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• Malin 2005: Trails of hospital visit pattern might lead to information disclosure

• Machanavajjhala 2007: Demographic statistics for certain cohort can lead to privacy lea
kage.

• Loukides 2010: Distribution of disease can lead to re-identification

• Sweeney 2014: Demographics combined with phenotypes provide strong clues to reveal 
individuals’ information

• Bonomi 2017: Hospital visit frequency and interval can lead to re-identification

Many	attack	models	have	been	discovered…
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Homomorphic encryption and
differential privacy might help

Intermediary data

Intermediary data

Intermediary data DP mechanism
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Privacy-Preserving Distributed 
Predictive Models
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Two Representative Scenarios

VA

UCSD

Horizontally distributed data

Sequencing 
Center UCSD

Vertically distributed data

Private data

Patient Age HIV
A1 45 Y
A2 38 N

Patient Age HIV
B1 42 N
B2 35 Y

ID SNP Age HIV ID
1 AT 38 Y 1
2 AA 45 N 2

Private data

Private data

Private data



Logistic	Regression
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Learning	a	distributed	logistic	regression

• Support p-1 features are c
onsistent over k sites

• In each iteration, intermed
iary result of a pxp matrix 
and a p-dimensional vecto
r are transmitted to the ce
ntral site for optimization



• Estimated probability based on observations of a binary response 𝑌 and

covariates 𝑋

• Likelihood function based on observed data (centralized)

Maximum	Likelihood	Estimation

𝑃 𝑌 = 1 𝑋 = 𝜋(𝑋, 𝛽) =
1

1 + 𝑒-./

𝑙 𝛽 =1 𝑦3 log 𝜋 𝑥3, 𝛽 + 1 − 𝑦3 log 1 − 𝜋 𝑥3, 𝛽
9

:

CovariatesBinary response Logit function Model parameter

Number of records
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Maximum	Likelihood	Estimation

• Likelihood function based on observed data (distributed)

𝑃 𝑌 = 1 𝑋 = 𝜋(𝑋, 𝛽) =
1

1 + 𝑒-./

𝑙 𝛽 = 1 𝑦3 log 𝜋 𝑥3, 𝛽 + 1 − 𝑦3 log 1 − 𝜋 𝑥3, 𝛽
9;<9=

:

Number of records held by site A
Number of records held by site B

Site A

Site B

VA

UCSD Private data

Patient Age HIV
A1 45 Y
A2 38 N

Patient Age HIV
B1 42 N
B2 35 Y

Private data

nA

nB
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Maximum	Likelihood	Estimation

𝑙 𝛽 is a 
concave 
function

𝛽 ><: = 𝛽(>) −
𝜕@𝑙(𝛽 > )

𝜕𝛽(>)𝜕𝛽(>)A

-:
𝜕𝑙(𝛽 > )
𝜕𝛽(>)

𝑃 𝑌 = 1 𝑋 = 𝜋(𝑋, 𝛽) =
1

1 + 𝑒-./

𝑙 𝛽 = 1 𝑦3 log 𝜋 𝑥3, 𝛽 + 1 − 𝑦3 log 1 − 𝜋 𝑥3, 𝛽
9;<9=

:

• Newton-Raphson algorithm for calculation
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Newton-Raphson (NR) Algorithm

𝑙(𝛽
)

𝛽0𝛽1 𝛽k𝛽*



𝑙 𝛽 = 1 𝑦3 log 𝜋 𝑥3, 𝛽 + 1 − 𝑦3 log 1 − 𝜋 𝑥3, 𝛽
9;<9=

:
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Distributed	Newton-Raphson	(NR)	Algorithm



𝑙 𝛽 = 1 𝑦3 log 𝜋 𝑥3, 𝛽 + 1 − 𝑦3 log 1 − 𝜋 𝑥3, 𝛽
9;<9=

:

VA

UCSD Private data

Patient Age HIV
A1 45 Y
A2 38 N

Patient Age HIV
B1 42 N
B2 35 Y

Private data
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Distributed	Newton-Raphson	(NR)	Algorithm

nA

nB



𝑙 𝛽 = 1 𝑦3 log 𝜋 𝑥3, 𝛽 + 1 − 𝑦3 log 1 − 𝜋 𝑥3, 𝛽
9;<9=

:

𝛽 ><: = 𝛽(>) −
𝜕@𝑙(𝛽 > )

𝜕𝛽(>)𝜕𝛽(>)A

-:
𝜕𝑙(𝛽 > )
𝜕𝛽(>)

= 𝛽 > + 𝑋BA𝑊 𝑋B, 𝛽 > 𝑋B
-:
𝑋BA 𝑌B − Π 𝑋B, 𝛽 >

Global variance-covariance matrix Global prediction outcomes
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Distributed	Newton-Raphson	(NR)	Algorithm

VA

UCSD Private data

Patient Age HIV
A1 45 Y
A2 38 N

Patient Age HIV
B1 42 N
B2 35 Y

Private data

nA

nB



𝑙 𝛽 = 1 𝑦3 log 𝜋 𝑥3, 𝛽 + 1 − 𝑦3 log 1 − 𝜋 𝑥3, 𝛽
9;<9=

:

𝛽 ><: = 𝛽(>) −
𝜕@𝑙(𝛽 > )

𝜕𝛽(>)𝜕𝛽(>)A

-:
𝜕𝑙(𝛽 > )
𝜕𝛽(>)

= 𝛽 > + 𝑋BA𝑊 𝑋B, 𝛽 > 𝑋B
-:
𝑋BA 𝑌B − Π 𝑋B, 𝛽 >

= 𝛽 > + 𝑋BEA𝑊E 𝑋BE, 𝛽 > 𝑋BE + 𝑋BFA𝑊F 𝑋BF, 𝛽 > 𝑋BF
-:

G 	 𝑋BEA 𝑌BE − ΠE 𝑋BE, 𝛽 + 𝑋BFA 𝑌BF − ΠF 𝑋BF, 𝛽 .

Local variance-covariance matrix Local prediction outcomes
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Distributed	Newton-Raphson	(NR)	Algorithm

VA

UCSD Private data

Patient Age HIV
A1 45 Y
A2 38 N

Patient Age HIV
B1 42 N
B2 35 Y

Private data

nA

nB



𝑊E 𝑋BE, 𝛽 =
𝜋(𝑥:, 𝛽)(1 − 𝜋 𝑥:, 𝛽 ) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜋(𝑥9;, 𝛽)(1 − 𝜋 𝑥9;, 𝛽 )

,

𝑊F 𝑋BF, 𝛽 =
𝜋(𝑥9;<:, 𝛽)(1 − 𝜋(𝑥9;<:, 𝛽) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜋(𝑥9;<9=, 𝛽)(1 − 𝜋 𝑥9;<9=, 𝛽 )

,

ΠE 𝑋BE, 𝛽 =
𝜋 𝑥:, 𝛽

⋮
𝜋(𝑥9;, 𝛽)

, and ΠF 𝑋BF, 𝛽 =
𝜋 𝑥9;<:, 𝛽

⋮
𝜋(𝑥9;<9=, 𝛽)

.

𝑙 𝛽 = 1 𝑦3 log 𝜋 𝑥3, 𝛽 + 1 − 𝑦3 log 1 − 𝜋 𝑥3, 𝛽
9;<9=

:

𝛽 ><: = 𝛽(>) −
𝜕@𝑙(𝛽 > )

𝜕𝛽(>)𝜕𝛽(>)A

-:
𝜕𝑙(𝛽 > )
𝜕𝛽(>)

= 𝛽 > + 𝑋BA𝑊 𝑋B, 𝛽 > 𝑋B
-:
𝑋BA 𝑌B − Π 𝑋B, 𝛽 >

= 𝛽 > + 𝑋BEA𝑊E 𝑋BE, 𝛽 > 𝑋BE + 𝑋BFA𝑊F 𝑋BF, 𝛽 > 𝑋BF
-:

G 	 𝑋BEA 𝑌BE − ΠE 𝑋BE, 𝛽 + 𝑋BFA 𝑌BF − ΠF 𝑋BF, 𝛽 .

Local variance-covariance matrix

Local prediction
outcomes
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VA

UCSD Private data

Patient Age HIV
A1 45 Y
A2 38 N

Patient Age HIV
B1 42 N
B2 35 Y

Private data

nA

nB

Distributed	Newton-Raphson	(NR)	Algorithm



What remains to be solved?

• Using secure primitive to safe
guard the communication

Intermediary
statistics

Dk

D4 D3

D2

D1

Dk

D4 D3

D2

D1

• Masking the pattern 
before transmitting



• A privacy mechanism A gives ε-differential privacy if for all neighbourin
g databases D, D’, and for any possible output S ∈ Range(A), Pr[A(D)
= S] ≤ exp(ε) × Pr[A(D’) = S]
• D	and	D’	are	neighboring	databases if	they	differ	on	at	most	one	record

Differential Privacy &	homomorphic encryption

• Homomorphic encryption is a type of encryption that allows computation 
conducted on ciphertext, when results are decrypted, map exactly to those 
of the corresponding computation on the plaintext

18



Differential	private	logistic	regression

19

Chaudhuri K, Monteleoni C, Sarwate AD. Differentially Private Empirical Risk Minimization. J Mach Learn Res 2011 Mar;12(Mar):1069–1109. PMID:21892342



Differentially	private	logistic	regression	for	distributed	data

20

In a distributed setting, objective perturbation can be achieved by

• Gamma Distributed Perturbation Laplacian algorithm (DPLA)

• Gauss Distributed Perturbation Laplacian algorithm (DPLA)

• Laplace Distributed Perturbation Laplacian algorithm (DPLA)

Gergely Ács and Claude Castelluccia. I have a DREAM!: differentially private smart metering. In: Proceedings of the 3rd International Conference on Information Hiding. IH'11. 2011, pp. 118-132. 
Goryczka S, Xiong L. A Comprehensive Comparison of Multiparty Secure Additions with Differential Privacy. IEEE Trans Dependable Secure Comput 2017 Sep;14(5):463–477. PMID:28919841



• Note	that	the	noise	added	by	a	single	party	is	not	sufficient	to	ensure	DP!

– If	we	add	too	much	noise,	the	final	output	will	be	less	valuable.

– If	we	add	too	little	noise,	it	is	not	enough	to	protect	the	privacy.

• Privacy	mechanisms	are	not	designed	to	provide	security	of	computations.

– We	need	to	protect	the	intermediary	results,	otherwise,	privacy	cannot	be	ensured	in	a	

global	manner

21

Differentially	private	logistic	regression	for	distributed	data



Algorithm



Win-Win	Strategy

𝛽9MN = 𝛽OPQ − 𝑙RR 𝛽OPQ -:𝑙R 𝛽OPQ

= 𝛽OPQ + ∑ 𝑍>A�
> 𝑊>

OPQ𝑍> +
V
W
𝐼
-:

∑ 𝑍>A 𝑌> − 𝜇>OPQ − V
W
𝛽OPQ�

> − ∑ :
9
𝑏>�

>
A

• Homomorphic	Encryption	with	“Fixed	Hessian”	

– ∑ 𝑍>A�
> 𝑊>

OPQ𝑍> +
V
W
𝐼 = ∑ 𝐻>�

> ≈ ∑ :
]
𝑍>A𝑍> +

V
W
𝐼�

> = ∑ �̂�>�
> ≈ ∑ 𝑑𝑖𝑎𝑔 �̂�>�

> = ∑ 𝐻c>�
>

– 𝑍A 𝑌 − 𝜇OPQ − 𝜆𝛽OPQ − :
9
𝑏 = ∑ 𝑍>A�

> 𝑌> − 𝜇>OPQ − V
W
𝛽OPQ − ∑ :

9
𝑏>�

> = ∑ 𝑔>�
>

• Differential	Privacy

– 𝛽9MN can	be	revealed	to	parties	because	of	the	noise

– HE	can	be	renewed	every	iteration

23

Hessian	= 𝐻 Gradient	= 𝑔

𝑬𝒏𝒄 𝒈𝒌

𝑬𝒏𝒄 𝑯c𝒌

One	time

Iteratively

Based	on	DP,	we	can	reduce	time	complexity	and	error	accumulation	of	HE



SMC	Schemes	with	HE	under	Fixed	Hessian

24

⋮
Cloud	
Server 𝑬𝒏𝒄 𝜷c = ∑ 𝑬𝒏𝒄 𝑯c𝒌�

𝒌l𝟏
-𝟏×	∑ 𝑬𝒏𝒄 𝒈𝒌�

𝒌l𝟏

Multiplication	of	inverse	of	sum	of	fixed	Hessians	
by	sum	of	gradients

𝑬𝒏𝒄 𝑯c𝒌 , 𝑬𝒏𝒄 𝒈𝒌

One	time,	save	 Updating

DK

D1

𝐸𝑛𝑐(𝐻cW)
𝐸𝑛𝑐(𝑔W)

𝐸𝑛𝑐(𝐻c:)
𝐸𝑛𝑐(𝑔:)

Approximation	of	fixed	Hessian	and	gradient	



SMC	Schemes	with	HE	under	Fixed	Hessian

25

DK

D1

⋮
Cloud	
Server

𝐸𝑛𝑐(𝐻cW)
𝐸𝑛𝑐(𝑔W)

⋮

𝐸𝑛𝑐(𝐻c:)
𝐸𝑛𝑐(𝑔:)

Approximation	of	fixed	Hessian	and	gradient	

Multiplication	of	inverse	of	sum	of	fixed	Hessians	
by	sum	of	gradients

𝑬𝒏𝒄 𝜷c

𝑫𝒆𝒄 𝑬𝒏𝒄 𝜷c = 𝜷c

𝜷c can	be	revealed	to	parties	because	of	the	noise.		

𝐸𝑛𝑐 𝛽t = ∑ 𝐸𝑛𝑐 𝐻c>�
>l:

-:×	∑ 𝐸𝑛𝑐 𝑔>�
>l:



SMC	Schemes	with	HE	under	Fixed	Hessian
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Cloud	
Server

Multiplication	of	inverse	of	sum	of	fixed	Hessians	
by	sum	of	gradients

𝑬𝒏𝒄 𝒈𝒌

𝑬𝒏𝒄 𝜷c

A	few	iterations	→ Converge

⋮

DK

D1

𝑬𝒏𝒄(𝒈𝑲)

𝑬𝒏𝒄(𝒈𝟏)

𝑬𝒏𝒄 𝜷c = ∑ 𝑬𝒏𝒄 𝑯c𝒌�
𝒌l𝟏

-𝟏×	∑ 𝑬𝒏𝒄 𝒈𝒌�
𝒌l𝟏

Approximation	of	fixed	Hessian	and	gradient	

Fixed Updating



Limitations	of	Fixed	Hessian

∑ 𝑍>A�
> 𝑊>

OPQ𝑍> +
V
W
𝐼 = ∑ 𝐻>�

> ≈ ∑ :
]
𝑍>A𝑍> +

V
W
𝐼�

> = ∑ �̂�>�
> ≈ ∑ 𝑑𝑖𝑎𝑔 �̂�>�

> = ∑ 𝐻c>�
> 	

• Simple	approximation	of	Hessian	using	only	its	diagonal	elements

• Valid	when	the	matrix strongly	diagonally	dominant

• Large	enough 𝝀 to	be	set

• Better	diagonal	Hessian	approximation	

27

Largely	dependent	on	𝝀

Diagonal	Updating	via	Quasi-Cauchy	Relation



Diagonal	Updating	via	Quasi-Cauchy	Relation*

𝛻@𝑓 𝑥 = 𝛻@𝑓E 𝑥 + 𝛻@𝑓F(𝑥)
where	𝛻@𝑓E 𝑥 :	a	diagonal	matrix	consisting	the	diagonal	entries	of	the	Hessian	

𝛻@𝑓F 𝑥 :	the	actual	Hessian	except	that	its	diagonal	entries	are	all	zero

𝛻@𝑓 𝑥 ≈ 𝐷 = Ψ: + Ψ@ = Ψ: + (𝜃𝐼 + Ψ})
where	Ψ::	a	positive	definite	diagonal	matrix	

min 	:
@
Ψ} �

@ ,

s.t. 𝑠3A Ψ: + 𝜃𝐼 + Ψ} 𝑠3 = 𝑠3A𝑦3 and	Ψ} is	diagonal

𝐷3<:	 = 𝐷3 +
��
���-��

�����-����
���

�� ��
� 𝐸3

where	𝜃3 = min 1, ��
���-��

�����
��
���

for	positive	definiteness	and	𝐸3 = diag(𝑠3,:@ , 𝑠3,@@ , … , 𝑠3,�@ )

28

*	Marjugi and	Leong	(2013)	Diagonal	Hessian	Approximation	for	Limited	Memory	Quasi-Newton	via	Variational Principle,	Journal	of	Applied	Mathematics



Diagonal	Updating	via	Quasi-Cauchy	Relation

𝐷3<: = 𝐷3 +
��
���-��

�����-����
���

�� ��
� 𝐸3, 				

��
���-��

�����
�� ��

� 𝐸3 − 𝜃3 G
��
���

�� ��
� 𝐸3 = ∑ 𝑉3>W

>l: − 𝜃3 G 𝑊3

where 𝑠3 = 𝛽3<: − 𝛽3

𝑦3 = ∑ 𝑍>A 𝑌> − 𝜇>3<: − V
W
𝛽3<:�

> − ∑ 𝑍>A 𝑌> − 𝜇>3 − V
W
𝛽3�

>

𝑉3> =
���
� ��-��

�����
�� ��

� 𝐸3,	𝑊3 =
��
���

�� ��
� 𝐸3

• For	positive	definiteness

– 𝜃3 = min 1, ��
���-��

�����
��
���

– Comparison	within	ciphertext is	not	easy,	so	we	used	one	more	round	of	iteraction

29

Decomposable

One	more	step	is	added	every	iteration.



Positive	Definiteness

𝜃3 = min 1, ��
���-��

�����
��
���

= min[1, Σ>𝐶3>]

where	𝐶3> =
��
����
��
���

− ��
�����
W��

���

30

𝑬𝒏𝒄 𝑪𝒌

⋮

DK

D1

𝑬𝒏𝒄(𝑪𝑲)

𝑬𝒏𝒄(𝑪𝟏)

Cloud	
Server

1.	𝑬𝒏𝒄 𝚺𝒌𝑪𝒌 = 𝜮𝒌𝑬𝒏𝒄(𝑪𝒌)

2.	Random	number	𝝃𝟏,	𝝃𝟐 generation

3.	𝑬𝒏𝒄 𝝃𝟐 𝜮𝒌𝑪𝒌 + 𝝃𝟏 , 𝑬𝒏𝒄(𝝃𝟐(𝟏 + 𝝃𝟏))

4.	𝑫𝒆𝒄 𝝃𝟐 𝜮𝒌𝑪𝒌 + 𝝃𝟏 = 𝝃𝟐 𝜮𝒌𝑪𝒌 + 𝝃𝟏

𝑫𝒆𝒄 𝝃𝟐 𝟏 + 𝝃𝟏 = 𝝃𝟐(𝟏 + 𝝃𝟏)

5.	𝐦𝐢𝐧 𝝃𝟐 𝜮𝒌𝑪𝒌 + 𝝃𝟏 , 𝝃𝟐 𝟏 + 𝝃𝟏
6.	𝑬𝒏𝒄 𝐦𝐢𝐧 𝝃𝟐 𝜮𝒌𝑪𝒌 + 𝝃𝟏 , 𝝃𝟐 𝟏 + 𝝃𝟏 	

7. 𝑬𝒏𝒄 𝐦𝐢𝐧 𝜮𝒌𝑪𝒌, 𝟏

= 𝑬𝒏𝒄 𝐦𝐢𝐧 𝝃𝟐 𝜮𝒌𝑪𝒌 − 𝝃𝟏 , 𝝃𝟐 𝟏 + 𝝃𝟏

/𝑬𝒏𝒄 𝝃𝟐-𝟏 − 𝑬𝒏𝒄 𝝃𝟏

Decomposable

𝒊-th iteration



SMC	Schemes	with	HE	under	Updating	Hessian

31

⋮
Cloud	
Server 𝑬𝒏𝒄 𝜷c = (𝑬𝒏𝒄(𝑫))-𝟏×	∑ 𝑬𝒏𝒄 𝒈𝒌�

𝒌l𝟏

Multiplication	of	inverse	of	Hessian
by	sum	of	gradients

𝑬𝒏𝒄 𝑽𝒌 , 𝑬𝒏𝒄 𝒈𝒌

Updating Updating

DK

D1

𝑬𝒏𝒄(𝑽𝑲)
𝑬𝒏𝒄(𝒈𝑲)

𝑬𝒏𝒄(𝑽𝟏)
𝑬𝒏𝒄(𝒈𝟏)

Approximation	of	Hessian	and	gradient	

𝒊-th iteration



SMC	Schemes	with	HE	under	Updating	Hessian
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DK

D1

⋮
Cloud	
Server

𝐸𝑛𝑐(𝑉W)
𝐸𝑛𝑐(𝑔W)

⋮

𝐸𝑛𝑐(𝑉:)
𝐸𝑛𝑐(𝑔:)

Approximation	of	Hessian	and	gradient	

𝑬𝒏𝒄 𝜷c

𝑫𝒆𝒄 𝑬𝒏𝒄 𝜷c = 𝜷c

𝜷c can	be	revealed	to	parties	because	of	the	noise.		

𝐸𝑛𝑐 𝛽t = (𝐸𝑛𝑐(𝐷))-:×	∑ 𝐸𝑛𝑐 𝑔>�
>l:

Multiplication	of	inverse	of	Hessian
by	sum	of	gradients

𝒊-th iteration



SMC	Schemes	with	HE	under	Updating	Hessian
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Cloud	
Server

𝑬𝒏𝒄 𝜷c

A	few	iterations	→ Converge

⋮

DK

D1

𝑬𝒏𝒄 𝜷c = (𝑬𝒏𝒄(𝑫))-𝟏×	∑ 𝑬𝒏𝒄 𝒈𝒌�
𝒌l𝟏

Approximation	of	Hessian	and	gradient	

𝑬𝒏𝒄(𝑪𝑲)
𝑬𝒏𝒄(𝑽𝑲)
𝑬𝒏𝒄(𝒈𝑲)

𝑬𝒏𝒄 𝑪𝟏
𝑬𝒏𝒄(𝑽𝟏)
𝑬𝒏𝒄(𝒈𝟏)

𝑬𝒏𝒄 𝑪𝒌 , 𝑬𝒏𝒄 𝑽𝒌 , 𝑬𝒏𝒄 𝒈𝒌

Updating Updating

Multiplication	of	inverse	of	Hessian
by	sum	of	gradients



Trade-Off	between	Fixed	Hessian	and	Updating	Hessian	

Fixed	Hessian Updating Hessian

The	number of	Iterations	 ↑ ↓
Time	per iteration ↓ ↑
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• Fixed	Hessian

– Iteration	numbers	are	too	dependent	on	𝜆 which	is	also	depending	on	data.

– The	number	of	iterations	can	be	more	than	100 when	not	big	enough	𝜆.

• Updating	Hessian

– Iteration	numbers	are	quite	robust	on	𝜆.

– Inverse	diagonal	Hessian	is	not	that	much	expensive	(∵ vector	computation).



Dataset: Death	in	hospital

• PhysioNet Challenge	2012	[MIMIC	II	database]	

– Dataset comprised of	4000	patient stays in	the	ICU	lasting at least 2	days for	predicting mortality.	

– The	data	were formatted as time-stamped measurements for	37	distinct variables.	

– Four static variables (age,	gender,	height,	and	initial weight)	are	also present.

➢ Number of	patients:	4000,	Number of	features:	41
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Data	Preprocessing

1. Compute	min,	max,	mean,	first	value,	last	value	as	a	way	to	represent	time-series	features

2. Missing	values	are	replaced	by	the	mean	value	of	a	feature.	
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Percentage	of	patients	for	whom	at	least	one	measurement	was	available	
during	the	first	48	ICU	hours

Number of	patients:	4,000,	Number of	features:	189



Experiment

• Models

1) (Distributed)	model	without	differential	privacy

For	𝑏	~	𝐿𝑎𝑝(0, 2� /𝜖)	with	2/𝜖 standard	deviation	

2) Model	with	Gamma	DLPA	and	HE

3) Model	with	Gauss	DLPA	and	HE

4) Model	with	Laplace	DLPA	and	HE

• Scenario

– 3	sites	with	equal	sizes

• Comparison

– 10	repetitions	of	4-fold	CV

• AUC

• Mean	of	coefficients

• Standard	deviation	of	coefficients
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Reference	Result without HE

• Averaged AUC	on	plaintext
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(Distributed)	logistic regression without differential privacy:	reference

Gauss	<<	Laplace	≈ Gamma	



Gauss	DPLA	with	HE
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Gamma	DPLA	with	HE
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Laplace DPLA with HE
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Laplace	DPLA	with	HE
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Reference

Same tendency:	Gauss	<<	Laplace	≈ Gamma	

Budget:	𝝐/iterations			

Trade-off

Significant 
difference

𝝀
Iterations

𝝐



Time	Complexity
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Fixed	Hessian Updating Hessian

The	number of	Iterations	 ↑ ↓
Time	per iteration ↓ ↑

𝜆
10 100 500

Fixed	Hessian

Iterations 50 100 300

Time	(s) 26.33 49.36 142.39

Updated	Hessian

Iterations 50 50 50

Time	(s) 131.72 132.23 131.22

Trade-off	depending	on	the	number	of	iterations

We	confirmed	win-win	strategy!
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