Quantifying Patient Privacy in Public Disease Portals

Sean Simmons

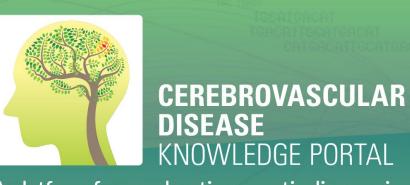
Stanley Center, Broad Institute

1/10/2017

Acknowledgments

Portal Team:

- Jason Flannick
- Noel Burtt
- The rest of the team!


Sahinalp Lab:

- Cenk Sahinalp (see his talk later!)
- Many others!

Berger Lab:

- Bonnie Berger
- Many others!

Knowledge Portals: A new way to share GWAS!

A platform for accelerating genetic discoveries in cerebrovascular disease

TYPE 2 DIABETES KNOWLEDGE PORTAL

En Español | In English

Providing data and tools to promote understanding and treatment of type 2 diabetes and its complications

Knowledge Portals: Sharing GWAS results

rs13266634 associations at a glance

All type 2 diabetes associations are shown below. Click the "expand associations for all traits" button to see additional associations of at least nominal significance. Associations with related phenotypes are grouped under color-coded headers. Warning: the data sets shown share samples and thus *cannot* be combined via meta-analysis. For assistance with pooling studies for analysis, please contact us.

Type 2 diabetes

DIAGRAM Transethnic meta-analysis	GoT2D exome chip analysis	70KforT2D GWAS	GoT2D WGS + replication	19K exome sequence analysis	AGEN GWAS
p = 2.7e-20 genome-wide significant	p = 2.73e-18 genome-wide significant	p = 3.01e-15 genome-wide significant	p = 0.00000856 locus-wide significant	p = 1.95e-7 locus-wide significant	p=0.61
↓ OR = 0.877	↓ OR = 0.878	↓ OR = 0.871	↓ OR = 0.885	↓ OR = 0.881	↓ OR = 0.902
110452 n/a n/a	75670 33.0% 49942	70127 30.5% 42735	44414 33.0% 29287	18844 28.3% 10667	18817 n/a n/a
BioMe AMP T2D GWAS	GWAS SIGMA	METSIM GWAS	SIGMA exome chip analysis	EXTEND GWAS	CAMP GWAS
p = 0.181	p = 0.00233 nominally significant	p = 0.151	p = 0.000147 locus-wide significant	p = 0.02 nominally significant	p = 0.0632
↓ OR = 0.941	↓ OR = 0.895	↓ OR = 0.936	↓ OR = 0.874		↓ OR = 0.983
9173 19.2% 3526	8891 25.7% 4577	8791 39.5% 6944	8214 25.8% 4237	7159 <mark>n/a</mark> n/a	3628 27.8% 2016

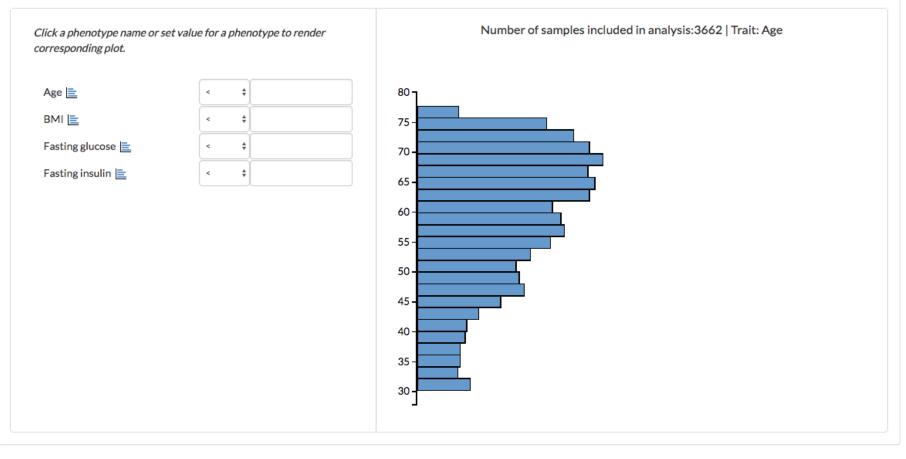
Knowledge Portals: Interactive analysis!

Genetic Association Interactive Tool

The Genetic Association Interactive Tool allows you to compute custom association statistics by specifying the phenotype to test for association, a subset of samples to analyze based on specific phenotypic criteria, and a set of covariates to control for in the analysis. In order to protect patient privacy, GAIT will only allow visualization or analysis of data from more than 100 individuals.

Choose a phenotype and partitioning strategy

Dataset	Phenotype	Phenotype		
CAMP GWAS	Type 2 diabetes	\$		
Samples: Filter cases and controls separate	ely			
Step 1: Select a subset of samples based on phenotypic criteria				
Step 2: Control for covariates				


Launch analysis

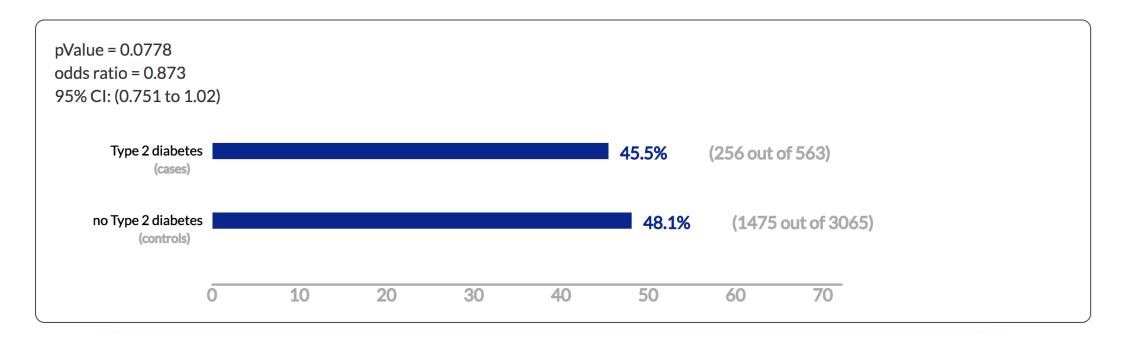
Step 1: Choose who to include

Step 1: Select a subset of samples based on phenotypic criteria

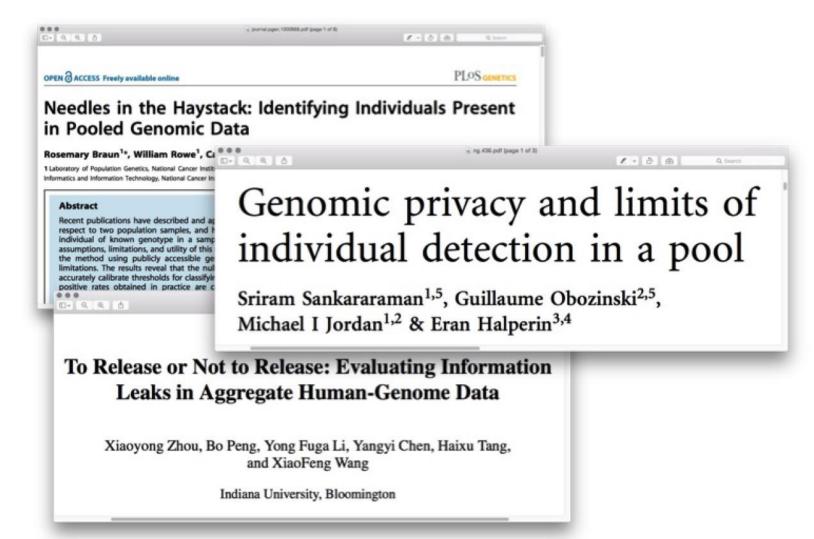
Each of the boxes below enables you to define a criterion for inclusion of samples in your analysis; each criterion is specified as a filter based on a single phenotype. The final subset of samples used will be those that match all of the specified criteria; to omit a criterion leave the text box blank.

Click on the "graph" icon near each phenotype name to view the distribution of phenotypic values for the samples currently included in the analysis. The number of samples included, as well as the distributions, will update whenever you modify the value in the text box.

Step 2: Choose what to correct for


Step 2: Control for covariates

Select principal components and/or phenotypes to be used as covariates in your association analysis. Principal components 1-4 are selected by default to minimize the influence of ancestry, though additional principal components may be selected to control for finer grained substructure within a population. Selecting phenotypes as covariates allows you to estimate the effects of the response phenotype independently of the covariate phenotypes.


🗸 PC-1	🔽 Age
🗹 PC-2	🗹 Sex
🔽 PC-3	D BMI
🔽 PC-4	
PC-5	
PC-6	
PC-7	
PC-8	
PC-9	
PC-10	

Step 3: Get results!

Launch analysis

We know a lot about GWAS privacy...

Difference with standard GWAS portals

- Smaller datasets analysis/ subsampling
- Repeated queries per SNP
- Ability to remove/ include confounders

Difference with standard GWAS portals

- Smaller datasets analysis/ subsampling
- Repeated queries per SNP
- Ability to remove/ include confounders

All of these change the privacy landscape!

Quantifying privacy

- Use a model based approach
- Looked at different types of private data leakage
- No formal guarantees (yet!)

Quantifying privacy: Our models

What Leaks?	Outside knowledge	Statistic released	Likely Risk (very subjective)
Participation in study	Background MAF and individuals genotype	Minor allele frequency	Low
Diseases status	Background MAF and individuals genotype	Minor allele frequency	Low
Other phenotype data	Unspecified	Interactive histogram	Moderate
Genotype	Background MAF	GWAS statistics for one query	Low
Genotype	Background MAF	GWAS statistics for numerous queries	High

Quantifying privacy: Adversarial uncertainty

- Adversaries knowledge modelled probabilistically
- Prior knowledge specifies probability distribution used.
- Look at entropy (among other measures) of posterior probability to determine privacy loss.

Quantifying privacy: Conditional entropy!

$$Entropy_{y|X} = -\sum \log(\Pr(y|X))\Pr(y,X)$$

Where:

- y value of secret trait
- Pr probaility distribution representing adversaries belief
- X information being released

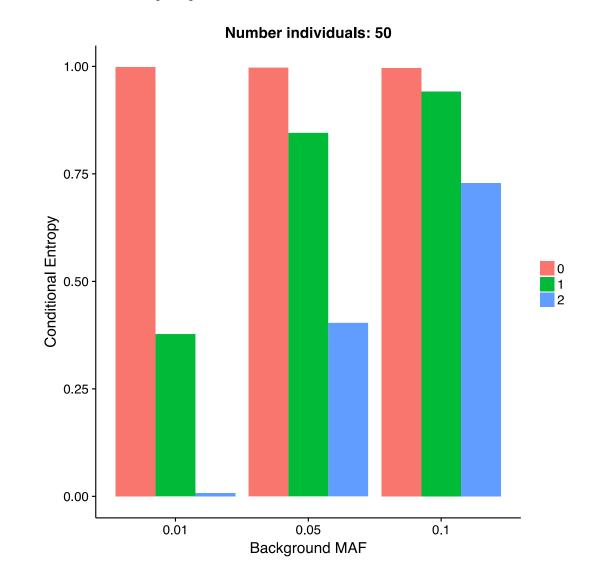
Quantifying privacy: Example!

 $Entropy_{genotype|MAF} =$

$$-\sum_{MAF,i} \log(\Pr(genotype = i|MAF))\Pr(genotype = i, MAF)$$

Quantifying privacy: Our models

What Leaks?	Outside knowledge	Statistic released	Likely Risk (very subjective)
Participation in study	Background MAF and individuals genotype	Minor allele frequency	Low
Diseases status	Background MAF and individuals genotype	Minor allele frequency	Low
Other phenotype data	Unspecified	Interactive histogram	Moderate
Genotype	Background MAF	GWAS statistics for one query	Low
Genotype	Background MAF	GWAS statistics for numerous queries	High


Quantifying privacy: First Analysis

What Leaks?	Outside knowledge	Statistic released	Likely Risk (very subjective)
Participation in study	Background MAF and individuals genotype	Minor allele frequency	Low
Diseases status	Background MAF and individuals genotype	Minor allele frequency	Low
Other phenotype data	Unspecified	Interactive histogram	Moderate
Genotype	Background MAF	GWAS statistics for one query	Low
Genotype	Background MAF	GWAS statistics for numerous queries	High

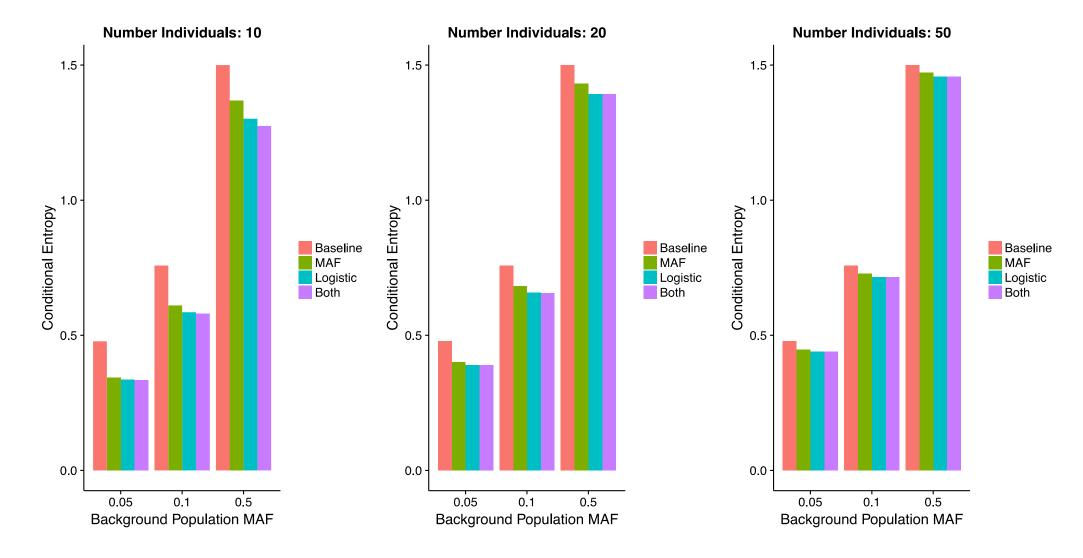
Leaking disease participation

- Apply to private disease status information
- Assume genotype known and MAF of background population known (similar to Homer et al.)
- Privacy leakage from minor allele frequencies!

Decrease in entropy of disease status

Quantifying privacy: First Analysis

What Leaks?	Outside knowledge	Statistic released	Likely Risk (very subjective)
Participation in study	Background MAF and individuals genotype	Minor allele frequency	Low
Diseases status	Background MAF and individuals genotype	Minor allele frequency	Low
Other phenotype data	Unspecified	Interactive histogram	Moderate
Genotype	Background MAF	GWAS statistics for one query	Low
Genotype	Background MAF	GWAS statistics for numerous queries	High


Quantifying privacy: Leaking genotype

What Leaks?	Outside knowledge	Statistic released	Likely Risk (very subjective)
Participation in study	Background MAF and individuals genotype	Minor allele frequency	Low
Diseases status	Background MAF and individuals genotype	Minor allele frequency	Low
Other phenotype data	Unspecified	Interactive histogram	Moderate
Genotype	Background MAF	GWAS statistics for one query	Low
Genotype	Background MAF	GWAS statistics for numerous queries	High

The concern:

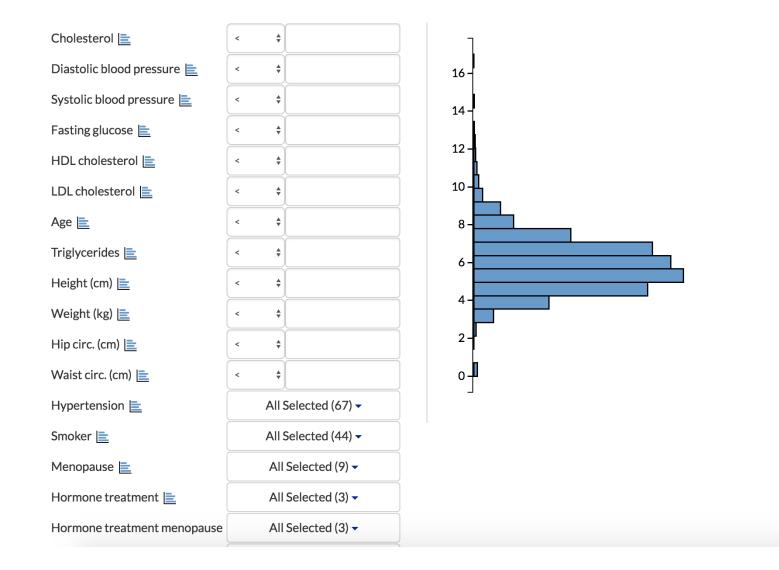
Entropy of the genotype

Added concerns with interactive GWAS

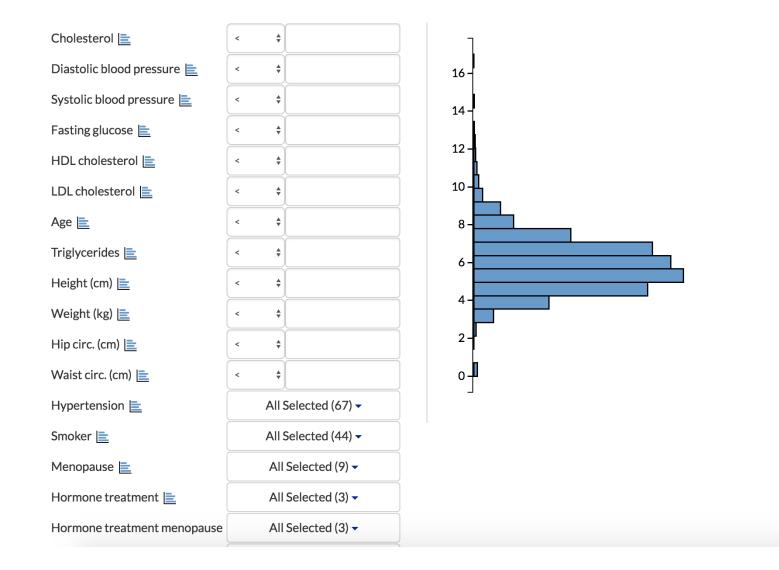
- So far have focused on privacy concerns without taking advantage of the interactive aspect.
- Does interactive analysis add more?

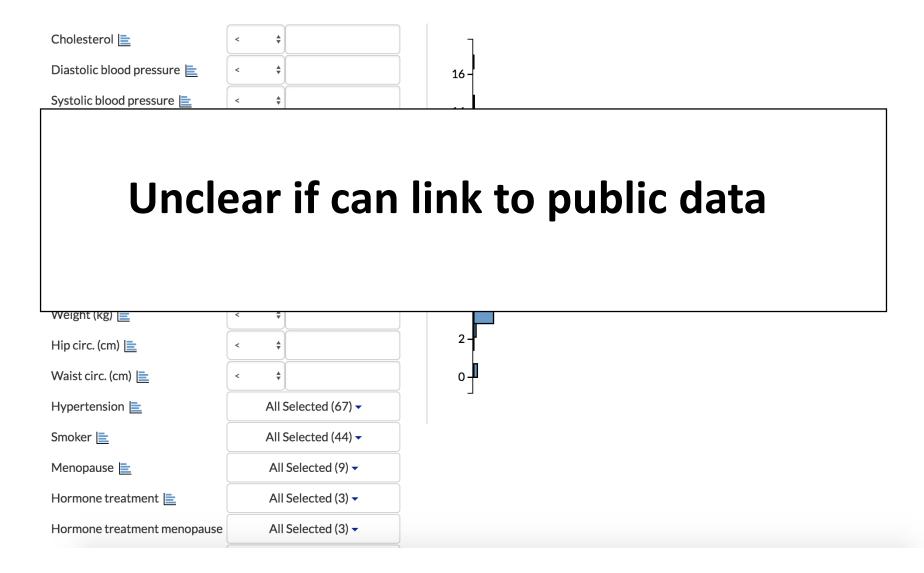
Added concerns with interactive GWAS

- So far have focused on privacy concerns without taking advantage of the interactive aspect.
- Does interactive analysis add more?


Short answer? Yes

Quantifying privacy: Leaking genotype


What Leaks?	Outside knowledge	Statistic released	Likely Risk (very subjective)
Participation in study	Background MAF and individuals genotype	Minor allele frequency	Low
Diseases status	Background MAF and individuals genotype	Minor allele frequency	Low
Other phenotype data	Unspecified	Interactive histogram	Moderate
Genotype	Background MAF	GWAS statistics for one query	Low
Genotype	Background MAF	GWAS statistics for numerous queries	High

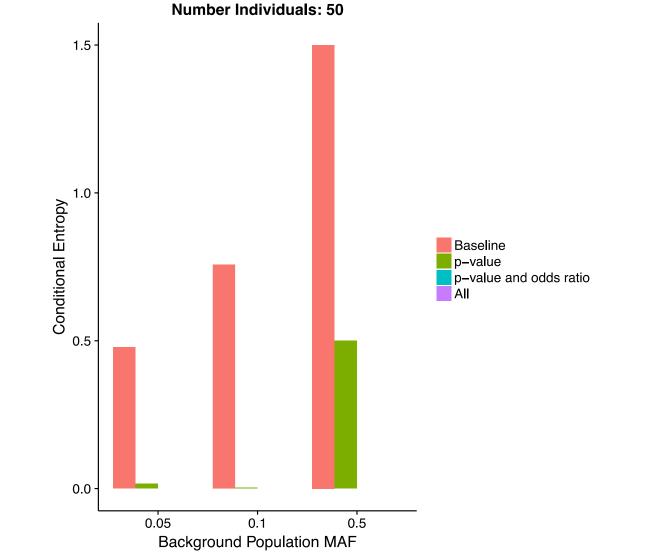

Quantifying privacy: Leaking health data

What Leaks?	Outside knowledge	Statistic released	Likely Risk (very subjective)
Participation in study	Background MAF and individuals genotype	Minor allele frequency	Low
Diseases status	Background MAF and individuals genotype	Minor allele frequency	Low
Other phenotype data	Unspecified	Interactive histogram	Moderate
Genotype	Background MAF	GWAS statistics for one query	Low
Genotype	Background MAF	GWAS statistics for numerous queries	High

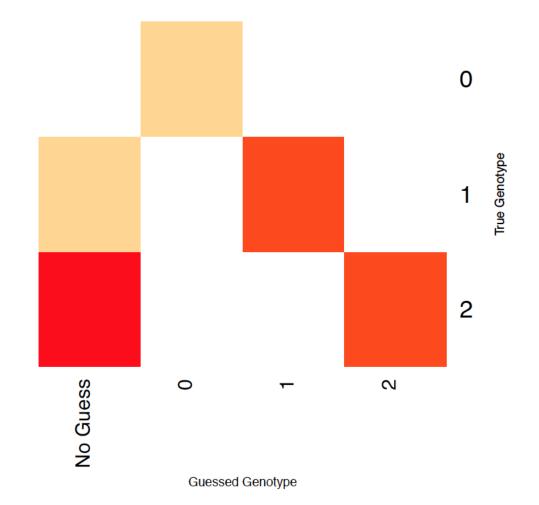
- Interactive histograms allow users to understand how certain traits (age, smoking status, etc) differ in dataset
- Also allow for reconstruction of phenotype information!

Quantifying privacy: Leaking health data

What Leaks?	Outside knowledge	Statistic released	Likely Risk (very subjective)
Participation in study	Background MAF and individuals genotype	Minor allele frequency	Low
Diseases status	Background MAF and individuals genotype	Minor allele frequency	Low
Other phenotype data	Unspecified	Interactive histogram	Moderate
Genotype	Background MAF	GWAS statistics for one query	Low
Genotype	Background MAF	GWAS statistics for numerous queries	High


Quantifying privacy: Leaking genotype data

What Leaks?	Outside knowledge	Statistic released	Likely Risk (very subjective)
Participation in study	Background MAF and individuals genotype	Minor allele frequency	Low
Diseases status	Background MAF and individuals genotype	Minor allele frequency	Low
Other phenotype data	Unspecified	Interactive histogram	Moderate
Genotype	Background MAF	GWAS statistics for one query	Low
Genotype	Background MAF	GWAS statistics for numerous queries	High


Interactive analysis and privacy

- Run an analysis on one group of individuals
- Run an analysis on a slightly different group of individuals
- Combine to learn about genotype of one target!

Entropy in genotype data: Interactive analysis

Recovering genotype data

Mitigation?

- Larger minimum analysis size, less precision
- Remove some features
- Require PCs as covariates
- K-anonymity for histograms
- Remove Y chromosome

What else is needed?

- Doesn't consider all possible queries, only a few select ones.
- What are we missing? No good way to measure!!
- How do covariates actually effect the privacy risk? Harder to answer.
- Can the information leaked here be linked to outside databases?