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An early GWAS for complex traits: lipids in NFBC66

@ Cohort study based in northern Finland

@ Fasting serum concentrations of lipids
(triglycerides, TG, high density lipoproteins,
HDL, and low density lipoproteins, LDL) for ~
5400 subjects

@ Genotypes at =~ 300,000 Single Nucleotide
Polymorphisms (SNP)

Kainuu



Results for blood lipids in NFBC

Test the hypothesis Hy : 8 = 0, for each of the M SNPs, one SNP at the time,

Yi = Bo + BrXix + Covariates; 4 7;
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Marginal association

Computationally simple

Deals easily with missing data

p-values available

Fairly immune to linkage disequilibrium

Lower power due to overestimate of the error size

“Association is not causation”

Challenges for genetic counseling

Challenges in interpretations across ethnic groups




Another approach: conditional testing

Null variable
Say j € Hoisnull iff Y 1L X; | X_;

@ In multivariate regression models (polygenic model), the coefficients of each
variable capture this type of effect

@ In the logistic model P(Y = 0|X) = Tioxs long as the variables X7,

are not perfectly dependent, then j € Hy <= [(; =0

@ The notion does not require specifying a form of dependence between Y and
X

@ Related to Markov blanket in causal literature.



Selecting the important variants with reproducibility
guarantees

Through which variables does the dstribution of Y | X depends on X? \

Select set S of variants X; that are likely to be relevant
without too many false positives

One way of operationalize this is to try to control false discovery rate (FDR)

# false positives

FDR = E
# features selected




How can we do this?

We are typically in a setting where n (number of observations) is smaller than p
(number of genetic variants queried).

o If we are dealing with a quantitative trait, we might think of using the Lasso

@ Lasso-like procedures exist also for binary traits

@ There are a number of other approaches to selection — trees, forests, etc..
But how to decide which variables to select so that we can control FDR?
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The Knockoffs framework
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@ It would be good to know how the feature importance statistics for the null
variables looks like

e Barber and Candes (2014) introduced the idea of knockoff: variables X that
“look like" X, but are by construction independent from Y.

o Further developments Candes, Fan, Janson and Lv (2016); Katsevich and
Sabatti (2017), Sesia, Sabatti Candés (2017); etc...



An idea for artificial null variables: model-X knockoffs

i.i.d. samples (X Y () ~ Fyy

@ Distribution of X known
@ Distribution of Y | X (likelihood) completely unknown

e Originals X = (X3,...,X,)
o Knockoffs X = (Xl,...,Xp)
(1) Pairwise exchangeability
_ p ~
(X7 X)swap(S) = (Xv X)

(X1, X2, X3, X1, Xo, X3)

eg.
(X1, X2, X3, X1, X2, X5)swap({2,3))

(2) X L Y| X (ignore Y when constructing knockoffs)




The idea of using dummy variables is not new

For linear models, Miller ('84, '02) creates ‘dummy’ variables with entries drawn
i.i.d. at random

@ Forward selection procedure is applied to augmented list of variables
@ Stop when selects a dummy variable for the first time

Pseudovariables (permuted rows and variants): Wu, Boos and Stefanski (07, '09)

Dummies ‘ Structure preserved
Independent Gaussian variables Mean and marginal variance
Permuted rows X[sample(n),] (Joint) distribution

Knockoffs More...



Gaussian dummies

Feature importance statistic Z; = |3;(A = 3)|

Feature Importance

Variables



Permuted dummies

Feature importance Z; = |3;(\ = 3)|

Feature Importance
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Knockoff dummies

Feature importance Z; = |3;(\ = 3)|

Feature Importance
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Knockoffs do well because...
... the feature importance statistics are exchangeable

(Zyy. s Zps 21,y Zy) = 2([X, X, y)

originals knockoffs

Swapping originals and knockoffs swaps the Z's

(Z1,Z,25,21,%2,73)
—_———

(Z7 Z)swap{Q,S} = Z([X, X]swap{2,3}7 y)

Theorem (Candes, Fan, Janson and Lv)

No matter the relationship between'Y and X :
. = d 5
et = (Z;,%;) = (25, %))
more generally T C Hy — (Z, Z)Swap(T) 4 (Z,2)

How can we use the knockoffs? a little detour |




1. Construct knockoff adjusted scores

Adjusted scores W, with flip-sign property

Combine Z; and Z; into single (knockoff) score W;

Wi =wi(Z;,%;)  wi(Z;,2;) = —w;(Z;, Z;)

+1 Zj>2j
—1 else

e.g. WjZZj—Zj Wj:Zj\/Zj'{

@ Large W; says that variable j appears important

@ A negative W} says that the knockoff of variable j seams more important
than the original variable

@ Null W;'s are symmetrically distributed
e Conditional on |W|, signs of null W;'s are i.i.d. coin flips



2. Estimate the FDR

Interested in selecting {j : W; >t}

_#gndl Wy >t #H g null W <t}
C#UW VLT # W >V
#W; <t}
B #{j:Wjjz tyv1 FDP(?)

FDP(t)




3. Select the max number of variables while FDP < q

Si(t) ={j:|W;| >t and sgn(W,) = £}

. — 1+|S (¢
T:mln{t:FDP(t)ZMSQ}
S={W;>7}

Theorem (Barber and Candes ('15))

# false positives -
# selections +q=1 | = a




Going back to GWAS

How does the Model-X knockoff framework fit GWAS?

o i.i.d. samples (X Y()) ~ Fyy
—— This is a good description of population samples

@ Distribution of X known — We do have a large collection of genotype data,
irrespectively of phenotypes, that can be leveraged.

@ Distribution of Y | X (likelihood) completely unknown — it is nice not to
have to make assumptions here

To deploy it we need a distribution for genotypes and a method to generate
knockoffs with the right exchangeability property.



A phenomenological HMM for haplotype & genotype data

T

:

TSI

o

e IMPUTE (Marchini, '07)

@ fastPHASE (Scheet, '06) MaCH (Li, '10)
@ Mal I



Haplotypes as Hidden Markov Models (HMMs)

X = (X1,Xo,...,X,) is a HUM if

X;|1Z ~ X;1Z; " f;(X;; Z;) (emission distribution)

-0~
& @ ®©

The Z variables are latent and only the X variables are observed

{Z ~ MC(q1,Q) (latent Markov chain)



A general recipe for knockoffs

Algorithm Sequential Conditional Independent Pairs
for j ={1,...,p} do

| Sample X; from law of X; | X, X1.;_1

end
eg.p=3
o Sample X, from X1 X, @ Joint law of X, X1.o is known

e Joint law of X, X; is known ° Sample Xy from Xy | Xog, Xz

e Sample X, from Xy | X_o, X, izlc:;:agvza(;fle)l(,)( is pairwise

Sesia, Sabatti, Candes (2017)

Usually not practical, but extremely efficient for Markov chains




Knockoff copies of a hidden Markov model

Theorem (Sesia, Sabatti, Candes '17)

A knockoff copy of X of X can be constructed as

(1) Sample Z from p(Z|X') using forward-backward algorithm
(2) Generate a knockoff Z of Z using the SCIP algorithm for a Markov chain
(3) Sample X from the emission distribution of X given Z = Z

(2)
imputed latent variables __———_ knockoff latent variables

@) —(@) {(%(%@5
|

(1)

v v A4 v ) 4 A4

observed variables knockoff variables




Knockoffs for genotypes

first latent haplotype second latent haplotype

D@ (D@ @
m @ | @ @
CRCRS

observed genotype




Experience with data

Crohn's disease (CD)
o Wellcome Trust Case Control Consortium (WTCCC)
@ n = 5,000 subjects (= 2,000 patients, = 3,000 healthy controls)
@ p = 400,000 SNPs
@ Previously analyzed in WTCCC (2007)

Lipid traits (HDL, LDL cholesterol)

@ Northern Finland 1996 Birth Cohort study of metabolic syndrome (NFBC)
@ n ~ 4,700 subjects

e p ~ 330,000 SNPs
@ Previously analyzed in Sabatti et al. (2009)



Simulations

@ Start from the actual genotypes of 29,258 polymorphisms on chromosome
one, genotyped in 14,708 individuals from WTCCC (2007).

@ We simulate the response from a conditional logistic regression model of
Y| X with 60 non-zero coefficients.

@ We prune X to 5260 variables, to guarantee that there is no correlation
larger than 0.5. Each variable represents a “cluster” of SNPs

o We fit the fastPHASE model to this data

@ Once the parameter are estimated, we construct knockoff copies using the
fitted model

@ We use logistic regression with £1-norm penalty tuned by cross- validation.
@ Apply knockoff filter at level g = 0.1

@ We use “clusters” do define false and true discoveries



Simulation results
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HMM might not be the “real” distribution of haplotypes, but it works pretty well
within this framework (as in the case of imputation).



Application to real data

@ Use the same analysis pipeline
@ Knockoffs are random: multiple realizations results in different outcomes
@ We repeat the procedure multiple times to assess variability

e Compare findings with more recent meta-analysis (Franke et al. 2010, Willer
et al. 2013)



Selection SNP |y, | Position range || SRR | O
frequency (cluster size) (Mb) etal '13 | et al '09
100% rs1532085 (4) 15 58.68-58.7 yes yes
100% rs7499892 (1) 16 57.01-57.01 yes yes

100% rs1800961 (1) 20 43.04-43.04 ves
99% rs1532624 (2) 16 56.99-57.01 yes yes
95% rs255049 (142) 16 66.41-69.41 yes yes

Table: SNP clusters found to be important for HDL over 100 repetitions of knockoffs.

potecton NP Chr. | Position range ?: "va'fu”lfd Fg:;:ttl.n
requency (cluster size) (Mb) etal '13 | etal '09
99% rs4844614 (34) 1 207.3-207.88 yes
97% rs646776 (5) 1 109.8-109.82 yes yes
97% rs2228671 (2) 19 11.2-11.21 yes yes
94% rs157580 (4) 19 45.4-45.41 yes yes
92% rs557435 (21) 1 55.52-55.72 yes
80% rs10198175 (1) 2 21.13-21.13 yes yes
76% rs10953541 (58) 7 106.48-107.3
62% rs6575501 (1) 14 95.64-95.64

Table: SNP clusters found to be important for LDL over 100 repetitions of knockoffs.




Application to real data — overview
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Conclusions

@ The framework of Model-X knockoff seems appropriate for GWAS
@ We can leverage the imputation literature to create working knockoffs
@ There is the potential of power gains as sample size increases

@ Can these counterfeit genotypes play a role in preserving privacy ?



