How Well Does Privacy Compose?

Thomas Steinke

IBM Almaden

IPAM/UCLA, Los Angeles CA, 10 Jan. 2018

This Talk

- Composition!!
 - What is composition?
 - Why is it important?
 - Composition & high-dimensional (e.g. genetic) data
- Concentrated differential privacy
 - Reformulation of DP with tight composition
 - Understand & compare to (ε, δ) -DP
 - Useful analytical tool & valuable theoretical perspective

What is composition?

2:00 PM:

3:00 PM:

Conclusion: Alice was diagnosed with DProsy!

Here composition led to a privacy compromise.

Fortunately, DP protects against attacks like this.

- Your data is held by held by many entities who do not coordinate on privacy.
 Information released by these entities can be combined to violate privacy.
- Allows complex algorithms to be built -- crucial for handling highdimensional data (e.g. genetic data).

High-dimensional data & one-way marginals

Dimension *d*

Alice	0	0	1	0	0	1	1	1	0	0	1	
Bob	1	0	1	1	0	1	1	0	0	1	1	ldivi
Charles	1	0	1	0	1	1	0	0	0	0	0	idua
David	0	1	0	1	1	1	0	1	0	0	1	n sli

- E.g. GWAS data. $d \approx 10^6$, $n \approx 1000$
- Key Question: For a given *n* and *d*, how accurately can we release the one-way marginals of this dataset without imperiling privacy?
- I.e. how does privacy risk compose over the attributes?

Privacy risks of one-way marginals Dimension d

	-										-	•
Alice	0	0	1	0	0	1	1	1	0	0	1	Î
Bob	1	0	1	1	0	1	1	0	0	1	1	
Charles	1	0	1	0	1	1	0	0	0	0	0	
David	0	1	0	1	1	1	0	1	0	0	1	
	.5	.25	.75	.5	.5	1	.5	.5	0	.25	.75	•

- [Homer+08, Sankararaman+09, Bun+14, Dwork+15, etc.] showed that oneway marginals are susceptible to <u>tracing</u>.
- That is, given someone's data and the one-way marginals of a case group, we can determine whether that person is in the group.
 - Surprising!
 - Led to privacy policy changes by NIH.
 - Works as long as $d \gg n$.
 - Works even with approximate one-way marginals (but requires larger *d*).

This Talk

- Composition!!
 - What is composition?
 - Why is it important?
 - Composition & high-dimensional (e.g. genetic) data
- Concentrated differential privacy
 - Reformulation of DP with tight composition
 - Understand & compare to (ε, δ) -DP
 - Useful analytical tool & valuable theoretical perspective

Differential Privacy [DMNS06...]

<u>Definition</u>: A randomized algorithm M is **differentially private** if, for all datasets x and x' differing only on one individual's data,

distribution $(M(x)) \approx \text{distribution}(M(x'))$.

Noisy one-way marginals

	Dimension d											•
Alice	0	0	1	0	0	1	1	1	0	0	1	1 #i
Bob	1	0	1	1	0	1	1	0	0	1	1	Idivi
Charles	1	0	1	0	1	1	0	0	0	0	0	ividua
David	0	1	0	1	1	1	0	1	0	0	1	ls n
One-way marginals	.5	.25	.75	.5	.5	1	.5	.5	0	.25	.75	Ţ
Noisy marginals	.6	.1	.8	.6	.4	1	.4	.5	.1	.4	.9	

Adding normally-distributed noise to all the values satisfies DP.

Does this give good privacy-utility tradeoff?

Quantifying Differential Privacy

Rényi divergence [R61]:

$$D_{\alpha}(P||Q) = \frac{1}{\alpha - 1} \log \left(\int_{\Omega} P(x)^{\alpha} Q(x)^{1 - \alpha} dx \right)$$

Interpolates between KL divergence ($\alpha \rightarrow 1$) & max divergence ($\alpha \rightarrow \infty$).

Exactly characterizes adding Normal noise.

•
$$\varepsilon$$
-DP [DMNS06]:
 $\forall y \quad \mathbb{P}[M(x) = y] \leq e$
• (ε, δ) -DP [DKMMN06]:
 $\forall S \quad \mathbb{P}[M(x) \in S] \leq e^{\varepsilon}$ $(x') \in S] + \delta$
 ρ -CDP [DR16,BS16,M17,BDRS17]:
 $\forall \alpha \in (1, \infty) \quad D_{\alpha}(M(x)||M(x')) \leq \rho \alpha$

Why do we need a new definition?

- "Pure" ε -DP gives poor composition bounds
 - Gets "hung up on" very low probability events.
 - Composition is quadratically worse than it "should" be.
- "Approximate" (ε, δ)-DP gives messy composition bounds
 - Can ignore events with probability $\leq \delta$. $\delta = \mathbb{P}[\text{bad event}]$ needs to
 - Doesn't sharply capture what's going on.
 - Superfluous $\log(1/\delta)$ factors in composition analysis.
- Concentrated DP gives sharp composition bounds!

Composition & privacy loss are natural phenomena

be cryptographically small.

Composition for CDP

<u>Theorem</u> (CDP composition [DR16,BS16]): Let $M_1, ..., M_k$ be randomized algorithms. Suppose each M_i is ρ_i -CDP. Then combining the outputs of $M_1, ..., M_k$ satisfies ($\rho' = \sum_i \rho_i$)-CDP.

- Simple and optimal (in contrast to ε -DP and (ε , δ)-DP).
- Cf. Optimal (ε, δ) -DP composition [KOV15,MV16]: $\frac{\sum_{s \subseteq [k]} \max\{0, e^{\sum_{i \in s} \varepsilon_i} - e^{\varepsilon' + \sum_{i \in [k] \setminus s} \varepsilon_i\}}}{\prod_{i \in [k]} (1 + e^{\varepsilon_i})} + \frac{1 - \delta'}{\prod_{i \in [k]} (1 - \delta_i)} \leq 1$ • Computing optimal composition exactly is #P-hard [MV16]!!

Sharp tradeoff between privacy ρ , dimension d, accuracy σ , and number of individuals n.

e.g.
$$\rho = 0.5, \sigma = 0.1, d = 10^4$$
 requires $n = \frac{\sqrt{d}}{\sigma\sqrt{2\rho}} = 1000.$

Composition Comparison

• Pure
$$\varepsilon$$
-DP: $\varepsilon' = \sum_i \varepsilon_i$.

• Can approximate $d = \Theta(\varepsilon n)$ one-way marginals to constant accuracy with ε -DP.

• Approx.
$$(\varepsilon, \delta)$$
-DP: $\varepsilon' = O\left(\sqrt{\log(1/\delta) \sum_{i=1}^{k} \varepsilon_i^2}\right), \delta' = O\left(\sum_{i=1}^{k} \delta_i\right).$

#P-hard to compute optimal composition exactly.

Quadratic

Almost

• Can approximate $d = \Theta(\varepsilon^2 n^2 / \log(1/\delta))$ marginals to constant accuracy with (ε, δ) -DP.

•
$$\rho$$
-CDP: $\rho' = \sum_i \rho_i$.

log factor "absorbed"

• Can approximate $d = \Theta(\rho n^2)$ marginals to constant accuracy with ρ -CDP.

Quadratic

This Talk

- Composition!!
 - What is composition?
 - Why is it important?
 - Composition & high-dimensional (e.g. genetic) data
- Concentrated differential privacy
 - Reformulation of DP with tight composition
 - Understand & compare to (ε, δ) -DP
 - Useful analytical tool & valuable theoretical perspective

Concentrated DP [DR16, BS16, BDRS17]

<u>Definition</u> [BS16]: A randomized algorithm M is ρ -CDP if, for all datasets x and x' differing only on one individual's data,

 $\forall \alpha \in (1, \infty) \quad D_{\alpha}(M(x) || M(x')) \le \rho \alpha$

Rényi divergence [R61]:

$$D_{\alpha}(P||Q) = \frac{1}{\alpha - 1} \log \left(\int_{\Omega} P(x)^{\alpha} Q(x)^{1 - \alpha} dx \right)$$

Interpolates between KL divergence ($\alpha \rightarrow 1$) & max divergence ($\alpha \rightarrow \infty$). Exactly characterizes Gaussian mechanism.

CDP versus (ε , δ)-DP

<u>Theorem</u> [BS16]: $\forall \rho, \delta > 0$ $\sqrt{2\rho}$ -DP $\Rightarrow \rho$ -CDP $\Rightarrow (\rho + 2\sqrt{\rho} \cdot \log(1/\delta), \delta)$ -DP.

- CDP is a relaxation of pure ε -DP.
 - Relaxation is strict. E.g. Gaussian mechanism satisfies CDP, but not pure DP.
- CDP is roughly equivalent to approx. (ε, δ)-DP with this $\forall \delta$ quantification.
 - However, there are algorithms that satisfy approx. DP, but not CDP.
- Think of CDP as being intermediate between pure and approx. DP.
- Open-ended question: How to interpret ρ ?

Bounding Bad Events with CDP [M17]

<u>Proposition</u> [M17]: If *M* is ρ -CDP and x, x' are neighbouring inputs, then $\forall S \forall \alpha \quad \mathbb{P}[M(x) \in S] \leq e^{(\alpha - 1)\rho} \cdot (\mathbb{P}[M(x') \in S])^{1 - 1/\alpha}$

E.g.:

- Suppose, when not in dataset, bad event happens with $\mathbb{P}[M(x') \in S] \leq 10^{-10}$
- If M is ρ -CDP, then, when in data, bad event happens with

$$\alpha = 2$$
: $\mathbb{P}[M(x) \in S] \le e^{\rho} \sqrt{10^{-10}}$
 $\alpha = 10$: $\mathbb{P}[M(x) \in S] \le e^{9\rho} 10^{-9}$

This Talk

- Composition!!
 - What is composition?
 - Why is it important?
 - Composition & high-dimensional (e.g. genetic) data
- Concentrated differential privacy
 - Reformulation of DP with tight composition
 - Understand & compare to (ε, δ) -DP
 - Useful analytical tool & valuable theoretical perspective

What can we do with CDP?

 (ε, δ) -DP

ho-CDP

E-DP

Basic composition, Laplace mechanism, Exponential mechanism, Randomized response, Sparse vector, BLR mechanism Advanced composition, Gaussian mechanism, Private multiplicative weights, Projection mechanism Propose-Test-Release framework, Smooth sensitivity

Truncated CDP [BDRS17]

<u>Definition</u> [BDRS17]: A randomized algorithm M is (ρ, ω) -tCDP if, for all datasets x and x' differing only on one individual's data,

 $\forall \alpha \in (1, \omega) \quad D_{\alpha}(M(x)||M(x')) \leq \rho \alpha$

- $\omega = \infty$ recovers ρ -CDP.
- Similar to Rényi DP [M17] consider single α , rather than interval.
- Extends CDP to permit analogs of key algorithmic techniques.
 - Analog of propose-test-release framework [DL09].
 - Smooth sensitivity [NRS07].
 - Privacy amplification by subsampling.

This Talk

- Composition!!
 - What is composition?
 - Why is it important?
 - Composition & high-dimensional (e.g. genetic) data
- Concentrated differential privacy
 - Reformulation of DP with tight composition
 - Understand & compare to (ε, δ) -DP
 - Useful analytical tool & valuable theoretical perspective

Separation: ε -DP \neq CDP \neq (ε , δ)-DP

Point Queries/Histograms:

Input: $x_1, \ldots, x_n \in \Omega$.

Output: For each
$$z \in \Omega$$
, return freq $(z) = |\{i : x_i = z\}| \pm \frac{n}{100}$

• Possible with ε -DP iff $n = \Theta(\log |\Omega| / \varepsilon)$. —

Quadratic separation

• Possible with (ε, δ) -DP iff $n = \Theta(\log(1/\delta)/\varepsilon)$.

"Infinite" separation

- Possible with ρ -CDP iff $n = \Theta(\sqrt{\log |\Omega| / \rho})$.
 - Upper bound: Add noise from $\mathcal{N}(0, \frac{1}{o})$ to each frequency.

CDP & Mutual Information

<u>Theorem</u> [BS16]: If *M* is ρ -CDP and *X* is a random input consisting of *n* individuals, then $I(X; M(X)) \leq \rho \cdot n^2$

- Follows from group privacy property of CDP.
- Idea: If *M* is accurately answers many queries, then mutual information must be high.
- \Rightarrow Lower bound on n.

Separation: ε -DP \neq CDP \neq (ε , δ)-DP

Point Queries/Histograms:

Input: $x_1, \ldots, x_n \in \Omega$.

Output: For each
$$z \in \Omega$$
, return freq $(z) = |\{i : x_i = z\}| \pm \frac{n}{100}$

• Possible with ε -DP iff $n = \Theta(\log |\Omega| / \varepsilon)$. —

Quadratic separation

• Possible with (ε, δ) -DP iff $n = \Theta(\log(1/\delta)/\varepsilon)$.

"Infinite" separation

- Possible with ρ -CDP iff $n = \Theta(\sqrt{\log |\Omega| / \rho})$.
 - Upper bound: Add noise from $\mathcal{N}(0, \frac{1}{o})$ to each frequency.

Optimal CDP Algorithm [BBNS17] (see poster)

Linear Query Release problem:

Accuracy Goal:

Optimal CDP Algorithm [BBNS17] (see poster)

Linear Query Release problem:

What <u>can't</u> we do with CDP?

 (ε, δ) -DP

ho-CDP

ɛ-DP

Basic composition, Laplace mechanism, Exponential mechanism, Randomized response, Sparse vector, BLR mechanism, Subsampling* Advanced composition, Gaussian mechanism, Private multiplicative weights, Projection mechanism Propose-Test-Release framework, Smooth sensitivity, Privacy amplification by subsampling

Truncated CDP [BDRS17]

<u>Definition</u> [BDRS17]: A randomized algorithm M is (ρ, ω) -tCDP if, for all datasets x and x' differing only on one individual's data,

 $\forall \alpha \in (1, \omega) \quad D_{\alpha}(M(x)||M(x')) \leq \rho \alpha$

- $\omega = \infty$ recovers ρ -CDP.
- Similar to Rényi DP [M17] consider single α , rather than interval.
- Extends CDP to permit analogs of key algorithmic techniques.
 - Propose-test-release framework.
 - Smooth sensitivity.
 - Privacy amplification by subsampling.

Separation: ε -DP \neq CDP \neq tCDP

Point Queries/Histograms:

Input: $x_1, \ldots, x_n \in \Omega$.

Output: For each $z \in \Omega$, return freq $(z) = |\{i : x_i = z\}| \pm \frac{n}{100}$.

• Possible with ε -DP iff $n = \Theta(\log |\Omega| / \varepsilon)$.

Related to proposetest-release.

• Possible with (ε, δ) -DP iff $n = \Theta(\log(1/\delta)/\varepsilon)$.

How do these compare in practice?

• Possible with ρ -CDP iff $n = \Theta(\sqrt{\log |\Omega| / \rho})$.

• Possible with (ρ, ω) -tCDP iff $n = \Theta(\omega \cdot \log \log |\Omega|)$ (for $\omega \ll \sqrt{\log |\Omega|/\rho}$).

- If M is ρ -CDP, then M' is ρ -CDP. No gain in parameters!
- If *M* is (ρ, ω) -tCDP, then *M'* is $(\approx s^2 \cdot \rho, \Omega(\min\{\omega, \log(1/s)/\rho\}))$ -tCDP.

What <u>can't</u> we do with tCDP?

 (ε, δ) -DP

 (ρ, ω) -tCDP

ho-CDP

E-DP

Basic composition, Laplace mechanism, Exponential mechanism, Randomized response, Sparse vector, BLR mechanism, Subsampling* Advanced composition, Gaussian mechanism, Private multiplicative weights, Projection mechanism Propose-Test-Release framework, Smooth sensitivity, Privacy amplification by subsampling

???