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Biomedical Data Sharing
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Outline

Privacy risks of genomic data sharing beacons
— Membership inference and more

Privacy-preserving genome sharing
— Optimization
— Differential privacy

Liability of genomic data
— Watermarking

Open research directions



GA4GH Beacon Project
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Main features:

* Allows researchers to quickly query multiple database to find the sample
they need

* Encourages cross-borders collaboration among researchers
* Only provides minimal responses back in order to mitigate privacy concerns
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Beacon used as an oracle: the SB attack
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Shringarpure SS, Bustamante CD. Privacy risks from genomic data-sharing
beacons. The American Journal of Human Genetics. 2015 Nov 5;97(5):631-46.
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* The attack relies on the assumption that the adversary knows:
— The set of variants (VCF file) of the target individual
— The size of the beacon

 The attack is based on a likelihood ratio test where the adversary repeatedly
queries the beacon in order to re-identify the individual

* The attack can be extremely dangerous if the beacon is associated with a
sensitive phenotype (e.g., cancer) 5



Can the Attacker do Better?

Can we infer the beacon answers without
actually asking them?

-2 Yes, using linkage disequilibrium

Can we infer alleles when parts of the
genome is hidden?

—2Yes, using high-order Markov chains

N. V. Thenen, A. E. Cicek, and E. Ayday. “Re-ldentification of Individuals in Genomic Data-Sharing Beacons via Allele Inference”, bioRxiv 200147;
doi: https://doi.org/10.1101/200147, 2017.



Results — Power Curves
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Similar Threats

Membership inference using auxiliary info

— Family members

— Phenotype

Genome inference

Dynamic beacons

— Add/Remove

Multiple beacons



Consequences of Open Data

e Genetic discrimination
Kinship inference
e Surname inference
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Identifying Personal Genomes by
Surname Inference

Melissa Gymrek,%3* Amy L. McGuire,® David Golan,® Eran Halperin,”"®° Yaniv Erlich'*

Sharing sequencing data sets without identifiers has become a common practice in genomics.
Here, we report that surnames can be recovered from personal genomes by profiling short tandem
repeats on the Y chromosome (Y-STRs) and querying recreational genetic genealogy databases.
We show that a combination of a surname with other types of metadata, such as age and state,
can be used to triangulate the identity of the target. A key feature of this technique is that it entirely
relies on free, publicly accessible Internet resources. We quantitatively analyze the probability of
identification for U.S. males. We further demonstrate the feasibility of this technique by tracing back
with high probability the identities of multiple participants in public sequencing projects.



Protecting Kinship Inference
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G. Kale, E. Ayday, and O. Tastan. “A Utility Maximizing and Privacy Preserving Approach for Protecting Kinship in Genomic Databases”,
Bioinformatics, 2017.



Differential Privacy for Individual Data
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M. Mobayen and E. Ayday. “Tradeoff between Utility and Privacy of Genomic Data,”
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SNPsinS
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Error

Differential Privacy for Individual Data
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Differential Privacy VS Optimization
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Liability of Genomic Data

* Find the source of unauthorized sharing by
checking a watermark

e Goals:

— SP that receives the data cannot understand the
watermark

— When more than one SPs aggregate their data, they
still cannot determine the watermark

— Watermark should be robust against intentional noise
and partial sharing

— Added watermark should be compliant with the
nature of the corresponding data

— Maximize the utility

A.Yilmaz and E. Ayday. “Collusion-Secure Watermarking for Sequential Data”, arXiv preprint arXiv:1708.01023, 2017.



System Model
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Open Research Directions

Genomic data sharing between different
entities

Credibility and privacy

Privacy vs. utility of genomic data

nteroperability

One-time programming



Advertisement

* Looking for Ph.D. students and postdocs to
work on security and privacy

e Starting as early as January 2018
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Conclusion

e 35 Zettabytes (billion terabytes) of data will be
generated annually by 2020 (source:IBM)

— Most of it is will be biomedical data

* Itis crucial to
— Come up with techniques to quantify the risk on this data
— Develop techniques to preserve its security and privacy

erman.ayday@case.edu erman@cs.bilkent.edu.tr

http://cs.bilkent.edu.tr/~erman/

, @eayday



