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• Gravity: origin of cosmic structure
• Linear theory of perturbation growth
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What is cosmic structure?
• Inhomogeneities in the distribution of matter in 

the universe at any epoch

galaxies, groups, 
clusters

virializedO(>100)

Lyman alpha forestnonlinearO(1-10)

galaxy LSSquasi-linearO(0.1)

CMB anisotropieslinearO(ε)

CMBhomogeneous0
ExampleRegimeδ=(ρ/<ρ>)−1



Cosmic Microwave Background
Penzias & Wilson (1965) 

back Τ=2.73 Κ



Cosmic Microwave Background
WMAP Year 1 

∆T/T ~ δ ~ 10-4
back



Galaxy Large Scale Structure:
2dF Galaxy Redshift Survey

<∆ng/ng> =b<∆ρ/ρ>~0.1back



Lyman Alpha Forest:
HI absorption lines in quasar spectra



Physical Origin of the Lyman 
Alpha Forest

• intergalactic medium 
exhibits cosmic web 
structure at high z 

• models explain 
observed hydrogen 
absorption spectra

N=1283

Zhang, Anninos, Norman (1995)

5 Mpc/hδ=10

back



Galaxies, 
Groups & 
Clusters

δ(disk) ~ 106

δ(dynamical) ~ 103



The Universe Exhibits a 
Hierarchy of Structures
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Structure Formation: Goals
• Understand 

– origin and evolution of cosmic structure from 
the Big Bang onward across all physical 
length, mass & time scales

– Interplay between different mass constituents
(dark matter, baryons, radiation), self-gravity, 
and cosmic expansion

– Dependence on cosmological parameters
• Predict

– Earliest generation of cosmic structures which 
have not yet been observed



History of the Universe 

linear perturbation theory nonlinear simulations

R
ec

om
bi

na
tio

n

N
uc

le
os

yn
th

es
is

phase transitions gravitational instability



Our universe then and now

Recombination (~380,000 yr)
δρ/<ρ> ~ 10-4

Present (~14x109 yr)
δρ/<ρ> ~ 106

Wilkinson MAP (NASA) 



Gravitational Instability: Origin 
of Cosmic Structure
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1 billion
light years

Gravitational Instability in 3-D: Origin 
of the “Cosmic Web”

N=5123Bryan & Norman (1998)



Evolution of Cosmic Structure: Key Issues
• origin and character of primordial density 

fluctuations 
– Inflation: scale-free, gaussian random field

• linear evolution of the power spectrum
P(k) α |δ∗(k)|2 with time (redshift) for each 
mass component before recombination

• nonlinear evolution of density fluctuations 
due to gravitational and internal forces 
after recombination

• above in an expanding universe with 
known cosmological parameters (ΛCDM)



Matter Power Spectrum

• Fourier transform of linear density field

• Power spectrum is defined as:
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ΛCDM Matter Power Spectrum

http://www.hep.upenn.edu/~max



Mass-Energy Budget of the 
Universe (WMAP)

Ωcdm

Ωb

ΩΛ

Ωcdm+ Ωb+ ΩΛ=1



Linear Theory



Linear Perturbations
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Saturated Growth in Low Ωm Universe
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Mass Fluctuations in Spheres
• Approximate P(k) locally with power-law

• Mean square mass fluctuation (variance)
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CDM Power Spectrum
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Mass Fluctuations, cont’d

• RMS mass fluctuations

• Nonlinear mass scale
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Evolution of nonlinear mass 
scale with redshift in ΛCDM

galaxy clusters

galaxies
first structures
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Numerical Cosmology Goals 

• Simulate the processes governing the 
formation and evolution of the observable 
structures in the universe
– galaxies, quasars, clusters, superclusters

• Find the “best fit” cosmological model
through detailed observational comparison

• Make quantitative predictions for new era 
of high redshift observations



Nonlinear Simulations I:
Cold Dark Matter



Cold Dark Matter

• Dominant mass constituent: Ωcdm~0.23
• Only interacts gravitationally with ordinary 

matter (baryons)
• Collisionless dynamics governed by Vlasov-

Poisson equation

• Solved numerically using N-body methods
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The Universe is an IVP suitable 
for computation

• Globally, the universe evolves 
according to the Friedmann equation

Hubble parameter
mass-energy
density

spacetime
curvaturescale factor a(t)
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Friedmann Models:
The Omega Factor

Ω<1

“Flat” universe
expands forever

“Open” universe
expands forever

Ω=1

Ω>1

Ω+Λ=1
“Flat” universe
which accelerates

a(t)

Ω=<ρ>/ρcrit



The Universe is an IVP...

• Locally, its contents obey:
– Newton’s laws of gravitational N-body 

dynamics for stars and collisionless dark 
matter (CDM)

– Euler or MHD equations for baryonic 
gas/plasma 

– Atomic, molecular, and radiative processes
important for the condensation of stars and 
galaxies from diffuse gas



Gridding the Universe

• Transformation to 
comoving
coordinates x=r/a(t)

a(t1) a(t2) a(t3)

• Triply-periodic 
boundary conditions



Dark Matter Dynamics in an 
Expanding Universe
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Hierarchical Clustering
of Cold Dark Matter



Hierarchical Structure Formation:
Like a River

• large galaxies form from 
mergers of sub-galactic 
units

• Galaxy groups form 
from merger of galaxies

• Galaxy clusters form 
from merger of groups

• Where did it begin, and 
where will it end?

Lacey & Cole (1993)



Billion Particle Simulation of 
Large Scale Structure

P. Bode & J. Ostriker



Nonlinear Theory



Dark Matter Halo Mass Function

• Principal quantity of interest is the globally 
averaged number density of collapsed objects of 
mass M as a function of redshift=z

• Dark matter halos define the gravitational 
potential wells galaxies, galaxy groups, and 
clusters of galaxies form in

• Sensitive function of cosmological parameters

>< ),( zMn



Spherical Top-Hat Model

• Simplest analytic model of nonlinear evolution of 
a discrete perturbation
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Spherical Top-Hat, cont’d

"turnaround"at   timeand radius are  and  where
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Turnaround and Collapse
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Virialization
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Evolution of Top-hat Perturbation

Padmanabhan (1994)



Statistics of Hierarchical Clustering

• Press & Schechter (1974) derived a simple, 
yet accurate formula for estimating the number 
of virialized objects of mass M as a function of 
τ (or equivalently, z)

• Basic idea is to smooth density field on a scale 
R at such that mass scale of interest satisfies
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Press-Schechter Theory

• Because the density field (both smoothed and 
unsmoothed) is a Gaussian random field, 
probability that mean overdensity in spheres of 
radius R exceeds a critical value δc is
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P-S Theory, cont’d

• P-S suggested this fraction be identified with 
the fraction of particles which are part of a 
nonlinear lump with mass exceeding M if we 
take δc=1.686
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P-S theory, cont’d
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Comparison with N-
body Simulations

• PS under-predicts most 
massive objects and over-
predicts “typical” objects

Jenkins et al. (1998)


