Cosmological Structure Formation I

Michael L. Norman Laboratory for Computational Astrophysics mnorman@cosmos.ucsd.edu

References

- T. Padmanabhan, "Structure Formation in the Universe", Cambridge (1994)
- S. D. M. White, "The Formation and Evolution of Galaxies", Les Houches Lectures, August 1993, astro-ph/9410043

Outline

- Examples of cosmic structure
- Gravity: origin of cosmic structure
- Linear theory of perturbation growth
- Nonlinear simulations I. dark matter
 hierarchical clustering
- Nonlinear theory of hierarchical clustering
- Nonlinear simulations II. baryons
 - hydrodynamic cosmology
 - the Enzo code

What is cosmic structure?

 Inhomogeneities in the distribution of matter in the universe at any epoch

δ = (ρ < ρ >) - 1	Regime	Example
0	homogeneous	<u>CMB</u>
O(ɛ)	linear	CMB anisotropies
O(0.1)	quasi-linear	galaxy LSS
O(1-10)	nonlinear	Lyman alpha forest
O(>100)	virialized	<u>galaxies, groups,</u> <u>clusters</u>

Cosmic Microwave Background Penzias & Wilson (1965)

Cosmic Microwave Background WMAP Year 1

 $\Delta T/T \sim \delta \sim 10^{-4}$

Galaxy Large Scale Structure: 2dF Galaxy Redshift Survey

Lyman Alpha Forest: HI absorption lines in quasar spectra

Physical Origin of the Lyman Alpha Forest

back

- intergalactic medium exhibits cosmic web structure at high z
- models explain observed hydrogen absorption spectra

Galaxies, Groups & Clusters

Andromeda Galaxy (M31) M33 δ (dynamical) ~ 10³ Milky Way Small Magellanic Large Magellanic Cloud Cloud NGC 6822

 δ (disk) ~ 10⁶

The Universe Exhibits a Hierarchy of Structures

Structure Formation: Goals

Understand

- origin and evolution of cosmic structure from the Big Bang onward across all physical length, mass & time scales
- Interplay between different mass constituents (dark matter, baryons, radiation), self-gravity, and cosmic expansion
- Dependence on cosmological parameters
- Predict
 - Earliest generation of cosmic structures which have not yet been observed

History of the Universe

phase transitions

gravitational instability

linear perturbation theory

nonlinear simulations

Our universe then and now

Gravitational Instability: Origin of Cosmic Structure

Gravitational Instability in 3-D: Origin of the "Cosmic Web"

1 billion light years

Bryan & Norman (1998)

Evolution of Cosmic Structure: Key Issues

- origin and character of primordial density fluctuations
 - Inflation: scale-free, gaussian random field
- linear evolution of the power spectrum $P(k) \alpha |\delta^*(k)|^2$ with time (redshift) for each mass component before recombination
- nonlinear evolution of density fluctuations due to gravitational and internal forces after recombination
- above in an expanding universe with known cosmological parameters (<u>ΛCDM</u>)

Matter Power Spectrum

• Fourier transform of linear density field

1

$$\delta(\mathbf{x}) = \frac{(\rho(\mathbf{x}) - \overline{\rho})}{\overline{\rho}}$$

$$\delta_{\mathbf{k}} = \frac{1}{V} \int d^3 x \,\delta(\mathbf{x}) e^{i\mathbf{k}\cdot\mathbf{x}}$$

• Power spectrum is defined as:

$$P(k) = |\delta_{\mathbf{k}}|^2$$
 for all $|\mathbf{k}|$ between k and $k + dk$

ACDM Matter Power Spectrum

http://www.hep.upenn.edu/~max

Mass-Energy Budget of the Universe (WMAP)

Linear Theory

Linear Perturbations

define $H(\tau) \equiv \dot{a} / a$, $\Omega \equiv 3 \text{H}^2 / 8 \pi G \overline{\rho}$

then, pressure - free perturbation obeys

$$\ddot{\delta} + \frac{\dot{a}}{a}\dot{\delta} - \frac{3}{2}\Omega\left(\frac{\dot{a}}{a}\right)^2\delta = 0$$

for EdS universe ($\Omega = 1$), above becomes $\ddot{\delta} + 2\dot{\delta}/\tau - 6^2\delta/\tau^2 = 0$ growing mode : $\delta = D(\tau)\delta_0 \propto \tau^2 \propto t^{2/3} \propto a$ decaying mode : $\delta \propto \tau^{-3} \propto 1/t \propto a^{-3/2}$

Saturated Growth in Low $\Omega_{\rm m}$ Universe

- Ω is the driving term in growth of δ
- Makes a sudden transition in Λ model
- Growth like EdS for $a < a_c$, saturates thereafter

$$H^{2} = \frac{8\pi G\overline{\rho}}{3} - \frac{\kappa}{a^{2}} + \frac{\Lambda}{3}. \quad \kappa = 0, \pm 1; \ \Lambda \text{ cosmological constant}$$

$$\rightarrow H_{0}^{2}\Omega_{0}(\Omega^{-1} - 1)a_{0}^{3}/a^{3} = -\kappa/a^{2} + \Lambda/3$$

open universe : $(\kappa < 0, \Lambda = 0)$

$$\Omega^{-1} - 1 \propto a \rightarrow \Omega = 1/(1 + a/a_{c})$$

flat universe : $(\kappa = 0, \Lambda > 0)$

$$\Omega^{-1} - 1 \propto a^{3} \rightarrow \Omega = 1/(1 + a^{3}/a_{c}^{3})$$

 $a_{c} = \text{value of expansion factor when } \Omega = 0.5$

Mass Fluctuations in Spheres

Approximate P(k) locally with <u>power-law</u>

$$\left|\delta_k\right|^2 \propto D^2(au)k^n$$

• Mean square mass fluctuation (variance)

$$\langle (\delta M / M)^2 \rangle = \int d^3k W_T^2(kR) |\delta_k|^2 \propto D^2 R^{-(3+n)} \propto D^2 M^{-(3+n)/3}$$

 $W_T(kR)$ is Fourier transform of top - hat window function

$$W(\mathbf{x}) = \begin{cases} 3/4\pi R^3, & |\mathbf{x}| < R\\ 0, & |\mathbf{x}| \ge R \end{cases}$$

 $\rightarrow W_T(kR) = 3\left[\sin(kR)/kR - \cos(kR)\right]/(kR)^2$

CDM Power Spectrum

P(k)

Mass Fluctuations, cont'd

RMS mass fluctuations

$$\sigma(M) \equiv \left\langle \left(\delta M / M \right)^2 \right\rangle^{1/2} \propto D M^{-(3+n)/6}$$

For n>-3, RMS fluctuations a decreasing function of M

• Nonlinear mass scale

setting $\sigma(M_{nl}) = 1$ get $M_{nl}(\tau) \propto D(\tau)^{6/(3+n)}$ ($\propto (1+z)^{-6/(3+n)}$ for EdS)

For n>-3, smallest mass scales become nonlinear first

Numerical Cosmology Goals

 Simulate the processes governing the formation and evolution of the observable structures in the universe

– galaxies, quasars, clusters, superclusters

- Find the "best fit" cosmological model through detailed observational comparison
- Make quantitative predictions for new era of high redshift observations

Nonlinear Simulations I: Cold Dark Matter

Cold Dark Matter

- Dominant mass constituent: $\Omega_{cdm} \sim 0.23$
- Only interacts gravitationally with ordinary matter (baryons)
- Collisionless dynamics governed by Vlasov-Poisson equation

$$\partial_t f(\vec{x}, \vec{\upsilon}, t) + \vec{\upsilon} \cdot \nabla_x f - \nabla \phi \cdot \nabla_\upsilon f = 0$$
$$\nabla^2 \phi = 4\pi G \int d^3 \vec{\upsilon} f(\vec{x}, \vec{\upsilon}, t)$$

Solved numerically using N-body methods

The Universe is an IVP suitable for computation

• *Globally*, the universe evolves according to the Friedmann equation

Friedmann Models: The Omega Factor

The Universe is an IVP...

- *Locally*, its contents obey:
 - Newton's laws of gravitational N-body dynamics for stars and collisionless dark matter (CDM)
 - Euler or MHD equations for baryonic gas/plasma
 - Atomic, molecular, and radiative processes important for the condensation of stars and galaxies from diffuse gas

Gridding the Universe

Dark Matter Dynamics in an Expanding Universe

Hierarchical Clustering of Cold Dark Matter

Hierarchical Structure Formation: Like a River

- large galaxies form from mergers of sub-galactic units
- Galaxy groups form from merger of galaxies
- Galaxy clusters form from merger of groups
- Where did it begin, and where will it end?

Lacey & Cole (1993)

Billion Particle Simulation of Large Scale Structure

P. Bode & J. Ostriker

Nonlinear Theory

Dark Matter Halo Mass Function

 Principal quantity of interest is the globally averaged number density of collapsed objects of mass M as a function of redshift=z

- Dark matter halos define the gravitational potential wells galaxies, galaxy groups, and clusters of galaxies form in
- Sensitive function of cosmological parameters

Spherical Top-Hat Model

 Simplest analytic model of nonlinear evolution of a discrete perturbation

consider spherical region with uniform overdensity $\overline{\delta}$ and radius R by Birkhoff's theorem (GR), EOM is :

$$\frac{d^2 R}{dt^2} = -\frac{GM}{R^2} = -\frac{4\pi G}{3}\overline{\rho}(1+\overline{\delta})R$$

whereas the Friedmann equation is :

$$\frac{d^2a}{dt^2} = -\frac{4\pi G}{3}\,\overline{\rho}a$$

... perturbation evolves like a universe of different density, but the same initial time and expansion rate

Spherical Top-Hat, cont'd

first integral of motion :

$$\frac{1}{2} \left(\frac{dR}{dt}\right)^2 - \frac{GM}{R} = E$$

if E < 0, perturbation is bound, and obeys

$$\frac{R}{R_{m}} = \frac{1}{2} (1 - \cos \Theta), \quad \frac{t}{t_{m}} = (\Theta - \sin \Theta) / \pi$$

where R_m and t_m are radius and time at "turnaround"

Turnaround and Collapse

mean *linear* overdensity with respect to EdS universe :

$$\overline{\delta}_{lin} = \frac{3}{20} (6\pi t/t_m)^{2/3} \propto a_{EdS} \quad (\overline{\delta} << 1)$$

$$\overline{\delta}_{lin}(t_m) = 1.063$$

nonlinear overdensity at turnaround :

$$\overline{\delta}_{nl}(t_m) = 4.6$$

Collapse : R $\rightarrow 0$ as t $\rightarrow 2t_m$
 $\therefore \delta_{collapse} = \overline{\delta}_{lin}(2t_m) = \frac{3}{20} (12\pi)^{2/3} = 1.686$

Virialization

collapse halted when virial equilibrium established : |U| = 2Kassume total energy E = K - |U| is conserved at turnaround : K = 0, $E = -|U| = -\frac{3}{5} \frac{GM^2}{R_m}$ (homogeneous sphere)

at virialization : E = K - 2K = -K

$$\therefore K = -E = \frac{1}{2} |U| = \frac{1}{2} \cdot \frac{3}{5} \frac{GM^2}{R_{vir}}$$

equating

$$\frac{1}{2} \cdot \frac{3}{5} \frac{GM^2}{R_{vir}} = \frac{3}{5} \frac{GM^2}{R_m} \rightarrow R_{vir} = \frac{1}{2} R_m$$

Evolution of Top-hat Perturbation

Statistics of Hierarchical Clustering

- Press & Schechter (1974) derived a simple, yet accurate formula for estimating the number of virialized objects of mass M as a function of τ (or equivalently, z)
- Basic idea is to smooth density field on a scale
 R at such that mass scale of interest satisfies

$$M = \frac{4\pi}{3}\overline{\rho}(\tau)R^3$$

Press-Schechter Theory

• Because the density field (both smoothed and unsmoothed) is a Gaussian random field, probability that mean overdensity in spheres of radius R exceeds a critical value δ_c is

$$p(R,\tau) = \int_{\delta_c}^{\infty} d\delta \frac{1}{\sqrt{2\pi\sigma(R,\tau)}} \exp\left(-\frac{\delta_c^2}{2\sigma^2(R,\tau)}\right)$$

where

$$\sigma^2(R,\tau) = \int d^3k \ W_T^2(kR) P(k,\tau)$$

P-S Theory, cont'd

• P-S suggested this fraction be identified with the fraction of particles which are part of a nonlinear lump with mass exceeding M if we take δ_c =1.686

i.e.
$$n(>M,\tau) = 2\frac{\overline{\rho}}{M}p(R,\tau) = \int_{M}^{\infty} dM' \frac{dn}{dM'}$$

$$\therefore \frac{dn}{dM} = -2\frac{\overline{\rho}}{M}\frac{\partial p}{\partial M} = -\sqrt{\frac{2}{\pi}}\frac{\overline{\rho}}{M}\frac{\delta_{c}}{\sigma^{2}}\frac{d\sigma}{dM}\exp\left(-\frac{\delta_{c}^{2}}{2\sigma^{2}}\right)$$

n.b. factor of 2 is a fudge factor so that every particle belongs to a halo of some mass

P-S theory, cont'd

 $\sigma(R,\tau) = D(\tau)\sigma_0(R) \propto DR^{-\frac{n+3}{2}} \propto DM^{-\frac{n+3}{6}}$ explicitly, we find

$$\frac{dn}{dM}dM = \left(\frac{2}{\pi}\right)^{1/2} \frac{\overline{\rho}}{M^2} \left(1 + \frac{n}{3}\right) \left[\frac{M}{M_{nl}(\tau)}\right]^{\frac{n-3}{6}} \exp\left[-\left(\frac{M}{M_{nl}(\tau)}\right)^{\frac{3+n}{3}}/2\right] dM$$

where now M_{nl} satisfies $\sigma(M_{nl}, \tau) = \delta_c$

Mass function is a power-law for $M < M_{nl}$ and an exponential for $M > M_{nl}$

Comparison with Nbody Simulations

 PS under-predicts most massive objects and overpredicts "typical" objects

Jenkins et al. (1998)