
PRESAGE: PRIVACY-PRESERVING
GENETIC TESTING VIA INTEL SGX

Motivation

■ It is becoming a big challenge to efficiently

store and process the huge amount of

genomic data for individual biomedical

research institutions.

Cloud Computing emerges as an ideal

platform for providing elastic computation and

storage resources for genomic data analysis

Institutes

Genome Data

Genome Analysis

Institutes

Genome Data

Genome Analysis

Motivation

■ Individual genomic

information tends to reveal

sensitive personal information.

Thus privacy concerns have

posed challenges to outsource

genomic data in an untrusted

cloud environment

•Lin et. al. 2004 Science: 75 or more SNPs

(Single-nucleotide polymorphism) will be

sufficient to identify a single person.

•Gymrek et al. 2013 Science: surnames can be

recovered from personal genomes, linking Utah

Residents with Northern and Western European

Ancestry (CEU) and public genetic genealogy

databases (Ysearch & SMGF).

•Lipper et.al. 2017 PNAS: Prediction of human

physical traits and demographic information.

•

Homer et al. 2008 PLOS Genetics: aggregated

genome data (i.e., allele frequencies) can also

be used for re-identifying an individual in a case

group with a certain disease.

Our Solution

■ We present one of the first

implementations of SGX based

secure genetic testing framework to

facilitate efficiently outsourced

storage and computation.

The secure outsource storage is achieved through

data sealing scheme within SGX framework, which is

immune to replay attack.

We have taken into account the oblivious access

protection by using 4KB page-wise data access model.

To improve the performance, we adopt a perfect

hashing scheme to achieve O(1) complexity data

access within each 4KB page.

Intel SGX Based Secure Genetic

Testing Cloud

Our Solution

Workflows of the

proposed PRESAGE

framework, presented

in three consecutive

steps:

1. Preprocessing

2. Encryption and data

outsourcing.

3. Secure Genetic

Query Matching.

Experimental Studies

■ Dataset: The dataset is presented in VCF format. And sizes of

VCF datasets used in our experiments vary from 10,000 to

200,000 records.

■ Experiment Environment: All of the experiments except the

iDASH competition results are conducted on a Windows 10

SGX-enabled machine with i7 6820HK CPU and 48 GB

memory. Both data owner and CSP were simulated on the

aforementioned SGX machine. The iDASH competition results

were evaluated on the Linux server with an Xeon Processor

E3-1275 v5 and 64 GB memory

Results

Record size Attestation SNPs coding Hash generation
Enclave

creation
Data sealing

Number of queries

1 3

10,000 0.121s 0.016s 1.130s 0.169s 0.094s 0.003s 0.003s

50,000 0.126s 0.080s 6.371s 0.173s 0.517s 0.012s 0.013s

100,000 0.124s 0.164s 13.473s 0.179s 0.980s 0.023s 0.025s

200,000 0.120s 0.309s 28.677s 0.171s 2.045s 0.043s 0.048s

Record size Plaintext Encoded data Sealed data
Enclave memory usage

1 query 3 queries

10,000 0.55 MB 0.09 MB 0.12 MB 3.006 MB 3.006 MB

50,000 2.59 MB 0.45 MB 0.59 MB 3.010 MB 3.010 MB

100,000 5.26 MB 0.90 MB 1.15 MB 3.010 MB 3.010 MB

200,000 10.5 MB 1.75 MB 2.31 MB 3.010 MB 3.010 MB

Table 1. The breakdown run time (in seconds) of the proposed PRESAGE framework

Table 2. The data size and enclave memory consumption (in MB) for different datasets.

Comparison of querying performance

among PRESAGE, HME-based

method and plaintext implementation

Conclusion

• We proposed a secure outsourcing framework, which can defend malicious

attack. To improve the efficiency, an minimal perfect hashing scheme has

been incorporated

• Our experiment results demonstrated the efficiency of the proposed

PRESAGE framework. For a VCF file with 200K records, the PRESAGE

securely processes a query within 0.05 seconds, which includes file loading,

unsealing and query matching. Compared with state-of-the-art HME

solution, PRESAGE framework shows at least 120x performance gain.

Acknowledgements

■ Feng Chen,

■ Chenghong Wang,

■ Wenrui Dai,

■ Xiaoqian Jiang,

■ Noman Mohammed,

■ Md Momin Al Aziz,

■ Md Nazmus Sadat,

■ Kristin Lauter,

■ Shuang Wang

Secure GWAS via Intel SGX
CAN KOCKAN

Motivation / Goal

 Enable secure whole genome variant search among multiple

individuals from multiple institutions

 Institution A has VCF files from xA individuals labeled case/control,

Institution B has VCF files from xB individuals labeled case/control, …

 Institutes don’t want to share data, want to do GWAS on untrusted

cloud

Requirements

 Secure (Everything kept encrypted outside the SGX Enclave)

 Fast

 Accurate

 Scalable

Challenges

 Data is too large (iDASH dataset ~30GB, real-life much bigger)

 SGX Enclave max size 128 MB

 Linux allows 4GB paging – paging is extremely slow, typically many

orders of magnitude slower than RAM

 More data longer transfer, more data slower encryption/decryption

Solution Outline

 Keep hash table inside the SGX enclave (server)

 Filter and compress VCF files (Client(s))

 Construct Enclave (Server)

 Perform Remote Attestation (Both Parties Exchange Messages)

 Receive Data, Update Hash Table (Server)

 Calculate Top-K (K=10 for iDASH) SNPs wrt C2 test (Server)

Allele Counting for C2 Test

VCF (Variant Call Format)

Filtering & Variable Length

Encoding

 Only SNP ”ID” and ”TYPE” columns essential

 ”QUAL” and ”FILTER” can be removed during preprocessing

 ”CHROM”, ”POS”, ”REF”, ”ALT” can all be found via ”ID” from dbSNP

 Trim the ”rs” in front of ”ID”, represent as integer

 Sort by ”TYPE”, so that we don’t have to keep

heterozygous/homozygous

 Keep a single integer to determine when ”TYPE” changes

Filtering VCF and Compressed

Representation

Variable Length Encoding

 Sort ”ID”s, grouped by ”TYPE”

 Keep only differences using the minimum number of bits needed

 Keep another small stream for bit-lengths, encoded by a Huffman Tree

 Example VCF Filtering/Compression: Actual VCF Size: 15,428,390 Bytes

 Heterozygous-Stream: 944,166 bits Homozygous-Stream: 428,921 bits

Total Main Stream Size: 1,373,087 bits

 5-bits/len Auxiliary Stream Size: 1,631,105 bits Huffman Encoded Auxiliary

Stream Size: 1,070,458 bits

 Main Stream + Huffman Auxiliary Stream: 305,444 Bytes

Preliminary Results

 1000 case / 1000 control. ~300K-350K SNPs per VCF, ~5.5M unique

SNPs

 SGX Enclave creation: 0.193381 seconds

 Remote Attestation: 0.002464 seconds

 Main Application: 49.990706 seconds

 SGX Enclave destruction: 0.034888 seconds

 Can Kockan (Indiana University)

 Natnatee Dokmai (Indiana University)

 Oguzhan Kulekci (Istanbul Technical University)

 Steve Myers (Indiana University)

 The Cancer Genome Collaboratory

 Indiana University Precision Health Initiative

Acknowledgements

Precision genomics under scalability, privacy and security
constraints

S. Cenk Sahinalp

Indiana University Bloomington

Vancouver Prostate Centre

Genome storage and communication: the need

• Research: massive genome projects (e.g. PCAWG) require to exchange
10000s of genomes.

• Need to cover >200 cancer types, many subtypes.

• Within PCAWG TCGA to sequence 11K patients covering 33 cancer
types. ICGC to cover 50 cancer types >15PB data at The Cancer
Genome Collaboratory

• Clinic: $100s/genome (e.g. NovaSeq) enable sequencing to be a
standard tool for pathology

• PCAWG estimates that 250M+ individuals will be sequenced by 2030

Current needs

• Typical technology: Illumina NovaSeq 100-400 bp reads, 250-500GB
uncompressed data for high coverage human genome, high redundancy

• 40% of the human genome is repetitive (mobile genetic elements,
centromeric DNA, segmental duplications, etc.)

• Upload/download: 55 hrs on a 10Mbit consumer line; 5.5 hrs on a
100Mbit high speed connection

• Technologies under development: expensive, longer reads, higher error
(PacBio, Nanopore) – lower redundancy and higher error rates limit
compression

File formats

• Raw read data: FASTQ/FASTA – dominant fields: (read name, sequence,
quality score)

• Mapped read data: SAM/BAM – reads reordered based on mapping
locus on a reference genome (not suitable for metagenomics, organisms
with no reference)

• Key decisions to be made:

• Each format can be compressed through specialized methods – should
there be a standardized format for compressed genomes?

• Better file formats based on mapping loci on sequence graphs
representing common variants in a pan-genomic reference?

Genome Compression:
Towards an International Standard

• Collaboration with MPEG to evaluate the current state of HTS data compression
towards an International Standard

• Standard Benchmark DataSet: 2+ TB sequence data:

• 7 FASTQ samples and 8 SAM samples, covering 6 species, 6 technologies, various
use-cases (high and low coverage data, cancer cell lines, WGS, RNA-Seq,
metagenomics etc.)

• 15 FASTQ tools and 10 SAM tools evaluated

• Available at https://github.com/sfu-compbio/compression-benchmark

Comparison of high-throughput sequencing data compression tools
[Numanagić et al., Nat. Meth., Dec 2016]

https://github.com/sfu-compbio/compression-benchmark

FASTA/Q compression

General purpose compressors used in genomics

- LZ77 tools (gzip, pigz)
- BWT tools (bzip2, pbzip2)
- LZMA (7z)
- Context mixing (zpaq, lpaq)
- NCBI Toolkit (used at SRA for storing samples)

Compressor (on 53.8 GB
human g. 6.5x coverage)

Size
(total)

Size
(field by field)

Size
(sequence)

pigz 18.5 GB 16.1 GB 5.9 GB

pbzip2 14.8 GB 14.1 GB 5.4 GB

NCBI SRA ~ 14.2 GB

• General compressors do not take into account
redundancies specific to FASTQ format (FASTQ
files are treated as ordinary text files)

Specialized FASTA/Q compressors

• Goals:
- Read name tokenization
- Separate sequence and quality score modeling

• Examples:
- DSRC and DSRC2 [1] (Huffman coding)
- fastqz, fqzcomp [2] and Slimfastq [3] (context

mixing with arithmetic coding)
- FQC [4] and LFQC [5] (LZMA, paq and ppmd as

compression engine)

Compressor
(on 53.8 GB)

Size
(total)

Size
(sequence)

DSRC2 13.2 GB 5.2 GB

Slimfastq 11.0 GB 4.4 GB

FQC 11.4 GB N/A

[1] Roguski S, Deorowicz S. DSRC 2--Industry-oriented compression of FASTQ files. Bioinformatics, 2014
[2] Bonfield JK, Mahoney MV. Compression of FASTQ and SAM Format Sequencing Data. PLoS ONE, 2013
[3] Ezra J. https://github.com/Infinidat/slimfastq
[4] Dutta A, Haque MM, Bose T, Reddy CV, Mande SS. FQC: A novel approach for efficient compression,
archival, and dissemination of FASTQ datasets. J Bioinform Comput Biol., 2015
[5] Nicolae M, Pathak S, Rajasekaran S. LFQC: a lossless compression algorithm for FASTQ files.
Bioinformatics, 2015

https://github.com/Infinidat/slimfastq

FASTA/Q compressors based on read reordering

• Goals:
- Reorder reads to improve locality of reference

• Examples:
- SCALCE [1] (uses locally consistent parsing for

read reordering/clustering)
- ORCOM [2] (uses lexicographically smallest k-

mers for clustering)
- Mince [3] (similar to ORCOM)
- LW-FQZip [4] (uses implicit mapping to a

reference)
Compressor
(on 53.8 GB)

Size (total) Size
(sequence)

SCALCE 10.8 GB 3.0 GB

ORCOM N/A 1.7 GB

Mince N/A 6.0 GB

LW-FQZip N/A

[1] Hach F, Numanagić I, Alkan C, Sahinalp SC. SCALCE: boosting sequence compression algorithms using
locally consistent encoding. Bioinformatics, 2012
[2] Grabowski S, Deorowicz S, Roguski L. Disk-based compression of data from genome sequencing.
Bioinformatics, 2014
[3] Patro R, Kingsford C. Data-dependent Bucketing Improves Reference-free Compression of Sequencing
Reads. Bioinformatics, 2015
[4] Zhang Y, Li L, Yang Y, Yang X, He S, Zhu Z. Light-weight reference-based compression of FASTQ data. BMC
Bioinformatics, 2015

FASTA/Q compressors based on read assembly

• Goals:
- Assemble the underlying genome and map

reads to the assembly

• Examples:
- Quip [1] (Bloom filters, assembles clusters of 1

million reads)
- Leon [2] (probabilistic de Bruijn graph)
- k-Path [3] (probabilistic de Bruijn graph)

Compressor
(on 53.8 GB)

Size
(total)

Size
(sequence)

Quip 11.3 GB 4.5 GB

Leon 13.6 GB 4.7 GB

k-Path N/A 2.0 GB

[1] Jones DC, Ruzzo WL, Peng X, Katze MG. Compression of next-generation sequencing reads aided by
highly efficient de novo assembly. Nucleic Acids Res. 2012
[2] Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G.. Reference-free compression of
high throughput sequencing data with a probabilistic de Bruijn graph. BMC Bioinformatics, 2105.
[3] Kingsford C, Patro K. Reference-based compression of short-read sequences using path encoding.
Bioinformatics, 2015

Compression results on raw (FASTA/Q) read data

SAM/BAM compression

General purpose compressors for SAM files
- LZ77 tools (gzip, pigz)
- BWT tools (bzip2, pbzip2)
- Current standard: LZ77-based BAM (Samtools [1], Sambamba [2], Picard [3])

• None of those methods treat differently separate SAM columns.
• Clearly, simple stream separation without any additional

post-processing increases significantly the overall compression rate

Compressor
(on human cancer g.
sample 427 GB)

Size Size
(separate streams)

pigz 119 GB 103 GB

pbzip2 100 GB 94 GB

Samtools 131 GB 102 GB

[1] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000
Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools.
Bioinformatics, 2009
[2] Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment
formats. Bioinformatics, 2015
[3] Broad Institute. http://broadinstitute.github.io/picard/

Specialized SAM tools

- Separate fields into different
compression streams

- Use reference to store sequence
information, if possible

• Primarily reference based:
- CRAM format (Scramble [1],

Cramtools [2])
• Assembly and reference based:

- Quip [3]
• Statistical modeling and

arithmetic encoding:
- sam_comp [4]

Compressor
(on human cancer sample; 427 GB)

Size

Cramtools 95 GB

Scramble 82 GB

Scramble (without reference) 86 GB

Quip (without reference) 98 GB

sam_comp
* does not support all SAM fields

42 GB*

[1] Bonfield JK.The Scramble conversion tool. Bioinformatics, 2014
[2] Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E. Efficient storage of high
throughput DNA sequencing data using reference-based compression. Genome Res.,
2011
[3] Jones DC, Ruzzo WL, Peng X, Katze MG. Compression of next-generation sequencing
reads aided by highly efficient de novo assembly. Nucleic Acids Res. 2012
[4] Bonfield JK, Mahoney MV. Compression of FASTQ and SAM Format Sequencing
Data. PLoS ONE, 2013

Local assembly based SAM tools

- Avoid redundant storing of SNPs and other
small SVs

- Find the underlying genome via local
assembly, and encode SNPs and small SVs only
once

• Examples:
- DeeZ [1]
- CBC [2]

Compressor (on human cancer sample; 427 GB) Size

DeeZ 78 GB

Sequence only without assembly Sequence only with assembly

4,169 MB 4,120 MB

[1] Hach F, Numanagić I, Sahinalp SC. DeeZ: reference-based compression by local
assembly. Nat. Methods, 2014
[2] Ochoa I, Hernaez M, Weissman T. Aligned genomic data compression via improved
modeling. Journal of bioinformatics and computational biology, 2014

DeeZ: DeeNA Zeep

Motivation

• BAM (the most common format for storage and
communication) misses some opportunities in SAM format,
particularly common SNV loci in reads

• Alternative SAM/BAM compression tools, based on
arithmetic coding (AC) and other data modeling methods,
like Quip and Samcomp, provide superior compression, but
not random-access capability

• DeeZ locally assembles reads and represents each SNV once,
on the contig.

DeeZ: Quality scores
- Quality scores account for majority of the space in almost any format

- minor improvement in quality score compression is more beneficial than improvement in other
areas

DeeZ on human cancer sample
427 GB

Size Gain

Sequence only without local assembly
(5% of compressed file)

4,169 MB

Sequence only with local assembly
(5% of compressed file)

4,120 MB 49 MB

Quality scores only with order-1 AC model
(42% of compressed file)

33,516 MB

Quality scores only with sam_comp model
(41% of compressed file)

31,010 MB 2,506 MB

Compression results on mapped (SAM/BAM) read data

Cenk Sahinalp

Based on joint work with

Kaiyuan Zhu, Tony Ginart, Joseph Hui, Ibrahim Numanagić,

Thomas Courtade, David Tse

Optimal Compressed Representation of High
Throughput Sequence Data via Light Assembly

41

Current FASTQ Compression Schemes

• General purpose compressors (FASTQ files are treated as ordinary text files)
• gzip (parallel gzip--pigz), bzip2 (parallel bzip2--pbzip2)

• Alignment tools: replace each read with a pointer to the underlying
reference genome.
• use de-novo assembly to generate long contigs or paths in assemble graph

• Quip, Leon, k-Path, KIC, etc.

• use an user-provided reference genome to perform lightweight mapping
• LW-FQZip etc.

• Reordering tools: as the read order in a FASTQ file is arbitrary, reordering of
the reads to bring the similar ones together can significantly boost the
compression rates while avoiding information loss.
• SCALCE, Orcom, Mince

42

Assembltrie: Our New Compressed Representation

• Combine the advantages of reordering and alignment based
compressors.

• The input reads are organized into a forest of compact trie-like
data structures called read forest.
• Each node 𝑣 represents a read (a string of fixed length)

• Each directed edge (𝑢, 𝑣) represents the suffix of string 𝑢 that is not
covered by its parent, 𝑣

• May contain a single cycle acting as the root

43

An example trie-like structure

Combinatorial Optimization Formulation

• Among all possible read forests, our objective is to find the one
contains minimum number of symbols, i.e.

• The greedy algorithm to build the desired read forest
• Pick for each read 𝑢 an already processed read 𝑣 with minimum 𝑤[𝑢, 𝑣], set

its parent 𝜋(𝑢) to 𝑣

• Identify each already processed read 𝑣 with w 𝑣, 𝑢 < 𝑤[𝑣, 𝜋 𝑣], reset 𝜋(𝑣)
to 𝑢

𝑻∗ = 𝒂𝒓𝒈𝒎𝒊𝒏
𝑻

෍

𝝉∈𝑻

෍

𝒗∈𝑽𝝉

𝒘[𝒗,𝝅 𝒗]

: a trie in the forest ,
with the corresponding
vertex set ;

: the length of the
shortest suffix of that
can not be covered by a
suffix of ;

: the parent node of
in .

Theorem: The greedy algorithm computes the optimal 𝑻∗ with
minimum overlap K.

If none of the node 𝑣 makes 𝑤[𝑢, 𝑣] below a minimum overlap threshold 𝐾, start a new
trie with only 𝑢 (can assume 𝜋(𝑢) = NIL)

44

Information Theoretic Upper Bound for HTS Data Compression

• Assembltrie achieves combinatorial optimality
• For any finite collection ℛ of reads to be compressed with any explicit or

implicit (overlap graph) assembly based compressor, it produces the smallest
number of symbols to be encoded for reads.

• Is it possible to obtain better compression performance by a
fundamentally different data structure (i.e. representation of reads)?
• NO. The minimum number of bits needed by any algorithm to describe the

reads ℛ is given by 𝐻(ℛ).
• Assembltrie comes close to this bound on across a spectrum of read-error

rates.

• ≠ Optimal compression in practice
• The proof does not consider read errors
• Need to encode other information, e.g. suffix length etc.

45

N: number
of reads; L:
read length;
G: reference
genome of
length |G|

ℎ2 𝑝 = −𝑝 log 𝑝 − 1 − 𝑝 log 1 − 𝑝

Compression Performance (8 Threads, in bit per base)

Sample Read L. /

Cov.

Assembltrie Orcom Mince K-Path SCALCE

P.aeruginosa 100 / 25 0.345 0.518 0.484 0.673 0.821

S.cerevisiae 63 / 80 0.271 0.304 0.312 0.384 0.578

H.sapiens gut 44 / NA 0.757 0.804 0.786 2.545 1.104

T.cacao 108 / 20 1.733 0.884 0.735 0.707 1.070

Sim. T.cacao 108 / 19 0.479 0.667 N/A N/A N/A

H.sapiens 1 101 / 7 0.570 0.686 0.746 0.797 1.151

H.sapiens 2 101 / 20 0.322 0.364 N/A N/A N/A

Ref: Numanagić, I., Bonfield, J. K., Hach, F., Voges, J., Ostermann, J., Alberti, C., ... & Sahinalp, S. C. (2016). Comparison of high-throughput

sequencing data compression tools. Nature methods.

46

47

Running Time (8 Threads, in seconds)

• Default running time to generate the compression rates in MPEG
FASTQ dataset

Sample Running Time (8 Thd.)

Assembltrie Orcom

P.aeruginosa 23.2 10.1

S.cerevisiae 256.2 131.0

H.sapiens gut 118.5 49.6

T.cacao 15251.1 919.0

H.sapiens 1 6411.1

H.sapiens 2 22227.0 8969.1

48

Assembltrie’s Performance vs Information theoretic upper
bound on compression

Acknowledgements

•

• National Science Foundation (NSF) CCF-1619081, CCF-1528132 and
CCF-0939370 (Center for Science of Information)

• National Institutes of Health (NIH) GM108348

• The Cancer Genome Collaboratory

• Indiana University Precision Health Initiative

49

