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This Talk

• Composition!!
• What is composition?

• Why is it important?

• Composition & high-dimensional (e.g. genetic) data

• Concentrated differential privacy
• Reformulation of DP with tight composition

• Understand & compare to (𝜀, 𝛿)-DP

• Useful analytical tool & valuable theoretical perspective



What is composition?

How many patients 
have DProsy?

631

1:00 PM:

2:00 PM:

How many patients 
have DProsy?

632

3:00 PM:

Conclusion: Alice was 
diagnosed with DProsy!

Here composition led to a 
privacy compromise.

Fortunately, DP protects 
against attacks like this.



Why is composition important?

• Your data is held by held by many entities who do not coordinate on 
privacy. 
Information released by these entities can be combined to violate 
privacy.

• Allows complex algorithms to be built -- crucial for handling high-
dimensional data (e.g. genetic data).



High-dimensional data & one-way marginals

Alice 0 0 1 0 0 1 1 1 0 0 1

Bob 1 0 1 1 0 1 1 0 0 1 1

Charles 1 0 1 0 1 1 0 0 0 0 0

David 0 1 0 1 1 1 0 1 0 0 1
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One-way marginals of dataset

• E.g. GWAS data. 𝑑 ≈ 106, 𝑛 ≈ 1000

• Key Question: For a given 𝒏 and 𝒅, how accurately can we release  
the one-way marginals of this dataset without imperiling privacy?

• I.e. how does privacy risk compose over the attributes?  



Privacy risks of one-way marginals

• [Homer+08, Sankararaman+09, Bun+14, Dwork+15, etc.] showed that one-
way marginals are susceptible to tracing. 

• That is, given someone’s data and the one-way marginals of a case group, we 
can determine whether that person is in the group.

• Surprising!

• Led to privacy policy changes by NIH.

• Works as long as 𝑑 ≫ 𝑛.

• Works even with approximate one-way marginals (but requires larger 𝑑).
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This Talk

• Composition!!
• What is composition?

• Why is it important?

• Composition & high-dimensional (e.g. genetic) data

• Concentrated differential privacy
• Reformulation of DP with tight composition

• Understand & compare to (𝜀, 𝛿)-DP

• Useful analytical tool & valuable theoretical perspective



Differential Privacy [DMNS06…]

Sensitive Dataset Interface Analyst

Alice 0 1 1 0 0 1 0 1

Bob 1 0 1 1 0 0 1 1

Charles 1 0 1 0 1 1 0 0

David 0 1 0 1 1 1 0 1

𝑀

Definition: A randomized algorithm 𝑀 is differentially private if, for all 
datasets 𝑥 and 𝑥′ differing only on one individual’s data,

distribution 𝑀 𝑥 ≈ distribution 𝑀 𝑥′ .



Noisy one-way marginals

Adding normally-distributed noise to all the values satisfies DP.

Does this give good privacy-utility tradeoff?

Alice 0 0 1 0 0 1 1 1 0 0 1

Bob 1 0 1 1 0 1 1 0 0 1 1

Charles 1 0 1 0 1 1 0 0 0 0 0

David 0 1 0 1 1 1 0 1 0 0 1

One-way marginals .5 .25 .75 .5 .5 1 .5 .5 0 .25 .75

Noisy marginals .6 .1 .8 .6 .4 1 .4 .5 .1 .4 .9
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Quantifying Differential Privacy
Definition: A randomized algorithm 𝑀 is differentially private if, for all 
datasets 𝑥 and 𝑥′ differing only on one individual’s data,

distribution 𝑀 𝑥 ≈ distribution 𝑀 𝑥′ .

• Total Variation Distance? KL Divergence?
• Poor privacy-utility tradeoff

• 𝜀-DP [DMNS06]:
∀𝑦 ℙ 𝑀 𝑥 = 𝑦 ≤ 𝑒𝜀 ℙ 𝑀 𝑥′ = 𝑦

• (𝜀, 𝛿)-DP [DKMMN06]:
∀𝑆 ℙ 𝑀 𝑥 ∈ 𝑆 ≤ 𝑒𝜀 ℙ 𝑀 𝑥′ ∈ 𝑆 + 𝛿

• 𝜌-CDP [DR16,BS16,M17,BDRS17]:
∀𝛼 ∈ (1,∞) 𝐷𝛼 𝑀 𝑥 ||𝑀(𝑥′) ≤ 𝜌𝛼

Rényi divergence [R61]:

𝐷𝛼 𝑃||𝑄 =
1

𝛼 − 1
log න

Ω

𝑃(𝑥)𝛼𝑄(𝑥)1−𝛼 𝑑𝑥

Interpolates between KL divergence (𝛼 → 1) & max divergence (𝛼 → ∞).

Exactly characterizes adding Normal noise.



Why do we need a new definition?
• “Pure” 𝜀-DP gives poor composition bounds

• Gets “hung up on” very low probability events.

• Composition is quadratically worse than it “should” be.

• “Approximate” (𝜀, 𝛿)-DP gives messy composition bounds
• Can ignore events with probability ≤ 𝛿.

• Doesn’t sharply capture what’s going on. 

• Superfluous log( Τ1 𝛿) factors in composition analysis.

• Concentrated DP gives sharp composition bounds!

𝛿 = ℙ[bad event] needs to 
be cryptographically small.

Composition & privacy loss are natural phenomena



Composition for CDP

• Simple and optimal (in contrast to 𝜀-DP and (𝜀, 𝛿)-DP).

• Cf. Optimal (𝜀, 𝛿)-DP composition [KOV15,MV16]: 
σ𝑠⊆ 𝑘 max 0,𝑒σ𝑖∈𝑠 𝜀𝑖−𝑒

𝜀′+σ𝑖∈ 𝑘 \s 𝜀𝑖

ς𝑖∈ 𝑘 1+𝑒𝜀𝑖
+

1−𝛿′

ς𝑖∈[𝑘](1−𝛿𝑖)
≤ 1

• Computing optimal composition exactly is #P-hard [MV16]!!

Theorem (CDP composition [DR16,BS16]):
Let 𝑀1, … ,𝑀𝑘 be randomized algorithms. Suppose each 𝑀𝑖 is 𝜌𝑖-CDP. 
Then combining the outputs of 𝑀1, … ,𝑀𝑘 satisfies (𝜌′ = σ𝑖 𝜌𝑖)-CDP.



Noisy one-way marginals

Adding 𝑵(𝟎, 𝝈𝟐) to each marginal achieves 𝝆 =
𝒅

𝟐𝝈𝟐𝒏𝟐
-CDP.

Sharp tradeoff between privacy 𝜌, dimension 𝑑, accuracy 𝜎, and number of individuals 𝑛.

e.g. 𝜌 = 0.5, 𝜎 = 0.1, 𝑑 = 104 requires 𝑛 =
𝑑

𝜎 2𝜌
= 1000.

Alice 0 0 1 0 0 1 1 1 0 0 1

Bob 1 0 1 1 0 1 1 0 0 1 1

Charles 1 0 1 0 1 1 0 0 0 0 0

David 0 1 0 1 1 1 0 1 0 0 1

One-way marginals .5 .25 .75 .5 .5 1 .5 .5 0 .25 .75
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More sophisticated algorithms possible!
E.g., 
• Only identify the 𝑘 most significant attributes.
• Attributes are sparse/structured.
• Exploit data distribution.

Given 𝑞1, … , 𝑞𝑘: 𝑋 → [0,1] and private dataset 𝑥 ∈ 𝑋𝑛

output 𝑎1, … , 𝑎𝑘 ∈ [0,1] such that with high probability
1

𝑘


𝑗=1

𝑘

𝑎𝑗 −
1

𝑛


𝑖=1

𝑛

𝑞𝑗(𝑥𝑖) ≤
1

100



Composition Comparison
• Pure 𝜀-DP: 𝜀′ = σ𝑖 𝜀𝑖.

• Can approximate d = Θ(𝜀𝑛) one-way marginals to constant accuracy with 𝜀-
DP.

• Approx. 𝜀, 𝛿 -DP: 𝜀′ = 𝑂 log Τ1 𝛿′ σ𝑖=1
𝑘 𝜀𝑖

2 , 𝛿′ = 𝑂 σ𝑖=1
𝑘 𝛿𝑖 . 

• #P-hard to compute optimal composition exactly.

• Can approximate d = Θ 𝜀2𝑛2/ log Τ1 𝛿 marginals to constant accuracy with 
(𝜀, 𝛿)-DP.

• 𝜌-CDP: 𝜌′ = σ𝑖 𝜌𝑖.
• Can approximate 𝑑 = Θ 𝜌𝑛2 marginals to constant accuracy with 𝜌-CDP.

log factors “absorbed”log factor “absorbed”

Linear

Almost
Quadratic

Quadratic
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Concentrated DP [DR16,BS16, BDRS17]

Definition [BS16]: A randomized algorithm 𝑀 is 𝜌-CDP if, for all datasets 
𝑥 and 𝑥′ differing only on one individual’s data,

∀𝛼 ∈ (1,∞) 𝐷𝛼 𝑀 𝑥 ||𝑀(𝑥′) ≤ 𝜌𝛼

Rényi divergence [R61]:

𝐷𝛼 𝑃||𝑄 =
1

𝛼 − 1
log න

Ω

𝑃(𝑥)𝛼𝑄(𝑥)1−𝛼 𝑑𝑥

Interpolates between KL divergence (𝛼 → 1) & max divergence (𝛼 → ∞).
Exactly characterizes Gaussian mechanism.



CDP versus (𝜺, 𝜹)-DP

• CDP is a relaxation of pure 𝜀-DP.
• Relaxation is strict. E.g. Gaussian mechanism satisfies CDP, but not pure DP.

• CDP is roughly equivalent to approx. (𝜀, 𝛿)-DP with this ∀𝛿
quantification.

• However, there are algorithms that satisfy approx. DP, but not CDP.

• Think of CDP as being intermediate between pure and approx. DP.

• Open-ended question: How to interpret 𝜌?

Theorem [BS16]: ∀𝜌, 𝛿 > 0

2𝜌-DP   ⟹ 𝜌-CDP   ⟹ 𝜌+ 2 𝜌 ⋅ log Τ1 𝛿 , 𝛿 -DP.



CDP versus (𝜺, 𝜹)-DP, intuitively
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subgaussian

PrivLoss 𝑦 = log
ℙ[𝑀 𝑥 = 𝑦]

ℙ[𝑀 𝑥′ = 𝑦]

PrivLoss = PrivLoss(𝑀 𝑥 )

With probability 𝛿 arbitrarily 
bad things can happen!

Smooth control of bad events: For 𝜌-CDP 

∀𝑡 > 𝜌 ℙ PrivLoss > 𝑡 ≤ 𝑒−(𝑡−𝜌)
2/4𝜌

CDP does not allow arbitrarily bad events!



Bounding Bad Events with CDP [M17]

E.g.:

• Suppose, when not in dataset, bad event happens with 
ℙ 𝑀 𝑥′ ∈ 𝑆 ≤ 10−10

• If 𝑀 is 𝜌 -CDP, then, when in data, bad event happens with 

𝛼 = 2: ℙ 𝑀 𝑥 ∈ 𝑆 ≤ 𝑒𝜌 10−10

𝛼 = 10: ℙ 𝑀 𝑥 ∈ 𝑆 ≤ 𝑒9𝜌10−9

Proposition [M17]: If 𝑀 is 𝜌-CDP and 𝑥, 𝑥′ are neighbouring inputs, then 

∀𝑆 ∀𝛼 ℙ 𝑀 𝑥 ∈ 𝑆 ≤ 𝑒 𝛼−1 𝜌 ⋅ ℙ[𝑀 𝑥′ ∈ 𝑆] 1−1/𝛼
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What can we do with CDP?

𝜀-DP

𝜌-CDP

(𝜀, 𝛿)-DP

Basic composition, 
Laplace mechanism, 
Exponential mechanism, 
Randomized response, 
Sparse vector, 
BLR mechanism 

Advanced composition,
Gaussian mechanism, 
Private multiplicative 
weights,
Projection mechanism

Propose-Test-Release 
framework,
Smooth sensitivity



Truncated CDP [BDRS17]

• 𝜔 = ∞ recovers 𝜌-CDP.

• Similar to Rényi DP [M17] – consider single 𝛼, rather than interval.

• Extends CDP to permit analogs of key algorithmic techniques.
• Analog of propose-test-release framework [DL09].

• Smooth sensitivity [NRS07].

• Privacy amplification by subsampling.

Definition [BDRS17]: A randomized algorithm 𝑀 is (𝜌, 𝜔)-tCDP if, for all 
datasets 𝑥 and 𝑥′ differing only on one individual’s data,

∀𝛼 ∈ (1, 𝜔) 𝐷𝛼 𝑀 𝑥 ||𝑀(𝑥′) ≤ 𝜌𝛼
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Separation: 𝜺-DP ≠ CDP ≠ (𝜺, 𝜹)-DP

• Possible with 𝜀-DP iff 𝑛 = Θ log |Ω| /𝜀 .

• Possible with (𝜀, 𝛿)-DP iff 𝑛 = Θ log 1/𝛿 /𝜀 .

• Possible with 𝜌-CDP iff 𝑛 = Θ log |Ω| /𝜌 .

• Upper bound: Add noise from 𝒩(0,
1

𝜌
) to each frequency.

Point Queries/Histograms: 
Input: 𝑥1, … , 𝑥𝑛 ∈ Ω. 

Output: For each 𝑧 ∈ Ω, return freq 𝑧 = 𝑖 ∶ 𝑥𝑖 = 𝑧 ±
𝑛

100
. 

Quadratic separationQuadratic separation

“Infinite” separation“Infinite” separation



CDP & Mutual Information

• Follows from group privacy property of CDP.

• Idea: If 𝑀 is accurately answers many queries, then mutual 
information must be high. 

• ⟹ Lower bound on 𝑛.

Theorem [BS16]: If 𝑀 is 𝜌-CDP and 𝑋 is a random input consisting of 𝑛
individuals, then 

𝐼 𝑋;𝑀 𝑋 ≤ 𝜌 ⋅ 𝑛2



Separation: 𝜺-DP ≠ CDP ≠ (𝜺, 𝜹)-DP

• Possible with 𝜀-DP iff 𝑛 = Θ log |Ω| /𝜀 .

• Possible with (𝜀, 𝛿)-DP iff 𝑛 = Θ log 1/𝛿 /𝜀 .

• Possible with 𝜌-CDP iff 𝑛 = Θ log |Ω| /𝜌 .

• Upper bound: Add noise from 𝒩(0,
1

𝜌
) to each frequency.

Point Queries/Histograms: 
Input: 𝑥1, … , 𝑥𝑛 ∈ Ω. 

Output: For each 𝑧 ∈ Ω, return freq 𝑧 = 𝑖 ∶ 𝑥𝑖 = 𝑧 ±
𝑛

100
. 

Quadratic separationQuadratic separation

“Infinite” separation“Infinite” separation



Optimal CDP Algorithm [BBNS17] (see poster)
Linear Query Release problem:

x1

x2

xn

𝑀 ⊆ ℝ𝑑
conv(𝑋)

Accuracy Goal:

𝑀 𝑥 ≈𝛼

1

𝑛


𝑖=1

𝑛

𝑞(𝑥𝑖)



Optimal CDP Algorithm [BBNS17] (see poster)
Linear Query Release problem:

x1

x2

xn

𝑀 ⊆ ℝ𝑑
conv(𝑋)

Average Squared Accuracy Goal:

𝔼
1

diam(𝑋)2
𝑀 𝑥 −

1

𝑛


𝑖=1

𝑛

𝑞(𝑥𝑖)

2

2

≤ 𝛼2

[BBNS17]: New CDP 
algorithm that is provably 
optimal for 𝛼 = Ω(1).



Optimal CDP Algorithm [BBNS17] (see poster)

Average Squared Accuracy Goal:

𝔼
1

diam(𝑋)2
𝑀 𝑥 −

1

𝑛


𝑖=1

𝑛

𝑞(𝑥𝑖)

2

2

≤ 𝛼2

Definition (Covering number): Let 𝑁(𝑋, 𝛾) be the 
smallest number of 𝛾-balls whose union covers 𝑋.

Let 𝑋 = range 𝑞 ⊆ ℝ𝑑 be the set of possible answers.

Algorithm [BBNS17]: 𝜌-CDP 𝛼-accurate algorithm for  𝑋 as long as 

𝑛 ≥ 𝑂
1

𝛼2
log𝑁 𝑋, 𝛼 ⋅ diam 𝑋 /2

𝜌

Lower Bound [BBNS17]: Need

𝑛 ≥ Ω log𝑁(𝑋, 3𝛼 ⋅ diam(𝑋))/𝜌 .

Based on Projection 
Mechanism [NTZ13]



What can’t we do with CDP?

𝜀-DP

𝜌-CDP

(𝜀, 𝛿)-DP

Basic composition, 
Laplace mechanism, 
Exponential mechanism, 
Randomized response, 
Sparse vector, 
BLR mechanism,
Subsampling* 

Advanced composition,
Gaussian mechanism, 
Private multiplicative 
weights,
Projection mechanism

Propose-Test-Release 
framework,
Smooth sensitivity,
Privacy amplification by 
subsampling



Truncated CDP [BDRS17]

• 𝜔 = ∞ recovers 𝜌-CDP.

• Similar to Rényi DP [M17] – consider single 𝛼, rather than interval.

• Extends CDP to permit analogs of key algorithmic techniques.
• Propose-test-release framework.

• Smooth sensitivity.

• Privacy amplification by subsampling.

Definition [BDRS17]: A randomized algorithm 𝑀 is (𝜌, 𝜔)-tCDP if, for all 
datasets 𝑥 and 𝑥′ differing only on one individual’s data,

∀𝛼 ∈ (1, 𝜔) 𝐷𝛼 𝑀 𝑥 ||𝑀(𝑥′) ≤ 𝜌𝛼



Separation: 𝜺-DP ≠ CDP ≠ tCDP

• Possible with 𝜀-DP iff 𝑛 = Θ log |Ω| /𝜀 .

• Possible with (𝜀, 𝛿)-DP iff 𝑛 = Θ log 1/𝛿 /𝜀 .

• Possible with 𝜌-CDP iff 𝑛 = Θ log |Ω| /𝜌 .

• Possible with (𝝆,𝝎)-tCDP iff 𝒏 = 𝚯(𝝎 ⋅ 𝐥𝐨𝐠 𝐥𝐨𝐠 |𝛀|) (for 𝝎 ≪ 𝐥𝐨𝐠 𝛀 /𝝆).

Point Queries/Histograms: 
Input: 𝑥1, … , 𝑥𝑛 ∈ Ω. 

Output: For each 𝑧 ∈ Ω, return freq 𝑧 = 𝑖 ∶ 𝑥𝑖 = 𝑧 ±
𝑛

100
. 

How do these 
compare in practice?

How do these 
compare in practice?

Related to propose-
test-release.



Subsampling

x1

x2

xN

{S(1), … S(n)} a 

random subset of [N]

For (ε, δ)-DP:

xS(1)

xS(n)

𝑀
𝑀′

• If 𝑀 is (𝜀, 𝛿)-DP, then 𝑀′ is (≈ 𝑠 ⋅ 𝜀, 𝑠 ⋅ 𝛿)-DP.

• If 𝑀 is 𝜌-CDP, then 𝑀′ is 𝜌-CDP.                 No gain in parameters!

• If 𝑴 is (𝝆,𝝎)-tCDP, then 𝑴′ is (≈ 𝒔𝟐 ⋅ 𝝆, 𝛀(𝐦𝐢𝐧 𝝎, 𝐥𝐨𝐠( Τ𝟏 𝒔)/𝝆 ))-tCDP.

log 1 + 𝑠 ⋅ 𝑒𝜀 − 1

𝑀:𝑋𝑛 → 𝑌

𝑀′: 𝑋𝑁 → 𝑌
𝑠 =

𝑛

𝑁
≪ 1



What can’t we do with tCDP?

𝜀-DP

𝜌-CDP

(𝜀, 𝛿)-DP

Basic composition, 
Laplace mechanism, 
Exponential mechanism, 
Randomized response, 
Sparse vector, 
BLR mechanism,
Subsampling*

Advanced composition,
Gaussian mechanism, 
Private multiplicative 
weights,
Projection mechanism

Propose-Test-Release 
framework,
Smooth sensitivity,
Privacy amplification by 
subsampling

(𝜌, 𝜔)-tCDP ???


