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Many attack models have been discovered...

Malin 2005: Trails of hospital visit pattern might lead to information disclosure

Machanavajjhala 2007: Demographic statistics for certain cohort can lead to privacy lea
kage.

Loukides 20170: Distribution of disease can lead to re-identification

Sweeney 2014: Demographics combined with phenotypes provide strong clues to reveal
individuals’ information

Bonomi 20177: Hospital visit frequency and interval can lead to re-identification
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Homomorphic encryption and
differential privacy might help

Intermediary data
o

--------------

Intermediary data DP mechanism
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Privacy-Preserving Distributed
Predictive Models
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Two Representative Scenarios

VA

ucsb

Horizontally distributed data

- Private data

Vertically distributed data

—rivate datag

Sequencing

ID

ge

1

8

2

5

Hy ﬁ UCSD
N

UC San Diego
we® SCHOOL oz MEDICINE




Logistic Regression
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Learning a distributed logistic regression
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Maximum Likelihood Estimation

Estimated probability based on observations of a binary response Y and

covariates X

Likelihood function based on observed data (centralized)
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Binary response Covariates Logit function Model parameter
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Number of records

<
L(B) = Z[}’i log(x;, B) + (1 — yy) log(1 — m(x;, B))]
1
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Maximum Likelihood Estimation

Likelihood function based on observed data (distributed)

P(Y=1|X) =n(X,p) =

Number of records held by site A

Private data

1+ e %P "

[(B) =

=

Site A

Number of records held by site B

lyilogm(x;, B) + (1 — y;) log(1 — m(x;, B))]
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Maximum Likelihood Estimation

* Newton-Raphson algorithm for calculation

P(Y = 11X) = (X, B) = T

nap+ng

[(B) Is a |:> L(B) = Z lvilogm(x;, B) + (1 — y) log(1 — m(x;, B))]
1

concave

function 21700y 11 -
BU+D) — pk) _ a°l(B+*) aL(p"’)
JHGEION ap k)
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Newton-Raphson (NR) Algorithm

1(B)

Br B Pk Bo

021(p™) ] 2U(p™)

U(B) = 321 {B" Eiep, 2' — dilog[Yiex, exp(B"z)]} T = pt — [a GwogT| ap®
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Distributed Newton-Raphson (NR) Algorithm
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1B = [yilogmCxi B) + (1 = y) log(1 — m(xi, )]
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Distributed Newton-Raphson (NR) Algorithm

nag+npg

1B = ) [yilognx, B+ (1 -y log(1 - n(xs, )]

1
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Distributed Newton-Raphson (NR) Algorithm

nag+npg

1B = ) [yilognx, B+ (1 -y log(1 - n(xs, )]

1

ﬁ(k+1) — ﬁ(k) _ l azl(ﬁ(k)) - al(ﬁ(k))
9pkapwT ap o

Private data

VA

UCSD

Global variance-covariance matrix Global prediction outcomes
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Distributed Newton-Raphson (NR) Algorithm

nag+npg

1B = ) [yilognx, B+ (1 -y log(1 - n(xs, )]

1

ﬁ(k+1) _ B(k) ~ l azl(ﬁ(k)) -1 al(ﬁ(k))
apkapw™|  apw
= U 4 [XTW (X, pR)X] X[V — (X, p9)]

Local variance-covariance matrix

Private data

VA

UCSD

Local prediction outcomes
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Distributed Newton-Raphson (NR) Algorithm

1(B) =

nag+npg

> [yilognCe )+ (1 -y log(1 = e, B))]

1

[g(k+1) = ﬁ(k) — [

AXLfa — Ma (X0, P + X5 [V

921(B%) 17 a1(B™)

— %) 4[]

apkapwT|  apw
= U 4 [XTW(X, pR)X] T XT[V — (X, p9)]
X4, BU)X, + XEWy (X5, BO)X,]

4

Local variance-covariance matrix

Private data

VA

UCSD

(XA' ﬁ) =

WB(XB»B) = [

HA(XA' .B) = [

T[(X'l, ,B)
7t )

n(x, (L = m(x1, ) - 0

0

(X410 B) (1 = T(Xny 41, B)

) . ] [ 7 (errrr)
, an B 5T = .
@ _T[(an+7’lB’ B)_

o (e, B)(A - n(an,ﬁ))]'
0

0 ) n(an+r_lBuB)(1 - atng’

Local prediction
outcomes

16

() UCSanDiego

Nwee? SCHOOL o: MEDICINE




\%
%ﬁg

Sosina
)

o S

By

D~
Matics

(<

2

xS

What remains to be solved?

» Masking the pattern » Using secure primitive to safe
L guard the communication
before transmitting
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Differential Privacy & homomorphic encryption
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« A privacy mechanism A gives e-differential privacy if for all neighbourin
g databases D, D’ and for any possible output S € Range(A), Pr{A(D)
= S] < exp(e) X PAA(D') = S]

* D and D’ are neighboring databases if they differ on at most one record

- Homomorphic encryption is a type of encryption that allows computation
conducted on ciphertext, when results are decrypted, map exactly to those
of the corresponding computation on the plaintext
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Differential private logistic regression
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* We perturb the objective function by adding an additional term % with b drawn

from a Laplacian distribution with mean 0 and standard deviation p

maxg [l(,B) = — Y log(1 +exp(—y;B7z) — %ﬁTﬁ - ﬁ]

n

IBneW — Igold _ [lll(ﬁold)]_lll(ﬁold)

— ﬁold + (ZTWole + )ll)_l [ZT(Y _ [,tOld) _ /‘tﬁOld — b_T]

n

ZTweldz = ¥, ZE W' Zy, ZT[Y — puo] = %3 ZF [Vie — up*®), b = L b

ke,..K)

Chaudhuri K, Monteleoni C, Sarwate AD. Differentially Private Empirical Risk Minimization. J Mach Learn Res 2011 Mar;12(Mar):1069-1109. PMID:21892342
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Differentially private logistic regression for distributed data
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In a distributed setting, objective perturbation can be achieved by
- Gamma Distributed Perturbation Laplacian algorithm (DPLA)
- Gauss Distributed Perturbation Laplacian algorithm (DPLA)

- Laplace Distributed Perturbation Laplacian algorithm (DPLA)

Gergely Acs and Claude Castelluccia. | have a DREAM!: differentially private smart metering. In: Proceedings of the 3rd International Conference on Information Hiding. IH'11. 2011, pp. 118-132.
Goryczka S, Xiong L. A Comprehensive Comparison of Multiparty Secure Additions with Differential Privacy. IEEE Trans Dependable Secure Comput 2017 Sep;14(5):463-477. PMID:28919841
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Differentially private logistic regression for distributed data
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Note that the noise added by a single party is not sufficient to ensure DP!

— If we add too much noise, the final output will be less valuable.

— If we add too little noise, it is not enough to protect the privacy.

Privacy mechanisms are not designed to provide security of computations.

— We need to protect the intermediary results, otherwise, privacy cannot be ensured in a

global manner

. O UC San Diego

SCHOOL or MEDICINE




Algorithm

o(‘
3N
:
:
5%

;

/§

oy

(=2

\SIMG
S

@
0\"
B~/

S

o~
Matics

O

UC San Diego
e SCHOOL or MEDICINE




Win-Win Strategy
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Hessian = H Gradient = g

Homomorphic Encryption with “Fixed Hessian”
One time

A 1 2 — L= ~ —
— Tk ZkWHZy + 21 = N Hy = Li ZiZy + 1 = Xy Hy = Xy diag(Hy) = X Hy EnC(Hk)’/
Iteratively
1 A 1
- ZT[Y - ﬂOld] - /1:801(1 - ;b = Zkzljcw [Yk - ‘uzld] - E.BOld - Zk;bk = Zkgk Enc(gk)’/

Differential Privacy

— ™Y can be revealed to parties because of the noise

— HE can be renewed every iteration

Based on DP, we can reduce time complexity and error accumulation of HE
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SMC Schemes with HE under Fixed Hessian

<

(=2

Sosina
)

o S

By

Enc(Hy)
nc
u Enc(gll) One time, save Updating

v v

A

Enc(B) = {Zi-1 Enc(ﬁk)}_lx Yr=1Enc(gy)

»

~ Enc(Hy), Enc(gy)
“ Enc(Hg)
nc(gx) Multiplication of inverse of sum of fixed Hessians

by sum of gradients

Approximation of fixed Hessian and gradient
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SMC Schemes with HE under Fixed Hessian
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Enc(H,)
Enc(gy) ~
Enc(B)

Dec (Enc(ﬁ)) =B

— ~
Frecon)
nc(gx) Multiplication of inverse of sum of fixed Hessians

by sum of gradients

A

Enc(B) = {Zk=1 Enc(ﬁk)}_lx k=1 Enc(gy)

v

Approximation of fixed Hessian and gradient

P can be revealed to parties because of the noise.

’s O UC San Diego

SCHOOL or MEDICINE




SMC Schemes with HE under Fixed Hessian
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“ Enc(g1) N Fixed Updating

) Enc(B) { i

‘ O Enc(B) = {Sier Enc(Hi)) ' X Tt Ene(ga)

v

D EnC(gk)
“ Enc(gy)
Multiplication of inverse of sum of fixed Hessians

by sum of gradients
Approximation of fixed Hessian and gradient

A few iterations — Converge
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Limitations of Fixed Hessian

\%
%ﬁg

Sosina
)

o S

By

2

xS

(<

A 1 A — , — ~
Y Zi Wz tol= L Hie = ZRZZZZR tol= L Hi = Xy diag(Hy) = Xy Hy

* Simple approximation of Hessian using only its diagonal elements
e Valid when the matrix strongly diagonally dominant

e Large enough A to be set

Largely dependent on 4

e Better diagonal Hessian approximation

Diagonal Updating via Quasi-Cauchy Relation
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Diagonal Updating via Quasi-Cauchy Relation*

V2f(x) = V2 fa(x) + V*fp(x)
where V2 £, (x): a diagonal matrix consisting the diagonal entries of the Hessian

V2fz(x): the actual Hessian except that its diagonal entries are all zero

sz(x)%D=LP1+‘PZ=LP1+(91+LI—’3)

where W;: a positive definite diagonal matrix

.1
min = [|¥s]13,

s.t. siT(‘Pl + (61 + L}’3))Si = s/ y; and W5 is diagonal

T T T
s; yi—S; W1S;—0;s; s;
D;,, = D; 212 Ay
1+1 l + tr(EiZ) l
where §; = min |1, S 2im5i Wasi for positive definiteness and E; = diag(s?;, s? )
i SlTl i1’ 12"" lm

* Marjugi and Leong (2013) Diagonal Hessian Approximation for Limited Memory Quasi-Newton via Variational Principle, Journal of Applied Mathematics
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Diagonal Updating via Quasi-Cauchy Relation
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Decomposable
T T T T T T
S; ¥i—S; W1s;—0is; s; S; ¥i—S; W1S; S; Si K
D:i.=D: +2 i L2l g ! ! El—@9. - =Ll =YK v. —09..-W
i+1 { tr(EiZ) L tr(Eiz) ] { tr(Eiz) l k=1V"ik { [

where s; = Bi+1 — Bt

y; =Y (Z,Z[Yk — ptt - %ﬁi”) — 2k (Zz[Yk — pie] = %ﬁi)

T

Si Si
E;, W; = mEi

T T
Sikyi_si qjlsi
tr(Ef)

Vik =

* For positive definiteness

T T
. S: —s: Yos
— Hi——mlnll,‘y‘ L 1‘]

T
Si Si

— Comparison within ciphertext is not easy, so we used one more round of iteraction

One more step is added every iteration.
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Positive Definiteness
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Decomposable

T T
S; ¥i—si ¥15j

6; = min [1, - ] = min[1, X, Cix]

Si Si
where C:r. = siyik _ s{¥1si 4. Dec(§2(21Cx +§1)) = §2(Z1Cr + §1)
ik — STSi KSTSi —
i i Dec(§,(1+ &) =& (1 + &)

i-th iteration 5. min[§; (2 Cx + §1),§2(1 + &)

& 6. Enc(min(§;(Z,Cy + §1),$2(1 + §1)))

C\L@\ ’w
AN
Q\)‘O %

1. Enc(Zka) = EkEnc(Ck)

2. Random number £, &, generation

3. Enc(&(Z4Cy + £1)), Enc(§2(1 + &1))

Enc(Cy) 7. Enc(min[X, Cy, 1])
Enc(Cg) = Enc(min[§, (Z;Cy — §1),§2(1 + §)D)

/Enc(§z') — Enc(§y)
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SMC Schemes with HE under Updating Hessian

i-th iteration
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EnC(Vl) ' .
Enc(g,) Updating Updating

v v

Enc(B) = (Enc(D))"1x Y,_, Enc(gy)

A

»

D Enc(Vk),Enc(gk)
Enc(Vg) Multiplication of inverse of Hessian
Enc(gg) by sum of gradients

Approximation of Hessian and gradient
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SMC Schemes with HE under Updating Hessian
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i-th iteration

B e

. <
o %
©,

—
Enc(V;)
Enc(B)

Dec (Enc(ﬁ)) =B

—
Enc(V) Multiplication of inverse of Hessian
Enc(gg) by sum of gradients

Approximation of Hessian and gradient

A

Enc(B) = (Enc(D))™1x Yy—1 Enc(gy)

v

P can be revealed to parties because of the noise.
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SMC Schemes with HE under Updating Hessian
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Updating Updating
v v

3 Enc(Cy)
Enc(g4)
Enc(B) = (Enc(D))"'x Y, Enc(gy)

EnC(VI;) Multiplication of inverse of Hessian
Enc(gg) by sum of gradients

Approximation of Hessian and gradient

A

A few iterations — Converge
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Trade-Off between Fixed Hessian and Updating Hessian

N
<7

Sosina
)

o S

By

2

xS

(<

Fixed Hessian Updating Hessian
The number of Iterations T l
Time per iteration l T

* Fixed Hessian

— Iteration numbers are too dependent on A which is also depending on data.

— The number of iterations can be more than 100 when not big enough A.

 Updating Hessian
— Iteration numbers are quite robust on A.

— Inverse diagonal Hessian is not that much expensive (' vector computation).
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Dataset: Death in hospital

* PhysioNet Challenge 2012 [MIMIC Il database]

— Dataset comprised of 4000 patient stays in the ICU lasting at least 2 days for predicting mortality.
— The data were formatted as time-stamped measurements for 37 distinct variables.

— Four static variables (age, gender, height, and initial weight) are also present.

> Number of patients: 4000, Number of features: 41

.
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Data Preprocessing

Percentage of patients for whom at least one measurement was available
during the first 48 ICU hours
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1.

Measurement %L Measurement %
ABP (Arterial blood pressure) Heart rate 98.4
Invasive (diastolic, mean, systolic) 98.4 K (Serum potassium) 97.9
Non-invasive (diastolic) 87.3  Lactate 54.8
Non-invasive (mean) 87.2 Mg (Serum magnesium) 97.5
Non-invasive (systolic) 87.6  Mechanical ventilation 63.1
Albumin 40.5 Na (Serum sodium) 98.2
ALP (Alkaline phosphatase) 424  PaCO2 75.4
ALT (Alkaline transaminase) 434 Pa0O2 75.4
AST (Aspartate transaminase) 434 pH 75.9
Bilirubin 43.4  Platelets 98.3
BUN (Blood urea nitrogren) 98.4  Respiration rate 27.7
Cholesterol 7.9 Sa02 44.7
Creatinine 98.4  Temperature 98.4
FiO2 (Fractional inspired oxygen) 67.6  Troponin-I 4.7
Glasgow Coma Score (GCS) 984  Troponin-T 21.9
Glucose 97.5  Urine output 97.4
HCO3 (Serum bicarbonate) 98.2 WBC (White blood cell count) 98.2
HCT (Hematocrit) 984  Weight 67.7

Compute min, max, mean, first value, last value as a way to represent time-series features

2. Missing values are replaced by the mean value of a feature.

Number of patients: 4,000, Number of features: 189

UC San Diego
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Experiment

e Models

1)

2)
3)
4)

(Distributed) model without differential privacy

For b ~ Lap(0,v/2/€) with 2 /e standard deviation
Model with Gamma DLPA and HE
Model with Gauss DLPA and HE

Model with Laplace DLPA and HE

e Scenario

3 sites with equal sizes

e Comparison

.
atics

cosirta
3 B\ ¢
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“m,

10 repetitions of 4-fold CV
e AUC
* Mean of coefficients

e Standard deviation of coefficients

37
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Reference Result without HE

* Averaged AUC on plaintext

(Distributed) logistic regression without differential privacy: reference

0.90 - /

0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

0.00 x - . . .
0.0003 0.001 0.01 0.1 1

epsilon

Averaged AUC

OGauss OGamma BLaplace

Gauss << Laplace * Gamma
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Gauss DPLA with HE
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Gauss DPLA with HE
Reference
0.90 - /
0.80 - O/
—0
0.70 A
° o o ’.
0.60 - o Slgnlflcant -
_-" difference ————""7
- -
I i wi=wit e 0—‘—‘9
050 1 OFEEememe Dumem e, = ©) Q— ...........
0.40
300 100 50 Iterations 50 50 50
10 100 500 A 10 100 500
Fixed Hessian Trade-off Updated Hessian
€ 00,001 -O-0.01 —®-0.1 =O=1
™ UC San Diego
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Gamma DPLA with HE

Budget: €/iterations

0.90

0.80

0.70

0.60

0.50

0.40

o
»
o

o
¥ AN\ &
flf"‘t s
»,\" X 95
D S

.
atics

Gamma DPLA with HE
Reference

] (@ R
] P Significant
difference
300 100 50 Iterations 50 50 50
10 100 500 A 10 100 500
Fixed Hessian Trade-off Updated Hessian
€ 00,001 -O0-0.01 -®-0.1 =O=1
N UC San Diego
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Laplace DPLA with HE

Budget: €/iterations

Laplace DPLA with HE
Reference
0.90 - /
80 y = .
P
0.70 o . M ——
e o
o Significant
0.60 -
difference
0.50 -
0.40
300 100 50 Iterations 50 50 50
10 100 500 A 10 100 500
Fixed Hessian Trade-off Updated Hessian

€ ~®-0,001 -O-0.01 —®-0.1 =O=1

Same tendency: Gauss << Laplace * Gamma
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Time Complexity
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Fixed Hessian Updating Hessian
The number of Iterations T l
Time per iteration l T
A
10 100 500

Fixed Hessian

Iterations 50 100 300
Time (s) 26.33 49.36 142.39

Trade-off depending on the number of iterations

Updated Hessian

Iterations 50 50 50
Time (s) 131.72 132.23 131.22

We confirmed win-win strategy!
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