
 - Dynamical encounters and exchanges
 - see Tokovinin (2000)
 - Gas accretion
 - e.g. Bate (2000)
 - Interaction with circumbinary and circumtriple discs
 - Pringle (1991); Artymowicz et al. (1991)
- Results published in Bate, Bonnell & Bromm (2002)

Close Binary Formation

UNIVERSITY OF

Close Binary Properties

- Close binary frequency: 7/43 = ~16%
 - Duquennoy & Mayor (1991): ~20%
- Frequency dependent on primary mass
 - ~20 brown dwarfs, only one binary brown dwarf
 - 11 stars with M>0.2 $M_{\odot},\,$ 5 in close binaries
 - Due to exchange interactions which eject lowest-mass
- Preference for equal mass ratios
 - All have mass ratios q>0.3
 - Due to accretion (Bate 2000) + exchange interactions
- 6 of 7 close binaries have wider companions
 - Mayor & Mazeh (1987); Tokovinin (1997, 2000)

Binary Brown Dwarfs

- Calculation 1
 - 1 BBD from ~20 brown dwarfs: 6 AU (acc)
 - Frequency ~5%
- Calculation 2
 - 3 BBD: 2 AU (acc), 21 AU (acc), 66 AU (stable)
 - 2 BD+VLM (<0.09 M_o): 15 AU (acc), 136 AU (stable)
 - Frequency: 5/60 ~8%
- Calculation 3
 - 0 BBD from 18 brown dwarfs
- Observations
 - Observed frequency ~15%
 - Reid et al. 2001; Close et al. 2002,2003; Bouy et al. 2003; Burgasser et al. 2003; Gizis et al. 2003; Martin et al. 2003
 - Almost all binary brown dwarfs close (<15 AU)
 - Luhman (2004): Wide (200 AU) binary brown dwarf?

Ophiuchus Main Cloud

Greyscale 550 M_oof gas (Wilking & Lada 1983)

Fields

HST young stars (Allen et al 2001)

Perhaps the young stars formed in the dense cores and were subsequently ejected?

- 2 km/s = 0.2 pc in 10⁵ yrs
- Proper motions?

Sizes of Protoplanetary Discs

- Star formation highly dynamic
 - Many discs truncated by encounters
 - Few resolved discs (>10 AU radius) are left
 - Especially in the densed simulation
- Is this realistic?

Courtesy of Mark McCaughrean, Exeter

Discs in the Trapezium Cluster

- HST resolves silhouette discs to ~40 AU radius
 - Resolves 41 discs from ~350 stars
 - Only ~10% of stars have discs >40 AU radius
 - Rodmann 2002
- ~80% stars have IR excess indicative of discs
 - Lada et al. 2000
- Implies most discs have radii < 40 AU
 - Serious implications for planet formation

Conclusions

- Can perform simulations that form statistically significant numbers of stars
 - Much physics still missing or simplified
- Dynamical (N-body) interactions crucial for determining stellar properties
- Initial mass function (IMF) originates from interplay between accretion/ejection
 - Stars and brown dwarfs form the same way
 - Brown dwarfs are those objects ejected sooner after they form
- Close binaries form (in part) through dynamical interactions
 - Exchange interactions lead to
 - Higher binary frequency for more massive objects
 - Mass ratios near unity for close binaries
- Discs are truncated by dynamical interactions
 - May inhibit the formation of large planetary systems in dense environments