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THIS “CONCISE” TUTORIAL
• Will not make you a differential privacy expert
• May provide background for our breakout discussions
• Main Topics:

– How privacy concepts can fail
– Differential privacy: 

• Understanding the concept, basic properties
– What tasks can be performed with differential privacy?
– Real-world implementations
– Challenges in bringing differential privacy to practice
– Statistical validity (if time permits)

• List of resources and projects
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THIS “CONCISE” TUTORIAL
• Will not make you a differential privacy expert
• Will provide background for our discussions and breakout sessions
• Main Topics:

– How privacy concepts can fail
– Differential privacy: 

• Understanding the concept, basic properties
– What tasks can be performed with differential privacy?
– Real-world implementations
– Challenges in bringing differential privacy to practice
– Statistical validity (if time permits)

• List of resources
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DATA PRIVACY: THE PROBLEM

Given a dataset with sensitive personal information, 
how can we compute and release functions of the dataset 

while protecting individual privacy?



THE ANONYMIZATION DREAM
A common intuitive idea: anonymization/de-identification

• A trusted data curator removes “identifiers” (SSNs, names, 
addresses, …) to get anonymity and hence privacy.

• Science and practice have shown this to be often wrong.
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Linkage	attacks	[Sweeney	‘00]

GIC LINKAGE ATTACK
GIC

Group Insurance 
Commission

patient specific data
(» 135,000 patients)

»100 attributes    
per encounter   

Anonymized
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GIC LINKAGE ATTACK

Linkage	attacks	[Sweeney	‘00]

Health	related	data.
Can	be	useful	for	researchers,	

policy	makers,	etc.
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GIC LINKAGE ATTACK

Voter registration 
of Cambridge MA

“Public records” 
open for inspection by 

anyone

Linkage	attacks	[Sweeney	‘00]
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GIC LINKAGE ATTACK

ZIP

Birth date

Sex

Name

Address

Date 
registered

Party 
affiliation

Date last 
voted

Linkage	attacks	[Sweeney	‘00]



GIC LINKAGE ATTACK
• As an example, Sweeney re-identified the medical records 

of William Weld (governor of Massachusetts at the time) 
– According to the Cambridge Voter list:
• Six people had his particular birth date 
• Of which three were men 
• He was the only one in his 5-digit ZIP code!

• A common phenomenon (1):
– dob+5zip à re-identify 69% of Americans
– dob+9zip à re-identify 97% of Americans

• A common phenomenon (2):
– Health data, clinical trial data, DNA, Pharmacy data, text data, registry 

information, …

Linkage	attacks	[Sweeney	‘00]



Supposedly de-identified data often contain alternative 
ways of identification (a.k.a. quasi identifiers)

Access to the appropriate auxiliary information can then 
result in re-identification

This is not ’purely theoretical’ but has been demonstrated 
with real-world de-identified datasets 

LESSONS LEARNED



THE AGGREGATION DREAM

A common intuitive idea: However, counts, averages, statistical 
models, classifiers, … are safe 

• Science and practice have shown this to be often wrong
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GWAS MEMBERSHIP ATTACK

• NIH collects DNA of individuals with a disease; Publishes minor allele 
frequencies at 100,000 positions (SNPs).
– Release is Innocuously looking; HIPAA compliant; NIH is trusted

• Given an individual’s DNA can infer whether her data was used in study

• Result: NIH took down some datasets.

5% 3% 12% 3%

3% 3% 11% 3%

1 0 0 1

Aggregate	info,	test	group:

Victim’s	genome:

Aggregate	info,	population:

[Homer	et	al.	Dwork et	al.]



RECONSTRUCTION ATTACKS

• Data set: 𝑑 “public” attributes per person, one “sensitive” attributes.
• Suppose release reveals rough correlations between attributes.

– Correlations reveal inner products < 𝑎$, 𝑦 > +	𝑒𝑟𝑟𝑜𝑟.
• Theorem [DiNi03]: If 𝑒𝑟𝑟𝑜𝑟 = 𝑜 𝑛� , 	𝑑 ≫ 𝑛, and 𝑎$ are uniformly random then 

attacker can reconstruct all but 𝑜(𝑛) bits of 𝑦.
• Reconstruction attacks have been devised for other settings.
• These teach us about what cannot be performed under any reasonable notion of 

privacy.

d+1	attributes

n	
people yai release reconstruction y’ y≈



Mathematical
facts, not	
matters	of	
policy

LESSONS LEARNED

• New attack modes emerge as research progresses.

• Redaction of identifiers, release of aggregates, etc. is 
insufficient.

• Must take auxiliary information into consideration.

• Lack of rigor leads to unanticipated privacy failures.

• Any useful analysis of personal data must leak some
information about individuals.

• Leakages accumulate with multiple analyses/releases.





Differential privacy is a definition (i.e., standard) 
of privacy

Not a specific technique or algorithm!



Differential privacy is a definition (i.e., standard) 
of privacy

Any information-related risk to a person should not change 
significantly as a result of that person’s information being 

included, or not, in the analysis.

It expresses a specific desiderata of an analysis:
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A PRIVACY DESIDERATA

Real world:
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same outcome

Should ignore Kobbi’s info 
and Annand’s!
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A PRIVACY DESIDERATA

Real world:

Your ideal world:

same outcome

Should ignore Kobbi’s info 
and Annand’s! and Cynthia’s!

… and everybody’s!
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Your ideal world:

𝜖-”similar”same outcome
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DIFFERENTIAL PRIVACY [DWORK MCSHERRY NISSIM SMITH ‘06]

Real world:

Your ideal world:

𝜖-”similar”

Chance of bad 
event almost 
the same in 
everybody’s 
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worlds



A	(randomized)	algorithm	𝑀:𝑋8 → 𝑇 satisfies	(𝛿, 𝜖)-differential	privacy	if
∀𝑥, 𝑥> ∈ 𝑋8 that	differ	on	one	entry,	

DIFFERENTIAL PRIVACY [DWORK MCSHERRY NISSIM SMITH ’06, ‘16]

𝑀 𝑥 ≈A 𝑀(𝑥>)



DIFFERENTIAL PRIVACY [DWORK MCSHERRY NISSIM SMITH ’06, ‘16]

• The parameter 𝜖 measures ‘leakage’ or ‘harm’

• For small 𝜖: 𝑒A ≈ 1 + 𝜖 ≈ 1

• Think 𝜖 ≈ C
CDD

or 𝜖 ≈ C
CD

not 𝜖 ≈ 2FGD

A	(randomized)	algorithm	𝑀:𝑋8 → 𝑇 satisfies	(𝜖, 𝜖)-differential	privacy	if
∀𝑥, 𝑥> ∈ 𝑋8 that	differ	on	one	entry,	
∀𝑆 subset	of	the	outcome	space	𝑇,

Pr
K
𝑀 𝑥 ∈ 𝑆 ≤ 𝑒A Pr

K
𝑀 𝑥> ∈ 𝑆 + 𝛿

Choice	of	”distance”	measure	(max	log	
ratio)	not	accidental!



DIFFERENTIAL PRIVACY [DWORK MCSHERRY NISSIM SMITH ’06, ‘16]

• The parameter 𝜖 measures ‘leakage’ or ‘harm’

• For small 𝜖: 𝑒A ≈ 1 + 𝜖 ≈ 1

• Think 𝜖 ≈ C
CDD

or 𝜖 ≈ C
CD

not 𝜖 ≈ 2FGD

• Think 0 ≤ 𝛿 ≪ C
8

(often, cryptographically small)

A	(randomized)	algorithm	𝑀:𝑋8 → 𝑇 satisfies	(𝜖, 𝛿)-differential	privacy	if
∀𝑥, 𝑥> ∈ 𝑋8 that	differ	on	one	entry,	
∀𝑆 subset	of	the	outcome	space	𝑇,

Pr
K
𝑀 𝑥 ∈ 𝑆 ≤ 𝑒A Pr

K
𝑀 𝑥> ∈ 𝑆 + 𝛿

Choice	of	”distance”	measure	(max	log	
ratio)	not	accidental!



UNDERSTANDING DIFFERENTIAL PRIVACY

• “Automatic” opt-out: I am protected (almost) as if my info is 
not used at all.

• Plausible deniability: I can claim any value for my 
information as outcome is (almost) as likely with that value.

• I incur limited risk: Contributing my real info can increase 
the probability I will be denied insurance by at most 1%.

– When compared with not participating, or contributing fake info.



𝑀’

PROPERTIES OF DIFFERENTIAL PRIVACY: 
POST PROCESSING

• Claim: 𝑀’ is 𝜖, 𝛿 -differentially private
• Proof:

– Let 𝑥, 𝑥′ be neighboring databases and 𝑆’ a subset of T’
– Let 𝑆 = {𝑧 ∈ 𝑇: 𝐴 𝑧 ∈ 𝑆>} be the preimage of S’ under A

A
𝐴: 𝑇 → 𝑇′

Pr 𝑀> 𝑥 ∈ 𝑆>

≤ 𝑒A Pr 𝑀 𝑥> ∈ 𝑆 + 𝛿
= Pr 𝑀 𝑥 ∈ 𝑆

= 𝑒A Pr 𝑀> 𝑥> ∈ 𝑆 + 𝛿

M
𝜖, 𝛿 − 𝐷𝑃

𝑀: 𝑋8 → 𝑇

Data ∈
𝑋8



𝑀’

PROPERTIES OF DIFFERENTIAL PRIVACY: 
COMPOSITION [DMNS06, DKMMN06, DL09, KOV15, MV16] 

• Claim: 𝑀’ is 𝜖C + 𝜖X, 𝛿C + 𝛿X -
differentially private

• Proof (for the case 𝛿C = 𝛿X = 0)
– Let 𝑥, 𝑥′ be neighboring databases and 
𝑆 a subset of (𝑇C×𝑇X)

𝑀$: 𝑋8 → 𝑇$

Pr 𝑀> 𝑥 ∈ 𝑆 = Z Pr	[𝑀C 𝑥 = 𝑧C ∧ 𝑀X 𝑥 = 𝑧X]
�

^_,^` ∈a

	

= Z Pr	[𝑀C 𝑥 = 𝑧C]
�

^_,^` ∈a

	 Pr	[𝑀X 𝑥 = 𝑧X]

≤ Z 𝑒A_Pr	[𝑀C 𝑥′ = 𝑧C]
�

^_,^` ∈a

	 𝑒A`Pr	[𝑀X 𝑥′ = 𝑧X] = eA_cA`Pr 𝑀> 𝑥′ ∈ 𝑆

M1
𝜖, 𝛿 − 𝐷𝑃

Data ∈
𝑋8

M2
𝜖X, 𝛿X − 𝐷𝑃



POST PROCESSING, COMPOSITION 
WHY DO WE CARE?

• For privacy:  A definition that does not allow post processing/ 
composing of analyses is (to the least) problematic

• For DP algorithm design: Allows a modular design of an analysis 
from simpler analyses

• Many (all?) other currently known definitions of privacy lack 
these properties

Analyst



THE “PRIVACY BUDGET”

Privacy is a consumable resource: The parameter 𝜖 measures leakage 
and can be treated as a “privacy budget” which is consumed as 
analyses are performed.

Composition theorems help manage the budget by providing a bound 
on the overall use of the privacy budget.

This is a feature, not a bug!

Consider how removing the fuel gauge would not 
make your car run indefinitely without refueling.



PROPERTIES OF DP: 
GROUP PRIVACY

• Let 𝑀 be 𝜖, 𝛿 -differentially private: 
– For all datasets 𝑥, 𝑥> ∈ 𝑋8 that differ on one entry, for all subsets 𝑆 of 

the outcome space 𝑇:
Pr
K
𝑀 𝑥 ∈ 𝑆 ≤ 𝑒A Pr

K
𝑀 𝑥> ∈ 𝑆 + 𝛿.

• Claim: for all databases 𝑥, 𝑥> ∈ 𝑋8 that differ on t
entries, for all subsets 𝑆 of the outcome space 𝑇:
Pr
K
𝑀 𝑥 ∈ 𝑆 ≤ 𝑒dA Pr

K
𝑀 𝑥> ∈ 𝑆 + 𝑡𝛿𝑒dA.



REASONING ABOUT RISK
GERTRUDE’S LIFE INSURANCE

• Gertrude:

– Age: 65

– She has a $100,000 life insurance policy.

– She is considering participating in a medical study but is 
concerned it may affect her insurance premium.

From:	Differential	Privacy:	A	Primer	for	a	Non-technical	Audience,	Privacy	Tools	project.



REASONING ABOUT RISK
GERTRUDE’S LIFE INSURANCE

• Based on her age and sex, she has a 1% chance of dying next year. 
Her life insurance premium is set at 0.01 x $100,000 = $1,000.

• Gertrude is a coffee drinker. If the medical study finds that 65-year-old female 
coffee drinkers have a 2% chance of dying next year, her premium would be set 
at $2,000.

– This would be her baseline risk: Her premium would be set at $2,000 even 
if she were not to participate in the study.

• Can Gertrude’s premium increase beyond her baseline risk?

– She is worried that the study may reveal more about her, such as that she 
specifically has a 50% chance of dying next year. This can increase her 
premium from $2,000 to $50,000!

From:	Differential	Privacy:	A	Primer	for	a	Non-technical	Audience,	Privacy	Tools	project.



REASONING ABOUT RISK
GERTRUDE’S LIFE INSURANCE

• Reasoning about Gertrude’s risk

– Imagine instead the study is performed using differential 
privacy with ε = 0.01.

– The insurance company’s estimate of Gertrude's risk of dying in 
the next year can increase to at most

(1+ ε)× 2% = 2.02%.

– Her premium would increase to at most $2,020. Therefore, 
Gertrude’s risk would be ≤ $2020 - $2000 = $20.

From:	Differential	Privacy:	A	Primer	for	a	Non-technical	Audience,	Privacy	Tools	project.



REASONING ABOUT RISK
GERTRUDE’S LIFE INSURANCE

• Generally, calculating one’s baseline is very complex (if possible at 
all).

– In particular, in our example the 2% baseline depends on the 
potential outcome of the study.

– The baseline may also depend on many other factors Gertrude 
does not know.

• However, differential privacy provides simultaneous guarantees for 
every possible baseline value.

– The guarantee covers not only changes in Gertrude’s life insurance 
premiums, but also her health insurance and more.

From:	Differential	Privacy:	A	Primer	for	a	Non-technical	Audience,	Privacy	Tools	project.



HOW IS DIFFERENTIAL PRIVACY 
ACHIEVED?

Answer	(part	1):	
Addition	of	carefully	crafted	random	noise



RANDOMIZED RESPONSE [WARNER 65]

• 𝑥 ∈ {0,1}

• 𝑅𝑅g(𝑥) = 𝑓 𝑥 = i
𝑥 𝑤. 𝑝. 	C

X
+ 𝛼

¬𝑥 𝑤. 𝑝. 	C
X
− 𝛼

• Claim: setting 𝛼 = C
X
noFC
nocC

, 	𝑅𝑅g(𝑥) is 𝜖 −differentially private
• Proof:

– Neighboring databases: 𝑥 = 0; 𝑥> = 1

– qr	[ss D tD]
qr	[ss C tD]

=
_
`(Cc

uov_
uow_)

_
`(CF

uov_
uow_)

= 𝑒A

small	𝜖: eA ≈ 1 + 𝜖.
Get	𝛼 ≈ A

x



CAN WE MAKE USE OF RANDOMIZED RESPONSE?

• 𝑥C, 𝑥X, … , 𝑥8 ∈ 0,1 8; want to estimate ∑𝑥$
• 𝑌$ = 𝑅𝑅g 𝑥$
• 𝐸 𝑌$ = 𝑥$

C
X
+ 𝛼 + 1 − 𝑥$

C
X
− 𝛼 = C

X
+ 𝛼(2𝑥$ − 1)

• 𝑥$ =
} ~� F

_
`cg

Xg
suggesting estimate 𝑥$� =

��F
_
`cg

Xg

• 𝐸 𝑥$� = 𝑥$ by construction but 𝑉𝑎𝑟 𝑥$� =
_
�Fg

`

xg`
≈ C

A`
high!

• 𝐸[∑𝑥$� ] = ∑𝑥$ and 𝑉𝑎𝑟[∑𝑥$� ] 	= 𝑛
_
�Fg

`

xg`
≈ 8

A`
; stdev ≈ 8�

A

• Useful when 8�

A
≪ 𝑛 (i.e. 𝑛 ≫ C

A`
)

Lots	of	noise?
Compare	with	sampling	noise	≈ √𝑛



LAPLACE MECHANISM
• Database: 𝑥 = (𝑥1, … , 𝑥𝑛) where 𝑥𝑖	Î	{0,1}.

– 𝑥𝑖	 = 	1	: individual 𝑖	is Diabetic.
• Query: 𝑓(𝑥) = 	S𝑥𝑖

– For neighboring 𝑥, 𝑥’, 𝑓 𝑥 − 𝑓 𝑥> = ∑ 𝑥$�
$ − ∑ 𝑥$>�

$ ≤ 1.
• Noisy answer: 

– Return 𝑓(𝑥) 	+ 	𝑌, where 𝑌 ∼ 𝐿𝑎𝑝(_o).

• Laplace Distribution:
– 𝐸 𝑌 = 	0; 𝜎[𝑌] 	= 2� /𝜀
– Sliding property:

• "	𝑦, ∆: � �
� �c	∆

≤ 𝑒A�	

0 ∆



IS THIS A LOT OF NOISE?

• If x is a random sample from a large underlying population, then sampling 
noise ≈ 𝑛� .

• If C
A
≪ 𝑛� then 𝐴(𝑥) “as good as” if computed over the sample.

local	random	coins

A 𝐴 𝑥 = ∑𝑥$ + 𝐿𝑎𝑝(
C
A
)



FRAMEWORK OF GLOBAL SENSITIVITY [DMNS06]

• GSf =  maxX,X’ ||f(X)-f(X’)||1

• Theorem [DMNS06]: 
– A(X) = f(X) + Lap(GSf/e) is e-differential private.

local	random	coins

A

function	f



USING GLOBAL SENSITIVITY

• Many natural functions have low sensitivity
– e.g.,  histogram, mean, covariance matrix, distance to a 

function, estimators with bounded “sensitivity curve”, 
strongly convex optimization problems.

• Laplace mechanism can be a programming interface [BDMN 
’05].
– Implemented in several systems [McSherry ’09, Roy et al. 

’10, Haeberlen et al. ’11, Moharan et al. ’12].



Randomized Response [W65]
Framework of global sensitivity [DMNS06]
Framework of smooth sensitivity [NRS07]

Sample and aggregate [NRS07]
Exponential mechanism [MT07]

Secrecy of the sample [KLNRS08]
Propose test release [DL09]

Sparse vector technique [DNRRV09]
Private multiplicative weights [HR10]

Matrix mechanism [LHRMM10]
Choosing mechanism [BNS13] 

Large margin mechanism [CHS14]
Dual query mechanism [GGHRW14]

+ other algorithmic techniques

Many	ways	of	making	less	and	less noise



HOW IS DIFFERENTIAL PRIVACY 
ACHIEVED?

Answer	(part	2):	
Composition	of	differentially	private	sub-

computations	and	post-processing



Randomized Response [W65]
Framework of global sensitivity [DMNS05]
Framework of smooth sensitivity [NRS07]

Sample and aggregate [NRS07]
Exponential mechanism [MT07]

Secrecy of the sample [KLNRS08]
Propose test release [DL09]

Sparse vector technique [DNRRV09]
Private multiplicative weights [HR10]

Matrix mechanism [LHRMM10]
Choosing mechanism [BNS13] 

Large margin mechanism [CHS14]
Dual query mechanism [GGHRW14]

+ other algorithmic techniques



Randomized Response [W65]
Framework of global sensitivity [DMNS05]
Framework of smooth sensitivity [NRS07]

Sample and aggregate [NRS07]
Exponential mechanism [MT07]

Secrecy of the sample [KLNRS08]
Propose test release [DL09]

Sparse vector technique [DNRRV09]
Private multiplicative weights [HR10]

Matrix mechanism [LHRMM10]
Choosing mechanism [BNS13] 

Large margin mechanism [CHS14]
Dual query mechanism [GGHRW14]

+ other algorithmic techniques

A	programmable	
framework



DIFFERENTIALLY PRIVATE COMPUTATIONS

carefully crafted random noise 

(District Q and its data are stylized examples.)

ε = 0.005 



DIFFERENTIALLY PRIVATE COMPUTATIONS

carefully crafted random noise 

ε = 0.01 

(District Q and its data are stylized examples.)



DIFFERENTIALLY PRIVATE COMPUTATIONS

carefully crafted random noise 

ε = 0.1 

(District Q and its data are stylized examples.)



WHAT CAN BE COMPUTED WITH DIFFERENTIAL 
PRIVACY?

• Descriptive statistics: counts, mean, median, histograms, 
boxplots, etc.

• Supervised and unsupervised ML tasks: classification, 
regression, clustering, distribution learning, etc.

• Generation of synthetic data

Because of noise addition, differentially private algorithms 
work best when the number of data records is large.



STATISTICAL INFERENCE & MACHINE LEARNING

• Utility: vast array of machine learning and statistical estimation 
problems with little loss in convergence rate as 𝑛 → ∞
– Optimizations & practical implementations for logistic regression, ERM, LASSO, 

SVMs in [RBHT09,CMS11,ST13,JT14, …]

• Problem: Sample complexity higher than in non-private learning 
[BKN10, CH11, BNS13, BNS13a, BNS15, BNSV15,…]

𝑛 C

Hypothesis	ℎ	or 
model 𝜃	about world, 
e.g. rule for 
predicting 
disease from 
attributes 

Sex Blood ⋯ HIV?

F B ⋯ Y
M A ⋯ N
M O ⋯ N
M O ⋯ Y
F A ⋯ N
M B ⋯ Y



DATA SANITIZATION [BLUM-LIGETT-ROTH ’08, HARDT-ROTHBLUM
`10]

• Q: A collection of statistical queries

• Sanitization:

• Utility:
• Problem: uses computation time exponential in 𝑑

[UV11, …]

C
M CDS

»q(x) q(DS)For	all	q	Î Q:

Name ZIP Se
x Age Balance

Georg
e 02139 M 32 20,000

Gina 02138 F 30 80,000

… … … … …

Greg 02134 F 28 20,000



*



U.S. CENSUS BUREAU
http://onthemap.
ces.census.gov

2008 AD

*

US	Census	will	use	
differential	privacy	in	
2020	decennial	census.

Census	plans	to	make	
code	and	privacy	
parameters	public.



GOOGLE

2014 AD

*



APPLE

2016 AD

*



LOCAL DIFFERENTIAL PRIVACY

Users	retain	their	data	and	only	send	the	server	randomizations	which	
preserve	differential	privacy	even	if	made	public

U
se
rs

Google/Apple
20

50

90

𝑹𝟏

𝑹𝟐

𝑹𝟑

3
11
4

Post-process Dataset
Statistics
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307 𝑹𝟏 ?𝑹𝟏 𝟑𝟎𝟕

𝑹𝟏 𝟐𝟎≈



Phablet Zika Prepone
Phablet
Zika
OMG

Prepone
privacy

Learn a list of 
frequently 
typed new 

words 

Learn a list of 
frequently 

typed emoji’s

LEARNING HEAVY HITTERS
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2018 AD





Dataverse
Network

Access Alice’s data
w/differential privacy

Ψ Private data Sharing Interface

Alice Bob

Alice’s 
cool 

MOOC 
data

Alice’s data, please

Restricted!

Should I apply 
for access???

Other 
researchers 
may find it 

useful…

IRB, terms of use… is it 
worth the trouble?

FERPA:	Family	educational	rights	and	privacy	act,	1974
*	http://dataverse.org/

Contains 
student info 
protected by 

FERPA

IRB:	Institutional	Review	Board







BRINGING DP TO PRACTICE – CHALLENGES
• A new, complex privacy concept:

– How to communicate its strengths and limitations to data analyzers and 
individuals contributing their personal information?

– Risk, baseline risk, accumulation of privacy risk.
• Analyzers’ access to data:  

– Via a mechanism.
– Noise added. Very significant when data is scarce.
– Overall use limited by the ”privacy budget”.

• Matching guarantees with privacy law & regulation:
– Existing regulations often see privacy risks as binary.
– Existing regulations refer to concepts such as PII, de-identification, linkage, 

inference, consent, …
• These lack rigorous technical definitions.

• Choosing privacy parameters, managing privacy loss over time.



HIPAA’S EXPERT DETERMINATION METHOD

• Obtain confirmation from a qualified statistician that 
the risk of identification is very small

• Who is an expert?
– U.S. Dept. of Health & Human Services guidance for 

HIPAA: “There is no specific professional degree or 
certification program for designating who is an 
expert at rendering health information de-
identified.”

• How would the expert determine that the risk is small?

*	HIPAA:	Health	Insurance	Portability	and	Accountability	Act	(HIPAA)	Privacy	Rule
45	C.F.R.	Part	160	and	Subparts	A	and	E	of	Part	164.



BRIDGING PRIVACY DEFINITIONS

• How can we claim that new technologies like differential 
privacy satisfy existing regulatory requirements?

• Formal Modeling*: A game based modeling approach for the 
privacy requirements of Family Educational Rights & Privacy Act 
(FERPA)
– Concise and intuitive abstraction of the requirements in FERPA, 

taking care of potential ambiguities in the law
• Interpreting the differential privacy guarantee:

– With respect to concepts appearing in privacy law: 
• PII, de-identification, linkage, inference, consent

*See:	Bridging	the	Gap	between	Computer	Science	and	Legal	Approaches	to	Privacy,	Privacy	Tools	Project



COMPONENTS OF A GAME-BASED 
MODELING OF FERPA

See:	Bridging	the	Gap	between	Computer	Science	and	Legal	Approaches	to	Privacy,	Privacy	Tools	Project



BRIDGING PRIVACY DEFINITIONS

• How can we claim that new technologies like differential 
privacy satisfy existing regulatory requirements?

• Formal Modeling*: A game based modeling approach for the 
privacy requirements of Family Educational Rights & Privacy Act 
(FERPA)
– Concise and intuitive abstraction of the requirements in FERPA, 

taking care of potential ambiguities in the law
• Interpreting the differential privacy guarantee:

– With respect to concepts appearing in privacy law: 
• PII, de-identification, linkage, inference, consent

*See:	Bridging	the	Gap	between	Computer	Science	and	Legal	Approaches	to	Privacy,	Privacy	Tools	Project





LEARNING OVER THE SAMPLE VS. OVER THE DISTRIBUTION

• The worry: ℎ does not generalize, i.e.,
– ℎ good predictor for the sample 
– ℎ not a good predictor on fresh samples taken from the distribution

• Luckily, for a predetermined 𝐻 = {ℎC, ℎX, … }, if sample 
contains 𝑂(log 𝐻 ) examples, then all ℎ ∈ 𝐻 generalize 
w.h.p.

Learner L Hypothesis h
Probability	
distribution Sample

a.k.a.	
Overfitting



Sample	
data

IN THEORY …

Select	
queries	
𝐻

Query	
data	for	
ℎ ∈ 𝐻

Analyze	
results

Statistically	valid	if	sample	
size	large	enough	(≈
log |𝐻|)



Sample	
data

IN PRACTICE

Select	
queries	
𝐻

Query	
data	for	
ℎ ∈ 𝐻

Analyze	
results

Analysts	makes	adaptive	
decisions:
• Queries	selected	based	on	the	

results	of	previous	analyses

• Risk	of	false	discoveries!
• Almost	all	existing	
approaches	to	ensuring	
generalization	assume	the	
entire	data-analysis	
procedure	is	fixed	ahead	of	
time



Test	
set	#1

Test	
set	#2

Participants

Training	
dataclassifier

score

classifier
score

EXAMPLE: KAGGLE’S ML COMPETITION

• Kaggle samples	training	data	(made	public)	+	2	test	sets	(hidden)
• Participants	can	submit	(multiple)	classifiers	during	competition,	these	are	evaluated	on	

set	#1.
• At	the	end,	winner	is	determined	by	evaluating	classifiers	on	training	set	#2.	
• Problem:	Best	classifiers	for	set	#1	are	not	best	classifiers	for	set	#2.
• Competitors	are	overfitting	test	set	#1!

Slide	credit:	Uri	stemmer



PRIVACY AND GENERALIZATION??

Overfitting distinguishes who is in the dataset; If 
being in dataset is sensitive personal information 

à a privacy issue



DIFFERENTIAL PRIVACY à
GENERALIZATION

• Define: ℎ 𝑆 = C
8
∑ℎ(𝑠$) and ℎ 𝑃 = Pr

 ∼¡
[ℎ 𝑠 ]

• Our goal: show that for ℎ ← 𝑀 𝑆 , w.h.p. ℎ 𝑆 ≈ ℎ(𝑃)

Hypothesis hSample
S~Pn

M: (𝜖, 𝛿)-
differentially	

private	
algorithm	

Probability	
distribution

P

Intuition:
consider	two	
experiments:

𝑠$ :	a	random
element	of	𝑆	 ≈

𝑫𝑷
	

• 𝑆 = 𝑠C, … , 𝑠8 ∼ 𝑃
• 𝑖 ∈s 𝑛
• ℎ ← 𝑀 𝑆
• Return	ℎ 𝑠$

• 𝑆 = 𝑠C, … , 𝑠8 ∼ 𝑃
• 𝑖 ∈s 𝑛
• ℎ ← 𝑀 𝑆 ∖ {𝑠$}
• Return	ℎ 𝑠$

𝑠$ :	a	random
element	of	𝑃	

Theorem	[McSherry,	folklore]: 𝔼
a	∼¡

�←§ a

ℎ 𝑆 ≈ 𝔼
a	∼¡

�←§ a

ℎ 𝑃



DIFFERENTIAL PRIVACY à
GENERALIZATION

• Define: ℎ 𝑆 = C
8
∑ℎ(𝑠$) and ℎ 𝑃 = Pr

 ∼¡
[ℎ 𝑠 ]

• Our goal: show that for ℎ ← 𝑀 𝑆 , w.h.p. ℎ 𝑆 ≈ ℎ(𝑃)

Expectation	

Theorem	[DFHPRR’	15, BNSSSU’16]: Pr
a	∼¡

�←§ a

ℎ 𝑆 − ℎ 𝑃 > 𝜖 ≤ 𝛿/𝜖

Hypothesis hSample
S~Pn

M: (𝜖, 𝛿)-
differentially	

private	
algorithm	

Probability	
distribution

P

Theorem	[McSherry,	folklore]: 𝔼
a	∼¡

�←§ a

ℎ 𝑆 ≈ 𝔼
a	∼¡

�←§ a

ℎ 𝑃

High	prob.

Differential	privacy	closed	under	adaptive	composition:	Even	adaptive	querying	
with	differential	privacy	would	not	lead	to	a	non-generalizing	hypothesis.



APPLICATION TO ADAPTIVE QUERYING
• Can import tools developed for answering queries adaptively with differential 

privacy!

• In particular, differential privacy allows approximating ℎ 𝑆 = C
8
∑ℎ(𝑠$) for 𝑘 ≈

	𝑛X adaptively selected predicates ℎC, … , ℎ©
Upper bounds:

• [DFHPRR’15, BNSSSU’16]: Efficient mechanism that w.h.p. answers any 𝑘
adaptively chosen queries ℎC, … , ℎ© within accuracy 𝛼 given 𝑛 = 𝑂ª 𝑘� /𝛼X

samples
Lower bound:
• [Hardt Ullman 14, Steinke Ullman 15]: Any efficient mechanism that answers 𝑘

adaptive queries within accuracy 𝛼 requires 𝑛 = Ω 𝑘� /𝛼





MAIN TAKEAWAYS
• Accumulating failures: anonymization & traditional SDL techniques.
• Differential privacy:

– Not an algorithm; A standard providing a rigorous framework for developing 
privacy technologies with provable quantifiable guarantees.

– Rich theoretical work, now transitioning to practice.
• First real-world applications and use, including by US Census, Google, 

Apple.
– Very strong protection for cases where data flows across trust boundaries.
– Legal landscape needs to be taken into account; DP to be combined (wisely!) 

with other technical and policy tools.
• Differential privacy:

– Leads towards strong tools for guaranteeing statistical validity



DIFFERENTIAL PRIVACY AND YOU

• Research sensitive data that otherwise would not 
be available at all

• Collect good quality data
• Share data with other researchers/the public
• Provide respondent with strong quantifiable 

privacy that can be interpreted, rigorously, as 
bounding their risk from participation

• Ensuring statistical validity

Price	in	
utility

A	tool	for	ensuring	utility





LEARNING MORE ABOUT DIFFERENTIAL PRIVACY

• [Nissim et al, 2017] Differential Privacy: A Primer for a 
Non-technical Audience, Privacy Tools project.

• [Dwork 2011] A Firm Foundation for Private Data Analysis, 
CACM January 2011.

• [Heffetz & Ligett, 2014] Privacy and Data-Based Research, 
Journal of Economic Perspectives.

• [Dwork & Roth, 2014] The Algorithmic Foundations of 
Differential Privacy, Now publishers.

• [Vadhan’16] The complexity of differential privacy, Privacy 
Tools Project.

+ Online course material, lectures and tutorials.

Non-
technical

technical



PROJECTS, SOFTWARE TOOLS [PARTIAL LIST]
• [Microsoft Research] PINQ
• [UT Austin] Airavat: Security & Privacy for MapReduce
• [UC Berkeley] GUPT
• [CMU-Cornell-PennState] Integrating Statistical and Computational Approaches to Privacy
• [US Census] OnTheMap
• [Google] Rappor
• [UCSD] Integrating Data for Analysis, Anonymization, and Sharing (iDash)
• [Upenn] Putting Differential Privacy to Work
• [Stanford-Berkeley-Microsoft] Towards Practicing Privacy
• [Duke-NISS] Triangle Census Research Network
• [Harvard] Privacy Tools
• [Harvard, Georgetown, Buffalo] Computing Over Distributed Sensitive Data
• [Georgetown, Harvard, BU] Formal Privacy Models and Title 13


