
PRESAGE: PRIVACY-PRESERVING 
GENETIC TESTING VIA INTEL SGX



Motivation

■ It is becoming a big challenge to efficiently 

store and process the huge amount of 

genomic data for individual biomedical 

research institutions.

Cloud Computing emerges as an ideal 

platform for providing elastic computation and 

storage resources for genomic data analysis
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Motivation

■ Individual genomic 

information tends to reveal 

sensitive personal information.

Thus privacy concerns have 

posed challenges to outsource 

genomic data in an untrusted 

cloud environment

•Lin et. al. 2004 Science: 75 or more SNPs 

(Single-nucleotide polymorphism) will be 

sufficient to identify a single person.

•Gymrek et al. 2013 Science: surnames can be 

recovered from personal genomes, linking Utah 

Residents with Northern and Western European 

Ancestry (CEU) and public genetic genealogy 

databases (Ysearch & SMGF).

•Lipper et.al. 2017 PNAS: Prediction of human 

physical traits and demographic information.

•

Homer et al. 2008 PLOS Genetics: aggregated 

genome data (i.e., allele frequencies) can also 

be used for re-identifying an individual in a case 

group with a certain disease.



Our Solution

■ We present one of the first 

implementations of SGX based 

secure genetic testing framework to 

facilitate efficiently outsourced 

storage and computation. 

The secure outsource storage is achieved through 

data sealing scheme within SGX framework, which is 

immune to replay attack.

We have taken into account the oblivious access 

protection by using 4KB page-wise data access model.

To improve the performance, we adopt a perfect 

hashing scheme to achieve O(1) complexity data 

access within each 4KB page. 

Intel SGX Based Secure Genetic

Testing Cloud



Our Solution

Workflows of the 

proposed PRESAGE 

framework, presented 

in three consecutive 

steps:

1. Preprocessing

2. Encryption and data 

outsourcing.

3. Secure Genetic 

Query Matching.



Experimental Studies

■ Dataset: The dataset is presented in VCF format. And sizes of 

VCF datasets used in our experiments vary from 10,000 to 

200,000 records. 

■ Experiment Environment: All of the experiments except the 

iDASH competition results are conducted on a Windows 10 

SGX-enabled machine with i7 6820HK CPU and 48 GB 

memory. Both data owner and CSP were simulated on the 

aforementioned SGX machine. The iDASH competition results 

were evaluated on the Linux server with an Xeon Processor 

E3-1275 v5 and 64 GB memory



Results

Record size Attestation SNPs coding Hash generation
Enclave 

creation
Data sealing

Number of queries

1 3

10,000 0.121s 0.016s 1.130s 0.169s 0.094s 0.003s 0.003s

50,000 0.126s 0.080s 6.371s 0.173s 0.517s 0.012s 0.013s

100,000 0.124s 0.164s 13.473s 0.179s 0.980s 0.023s 0.025s

200,000 0.120s 0.309s 28.677s 0.171s 2.045s 0.043s 0.048s

Record size Plaintext Encoded data Sealed data
Enclave memory usage

1 query 3 queries 

10,000 0.55 MB 0.09 MB 0.12 MB 3.006 MB 3.006 MB

50,000 2.59 MB 0.45 MB 0.59 MB 3.010 MB 3.010 MB

100,000 5.26 MB 0.90 MB 1.15 MB 3.010 MB 3.010 MB 

200,000 10.5 MB 1.75 MB 2.31 MB 3.010 MB 3.010 MB

Table 1. The breakdown run time (in seconds) of the proposed PRESAGE framework

Table 2. The data size and enclave memory consumption (in MB) for different datasets.

Comparison of querying performance 

among PRESAGE, HME-based 

method and plaintext implementation



Conclusion

• We proposed a secure outsourcing framework, which can defend malicious

attack. To improve the efficiency, an minimal perfect hashing scheme has

been incorporated

• Our experiment results demonstrated the efficiency of the proposed

PRESAGE framework. For a VCF file with 200K records, the PRESAGE

securely processes a query within 0.05 seconds, which includes file loading,

unsealing and query matching. Compared with state-of-the-art HME

solution, PRESAGE framework shows at least 120x performance gain.
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Secure GWAS via Intel SGX
CAN KOCKAN



Motivation / Goal

 Enable secure whole genome variant search among multiple

individuals from multiple institutions

 Institution A has VCF files from xA individuals labeled case/control,

Institution B has VCF files from xB individuals labeled case/control, …

 Institutes don’t want to share data, want to do GWAS on untrusted

cloud



Requirements

 Secure (Everything kept encrypted outside the SGX Enclave)

 Fast

 Accurate

 Scalable



Challenges

 Data is too large (iDASH dataset ~30GB, real-life much bigger)

 SGX Enclave max size 128 MB

 Linux allows 4GB paging – paging is extremely slow, typically many 

orders of magnitude slower than RAM

 More data longer transfer, more data slower encryption/decryption



Solution Outline

 Keep hash table inside the SGX enclave (server)

 Filter and compress VCF files (Client(s))

 Construct Enclave (Server)

 Perform Remote Attestation (Both Parties Exchange Messages)

 Receive Data, Update Hash Table (Server)

 Calculate Top-K (K=10 for iDASH) SNPs wrt C2 test (Server)



Allele Counting for C2 Test



VCF (Variant Call Format)



Filtering & Variable Length 

Encoding



 Only SNP ”ID” and ”TYPE” columns essential

 ”QUAL” and ”FILTER” can be removed during preprocessing 

 ”CHROM”, ”POS”, ”REF”, ”ALT” can all be found via ”ID” from dbSNP

 Trim the ”rs” in front of ”ID”, represent as integer 

 Sort by ”TYPE”, so that we don’t have to keep 

heterozygous/homozygous 

 Keep a single integer to determine when ”TYPE” changes 

Filtering VCF and Compressed 

Representation



Variable Length Encoding

 Sort ”ID”s, grouped by ”TYPE”

 Keep only differences using the minimum number of bits needed 

 Keep another small stream for bit-lengths, encoded by a Huffman Tree 

 Example VCF Filtering/Compression: Actual VCF Size: 15,428,390 Bytes 

 Heterozygous-Stream: 944,166 bits Homozygous-Stream: 428,921 bits 

Total Main Stream Size: 1,373,087 bits 

 5-bits/len Auxiliary Stream Size: 1,631,105 bits Huffman Encoded Auxiliary 

Stream Size: 1,070,458 bits 

 Main Stream + Huffman Auxiliary Stream: 305,444 Bytes 



Preliminary Results

 1000 case / 1000 control. ~300K-350K SNPs per VCF, ~5.5M unique 

SNPs

 SGX Enclave creation: 0.193381 seconds

 Remote Attestation: 0.002464 seconds

 Main Application: 49.990706 seconds

 SGX Enclave destruction: 0.034888 seconds
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Genome storage and communication: the need

• Research: massive genome projects (e.g. PCAWG) require to exchange 
10000s of genomes.

• Need to cover >200 cancer types, many subtypes.

• Within PCAWG TCGA to sequence 11K patients covering 33 cancer 
types. ICGC to cover 50 cancer types >15PB data at The Cancer 
Genome Collaboratory

• Clinic: $100s/genome (e.g. NovaSeq) enable sequencing to be a 
standard tool for pathology

• PCAWG estimates that 250M+ individuals will be sequenced by 2030



Current needs

• Typical technology: Illumina NovaSeq 100-400 bp reads, 250-500GB 
uncompressed data for high coverage human genome, high redundancy

• 40% of the human genome is repetitive (mobile genetic elements, 
centromeric DNA, segmental duplications, etc.)

• Upload/download: 55 hrs on a 10Mbit consumer line; 5.5 hrs on a 
100Mbit high speed connection

• Technologies under development: expensive, longer reads, higher error 
(PacBio, Nanopore) – lower redundancy and higher error rates limit 
compression



File formats

• Raw read data: FASTQ/FASTA – dominant fields: (read name, sequence, 
quality score)

• Mapped read data: SAM/BAM – reads reordered based on mapping 
locus on a reference genome (not suitable for metagenomics, organisms 
with no reference)

• Key decisions to be made:

• Each format can be compressed through specialized methods – should 
there be a standardized format for compressed genomes?

• Better file formats based on mapping loci on sequence graphs 
representing common variants in a pan-genomic reference?



Genome Compression:
Towards an International Standard

• Collaboration with MPEG to evaluate the current state of HTS data compression
towards an International Standard

• Standard Benchmark DataSet: 2+ TB sequence data: 

• 7 FASTQ samples and 8 SAM samples, covering 6 species, 6 technologies, various 
use-cases (high and low coverage data, cancer cell lines, WGS, RNA-Seq, 
metagenomics etc.)

• 15 FASTQ tools and 10 SAM tools evaluated

• Available at https://github.com/sfu-compbio/compression-benchmark

Comparison of high-throughput sequencing data compression tools
[Numanagić et al., Nat. Meth., Dec 2016]

https://github.com/sfu-compbio/compression-benchmark


FASTA/Q compression



General purpose compressors used in genomics

- LZ77 tools (gzip, pigz)
- BWT tools (bzip2, pbzip2)
- LZMA (7z)
- Context mixing (zpaq, lpaq)
- NCBI Toolkit (used at SRA for storing samples)

Compressor (on 53.8 GB
human g. 6.5x coverage)

Size 
(total)

Size 
(field by field)

Size 
(sequence)

pigz 18.5 GB 16.1 GB 5.9 GB

pbzip2 14.8 GB 14.1 GB 5.4 GB

NCBI SRA ~ 14.2 GB

• General compressors do not take into account 
redundancies specific to FASTQ format (FASTQ 
files are treated as ordinary text files)



Specialized FASTA/Q compressors 

• Goals:
- Read name tokenization
- Separate sequence and quality score modeling

• Examples:
- DSRC and DSRC2 [1] (Huffman coding)
- fastqz, fqzcomp [2] and Slimfastq [3] (context 

mixing with arithmetic coding)
- FQC [4] and LFQC [5] (LZMA, paq and ppmd as 

compression engine)

Compressor 
(on 53.8 GB)

Size 
(total)

Size 
(sequence)

DSRC2 13.2 GB 5.2 GB

Slimfastq 11.0 GB 4.4 GB

FQC 11.4 GB N/A

[1] Roguski S, Deorowicz S. DSRC 2--Industry-oriented compression of FASTQ files. Bioinformatics, 2014
[2] Bonfield JK, Mahoney MV. Compression of FASTQ and SAM Format Sequencing Data. PLoS ONE, 2013
[3] Ezra J. https://github.com/Infinidat/slimfastq
[4] Dutta A, Haque MM, Bose T, Reddy CV, Mande SS. FQC: A novel approach for efficient compression, 
archival, and dissemination of FASTQ datasets. J Bioinform Comput Biol., 2015
[5] Nicolae M, Pathak S, Rajasekaran S. LFQC: a lossless compression algorithm for FASTQ files. 
Bioinformatics, 2015

https://github.com/Infinidat/slimfastq


FASTA/Q compressors based on read reordering

• Goals:
- Reorder reads to improve locality of reference

• Examples:
- SCALCE [1] (uses locally consistent parsing for 

read reordering/clustering)
- ORCOM [2] (uses lexicographically smallest k-

mers for clustering)
- Mince [3] (similar to ORCOM)
- LW-FQZip [4] (uses implicit mapping to a 

reference)
Compressor   
(on 53.8 GB)

Size (total) Size 
(sequence)

SCALCE 10.8 GB 3.0 GB

ORCOM N/A 1.7 GB

Mince N/A 6.0 GB

LW-FQZip N/A

[1] Hach F, Numanagić I, Alkan C, Sahinalp SC. SCALCE: boosting sequence compression algorithms using 
locally consistent encoding. Bioinformatics, 2012
[2] Grabowski S, Deorowicz S, Roguski L. Disk-based compression of data from genome sequencing.
Bioinformatics, 2014
[3] Patro R, Kingsford C. Data-dependent Bucketing Improves Reference-free Compression of Sequencing 
Reads. Bioinformatics, 2015
[4] Zhang Y, Li L, Yang Y, Yang X, He S, Zhu Z. Light-weight reference-based compression of FASTQ data. BMC 
Bioinformatics, 2015



FASTA/Q compressors based on read assembly

• Goals:
- Assemble the underlying genome and map 

reads to the assembly

• Examples:
- Quip [1] (Bloom filters, assembles clusters of 1 

million reads)
- Leon [2] (probabilistic de Bruijn graph)
- k-Path [3] (probabilistic de Bruijn graph)

Compressor 
(on 53.8 GB)

Size 
(total)

Size 
(sequence)

Quip 11.3 GB 4.5 GB

Leon 13.6 GB 4.7 GB

k-Path N/A 2.0 GB

[1] Jones DC, Ruzzo WL, Peng X, Katze MG. Compression of next-generation sequencing reads aided by 
highly efficient de novo assembly. Nucleic Acids Res. 2012
[2] Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G.. Reference-free compression of 
high throughput sequencing data with a probabilistic de Bruijn graph. BMC Bioinformatics, 2105.
[3] Kingsford C, Patro K. Reference-based compression of short-read sequences using path encoding. 
Bioinformatics, 2015



Compression results on raw (FASTA/Q) read data



SAM/BAM compression



General purpose compressors for SAM files
- LZ77 tools (gzip, pigz)
- BWT tools (bzip2, pbzip2)
- Current standard: LZ77-based BAM (Samtools [1], Sambamba [2], Picard [3])

• None of those methods treat differently separate SAM columns. 
• Clearly, simple stream separation without any additional 

post-processing increases significantly the overall compression rate

Compressor 
(on human cancer g.
sample 427 GB)

Size Size 
(separate streams)

pigz 119 GB 103 GB

pbzip2 100 GB 94 GB

Samtools 131 GB 102 GB

[1] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 
Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. 
Bioinformatics, 2009
[2] Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment 
formats. Bioinformatics, 2015
[3]  Broad Institute. http://broadinstitute.github.io/picard/



Specialized SAM tools 

- Separate fields into different 
compression streams

- Use reference to store sequence 
information, if possible

• Primarily reference based:
- CRAM format (Scramble [1], 

Cramtools [2])
• Assembly and reference based:

- Quip [3]
• Statistical modeling and 

arithmetic encoding:
- sam_comp [4]

Compressor 
(on human cancer sample; 427 GB)

Size

Cramtools 95 GB

Scramble 82 GB

Scramble (without reference) 86 GB

Quip (without reference) 98 GB

sam_comp
* does not support all SAM fields

42 GB*

[1] Bonfield JK.The Scramble conversion tool. Bioinformatics, 2014
[2] Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E. Efficient storage of high 
throughput DNA sequencing data using reference-based compression. Genome Res., 
2011
[3] Jones DC, Ruzzo WL, Peng X, Katze MG. Compression of next-generation sequencing 
reads aided by highly efficient de novo assembly. Nucleic Acids Res. 2012
[4] Bonfield JK, Mahoney MV. Compression of FASTQ and SAM Format Sequencing 
Data. PLoS ONE, 2013



Local assembly based SAM tools

- Avoid redundant storing of SNPs and other 
small SVs

- Find the underlying genome via local 
assembly, and encode SNPs and small SVs only 
once

• Examples:
- DeeZ [1]
- CBC [2]

Compressor (on human cancer sample; 427 GB) Size

DeeZ 78 GB

Sequence only without assembly Sequence only with assembly

4,169 MB 4,120 MB

[1] Hach F, Numanagić I, Sahinalp SC. DeeZ: reference-based compression by local 
assembly. Nat. Methods, 2014
[2] Ochoa I, Hernaez M, Weissman T. Aligned genomic data compression via improved 
modeling. Journal of bioinformatics and computational biology, 2014



DeeZ: DeeNA Zeep



Motivation

• BAM (the most common format for storage and 
communication) misses some opportunities in SAM format, 
particularly common SNV loci in reads

• Alternative SAM/BAM compression tools, based on 
arithmetic coding (AC) and other data modeling methods, 
like Quip and Samcomp, provide superior compression, but 
not random-access capability

• DeeZ locally assembles reads and represents each SNV once, 
on the contig.



DeeZ: Quality scores
- Quality scores account for majority of the space in almost any format

- minor improvement in quality score compression is more beneficial than improvement in other 
areas

DeeZ on human cancer sample
427 GB

Size Gain

Sequence only without local assembly
(5% of compressed file)

4,169 MB

Sequence only with local assembly
(5% of compressed file)

4,120 MB 49 MB

Quality scores only with order-1 AC model
(42% of compressed file)

33,516 MB

Quality scores only with sam_comp model 
(41% of compressed file)

31,010 MB 2,506 MB



Compression results on mapped (SAM/BAM) read data



Cenk Sahinalp

Based on joint work with 

Kaiyuan Zhu, Tony Ginart, Joseph Hui, Ibrahim Numanagić,              

Thomas Courtade, David Tse

Optimal Compressed Representation of High 
Throughput Sequence Data via Light Assembly
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Current FASTQ Compression Schemes

• General purpose compressors (FASTQ files are treated as ordinary text files)
• gzip (parallel gzip--pigz), bzip2 (parallel bzip2--pbzip2)

• Alignment tools: replace each read with a pointer to the underlying
reference genome.
• use de-novo assembly to generate long contigs or paths in assemble graph

• Quip, Leon, k-Path, KIC, etc.

• use an user-provided reference genome to perform lightweight mapping
• LW-FQZip etc.

• Reordering tools: as the read order in a FASTQ file is arbitrary, reordering of
the reads to bring the similar ones together can significantly boost the
compression rates while avoiding information loss.
• SCALCE, Orcom, Mince
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Assembltrie: Our New Compressed Representation

• Combine the advantages of reordering and alignment based 
compressors.

• The input reads are organized into a forest of compact trie-like 
data structures called read forest.
• Each node 𝑣 represents a read (a string of fixed length)

• Each directed edge (𝑢, 𝑣) represents the suffix of string 𝑢 that is not
covered by its parent, 𝑣

• May contain a single cycle acting as the root

43

An example trie-like structure



Combinatorial Optimization Formulation

• Among all possible read forests, our objective is to find the one 
contains  minimum  number  of  symbols, i.e.

• The greedy algorithm to build the desired read forest
• Pick for each read 𝑢 an already processed read 𝑣 with minimum 𝑤[𝑢, 𝑣], set 

its parent 𝜋(𝑢) to 𝑣

• Identify each already processed read 𝑣 with w 𝑣, 𝑢 < 𝑤[𝑣, 𝜋 𝑣 ], reset 𝜋(𝑣)
to 𝑢

𝑻∗ = 𝒂𝒓𝒈𝒎𝒊𝒏
𝑻

෍

𝝉∈𝑻

෍

𝒗∈𝑽𝝉

𝒘[𝒗,𝝅 𝒗 ]

: a trie in the forest ,
with the corresponding
vertex set ;

: the length of the
shortest suffix of that
can not be covered by a
suffix of ;

: the parent node of
in .

Theorem: The greedy algorithm computes the optimal 𝑻∗ with 
minimum overlap K. 

If none of the node 𝑣 makes 𝑤[𝑢, 𝑣] below a minimum overlap threshold 𝐾, start a new 
trie with only 𝑢 (can assume 𝜋(𝑢) = NIL)
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Information Theoretic Upper Bound for HTS Data Compression

• Assembltrie achieves combinatorial optimality
• For any finite collection ℛ of reads to be compressed with any explicit or

implicit (overlap graph) assembly based compressor, it produces the smallest
number of symbols to be encoded for reads.

• Is it possible to obtain better compression performance by a 
fundamentally different data structure (i.e. representation of reads)?
• NO. The minimum number of bits needed by any algorithm to describe the 

reads ℛ is given by 𝐻(ℛ). 
• Assembltrie comes close to this bound on across a spectrum of read-error 

rates.

• ≠ Optimal compression in practice
• The proof does not consider read errors
• Need to encode other information, e.g. suffix length etc.

45

N: number
of reads; L:
read length;
G: reference
genome of
length |G|

ℎ2 𝑝 = −𝑝 log 𝑝 − 1 − 𝑝 log 1 − 𝑝



Compression Performance (8 Threads, in bit per base)

Sample Read L. / 

Cov.

Assembltrie Orcom Mince K-Path SCALCE

P.aeruginosa 100 / 25 0.345 0.518 0.484 0.673 0.821

S.cerevisiae 63 / 80 0.271 0.304 0.312 0.384 0.578

H.sapiens gut 44 / NA 0.757 0.804 0.786 2.545 1.104

T.cacao 108 / 20 1.733 0.884 0.735 0.707 1.070

Sim. T.cacao 108 / 19 0.479 0.667 N/A N/A N/A

H.sapiens 1 101 / 7 0.570 0.686 0.746 0.797 1.151

H.sapiens 2 101 / 20 0.322 0.364 N/A N/A N/A

Ref: Numanagić, I., Bonfield, J. K., Hach, F., Voges, J., Ostermann, J., Alberti, C., ... & Sahinalp, S. C. (2016). Comparison of high-throughput 

sequencing data compression tools. Nature methods.

46



47

Running Time (8 Threads, in seconds)

• Default running time to generate the compression rates in MPEG 
FASTQ dataset

Sample Running Time (8 Thd.)

Assembltrie Orcom

P.aeruginosa 23.2 10.1

S.cerevisiae 256.2 131.0

H.sapiens gut 118.5 49.6

T.cacao 15251.1 919.0

H.sapiens 1 6411.1

H.sapiens 2 22227.0 8969.1
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Assembltrie’s Performance vs Information theoretic upper 
bound on compression
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