Cosmological Structure Formation II

Michael L. Norman Laboratory for Computational Astrophysics mnorman@cosmos.ucsd.edu

Hydrodynamic Cosmology

Baryons: The Tail of the Dog

Dark matter

Gas

Main Loop of Hydrodynamic Cosmology Code

Cosmological Hydrodynamics

$$\frac{\partial \rho_{b}}{\partial t} + \nabla \cdot (\rho_{b} v_{b}) + 3\frac{\dot{a}}{a}\rho_{b} = 0$$
Euler's equations
$$\frac{\partial \rho_{b} v_{b,i}}{\partial t} + \nabla \cdot [(\rho_{b} v_{b,i})v_{b}] + 5\frac{\dot{a}}{a}\rho_{b}v_{b,i} = -\frac{1}{a^{2}}\frac{\partial p}{\partial x_{i}} - \frac{\rho_{b}}{a^{2}}\frac{\partial \phi}{\partial x_{i}}$$

$$\frac{\partial e}{\partial t} + \nabla \cdot (ev_{b}) + p\nabla \cdot v_{b} + 3\frac{\dot{a}}{a}(e+p)_{b} = \Gamma - \Lambda$$
multispecies chemical kinetics
$$\frac{\partial \rho_{i}}{\partial t} + \nabla \cdot (\rho_{i} v_{b}) + 3\frac{\dot{a}}{a}\rho_{i} = \pm \sum_{j}\sum_{l}k_{jl}(T)\rho_{j} \pm \sum_{j}I_{j}\rho_{j}$$

Sample Applications

X-ray clusters	X	X	X					
Intergalactic medium	X	X	X	X				
First stars	X	X	X	X	X			
Galaxy formation	X	X	X	X		X	X	
Reionization of IGM	X	X	X	X		X	X	X

X-Ray Clusters

- Hot, x-ray emitting gas bound to a cluster of galaxies
- Extremely luminous in x-ray
- T easily measured
- T and M tightly correlated
 n(T,z)→n(M,z)
- Cosmological probes of P(k), $\Omega_{\rm m}$, $\Omega_{\rm b}$ and Ω_{Λ}

Coma Cluster ROSAT (Boehringer et al)

X-Cluster Statistics on 512³ Grid

Bryan & Norman (1994, 1998)

Technical Difficulty: Range of Scales

Idealized Cluster ICM virialization shock R~R_{vir} $T \sim 10^8 \text{ K}$ adiabatic halo: t_{cool}>t_{Hubble} supernovae heating << gravitational heating $R \sim 0.1 R_{vir}$ non-adiabatic core: $T < 10^8 K$ t_{cool} <= t_{Hubble} radiative cooling modifies entropy profile

Adaptive Mesh Refinement

Refine cell spacing locally and automatically based on any combination of physical or numerical criteria

=> can resolve all relevant length and timescales

Adaptive Mesh Refinement

Formation of an X-ray Cluster 256³ AMR (adiabatic)

Dark matter

 $\longleftarrow 16 \text{ Mpc} \longrightarrow (\text{comoving})$

Formation of an X-ray Cluster 256³ AMR (adiabatic)

Temperature

X-ray surface brightness

 $\longleftarrow 16 \text{ Mpc} \longrightarrow (\text{comoving})$

Motl et al. (2002)

The Intergalactic Medium

Source: M. Murphy

Physical Origin of Ly α Forest _ quasar

N=1024³ L=54 Mpc/h

Simulated HI absorption spectrum

Earth

Baryon Overdensity, z=3

Precision cosmology using the Lyman α forest

- Absorption spectrum is a 1D map of neutral hydrogen along LOS
- Assuming gas is in ionization equilibrium with known UV background, have 1D map of baryons along LOS
- Baryons closely follow dark matter, hence have 1D map of total mass density along LOS
- Many LOS sample matter power spectrum P(k)
- Simulations provide mapping between absorption spectra and P(k)

Simulating the Formation of the First Star in the Universe

Feb. 2003

Nov. 2002

Tom Abel, Greg Bryan & MN http://www.TomAbel.com

The Universe at z=20

0.1 Mpc (comoving)

Formation of First Stars Adaptive Mesh Refinement Simulation

 $1 \mathbf{x}$

Cosmic Zoom In

Impact of the First Stars

- The first stars are massive, extremely luminous, and short lived
- The either explode as supernovae or collapse to form the first black holes, or both
- Early reionization and reheating of the intergalactic medium (WMAP)
- Chemical enrichment of the intergalactic medium

Formation and Evolution of Galaxies

Galaxies: Snapshots in Time HST · WFPC2

PR94-52c - Office of Public Outreach - December 6, 1994 - 2GL

Hydrodynamic Simulation of Galaxy Formation

M. Norman, G. Bryan & B. O'Shea

Star formation and feedback recipe (Cen & Ostriker 1992)

- for each cell with overdensity $\rho_b / \overline{\rho}_b > \eta$
- check whether 3 criteria are satisfied:

$$\nabla \cdot \vec{v}_{b} < 0 \implies \text{contracting}$$

$$t_{cool} < t_{dyn} \equiv \sqrt{3\pi/32G\rho_{tot}} \Rightarrow \text{cooling rapidly}$$

$$m_{b} > m_{Jeans} \equiv G^{-3/2}\rho_{b}^{-1/2}C^{3}[1 + \frac{\delta\rho_{d}}{\delta\rho_{b}}]^{-3/2}$$

$$\Rightarrow \text{gravitationally unstable}$$

 if so, convert fraction *f**∆*t*/*t*_{dyn} of gas to collisionsless star particle

Evolution of the Universe: Large Scale Structure and Galaxy Formation

Grand Challenge Cosmology Consortium Michael Norman, NCSA Brian O'Shea, NCSA Greg Bryan, Princeton

HDTV Visual Excerpt from "Runaway Universe" Courtesty NOVA/WGBH, PBS Thomas Lucas Productions

Epoch of reionization seen?

GP optical depth vs. z

Becker et al. (2001) SDSS Collaboration

Reionization of IGM by High-z Galaxies Razoumov et al. (2002)

Gunn-Peterson optical depth vs. z

Razoumov et al. (2002)