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Free Boundary Flows

Free boundary flows involve deformable interfaces

fluid

external
ambient surface

free capilary

fluid

solid structure
deformable

Coating Flows Arterial Blood Flow
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Free Boundary vs Fixed Domains

fluid

external
ambient surface

free capilary

fluid

solid structure
deformable

. Additional Unknowns. one has to solve not only for the fluid velocity
and pressure, but simultaneously also for the location of the interface
and its evolution in time:

u(x, y; t), p(x, y; t), η(x; t) (1)

Fluid-structure interaction: solve elasticity equations

. Additional Nonlinearities.The interface deformation is coupled to the
fluid flow both kinematically (continuity of the velocities) and dynamically
(balance of stresses), and the coupling is nonlinear.
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Strong Interfacial Effects

Coating Flows Arterial Blood Flow

flow dominated fluid and structure
by capillary effects of comparable densities

Ca = µV/σ < 1 %s/%f ≤ 1

Ca: Capillary number %s: structure density
µ: fluid viscosity %f : fluid density

V : characteristic velocity
σ: surface tension

When interfacial effects are strong
the coupling at the deformable interface is higly non-linear

→ numerical instabilities
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Main Goal

STATE OF THE ART: Several commercial and non-commercial codes.
Free boundary flows with strong interfacial effects
are usually solved using strongly coupled schemes:

robust and stable
but with high computational costs and convergence issues

MAIN GOAL: Design schemes which combine
stability

low computational costs
modularity

STRATEGY: use operator splitting method for time-discretization.
Numerical instabilities can be controlled by treating carefully the

kinematic and the dynamic coupling conditions.
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Plan of the talk

. Arterial Blood Flow

– Modeling: blood and vessel wall

– Full Problem vs Reduced Effective Models

– Numerical solutions of the Full Problem

→ Kinematically-coupled algorithm

. Coating Flow

– Slot Coater

– Comparison with Monolothic Scheme by Pasquali (Rice U.)

11



Arterial Blood Flow - Motivation

• cardiovascular diseases ↔ changes in blood flow and wall deformation

(e.g. atherosclerosis, aneurysms,...)

• long-term success of clinical treatments ↔ changes induced on blood
flow and body reaction

• fluid-structure interaction are mathematically very challenging

Proper resolution of fluid-structure interaction is one of the core problems!
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Arterial Blood Flow - Modeling

Arterial wall Blood

heterogeneous and anisotropic suspension
nonlinear and viscoelastic cells and plasma

pre-stressed complex rehology
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Arterial Blood Flow - Modeling

Arterial wall Blood

Models for vessel wall (structure) and blood (fluid) which is:

- complicated enough to catch the interesting phenomena

- simple enough to be solved in a reasonable way

→ Reduced Effective Models helps!
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Reduced Effective models

• based multiscale analysis (e.g. R/L = ε). Huge literature
Barnard et al. 1964, Noseda 1974, Quarteroni et al. 2000, Olufsen et al. 2000,

Formaggia et al. 2002, Smith et al. 2002

• avaraged equations on cross section → ad hoc closure

• homogenization theory (Canic and Mikelic 2002) → no ad hoc closure
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Wall viscoelasticity: mathematical or physiological?

Left: In Vivo. Armentano et al. 1995

Right: Reduced Effective Model. Canic, Tambaca, Guidoboni, Mikelic, Hartley, Rosenstrauch 2006

(large-to-medium arteries, linear elasticity, thin shell, Kelvin-Voigt viscoelasticity)
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Other Modeling Issues

• Prestress: present but not very important (Mikelic, Guidoboni, Canic 2007)

• Wall Displacement: radial >> longitudinal → consider only radial

• Wall Thickness: we will consider thin walls

• Blood: large arteries: small non-Newtonian effects → Navier-Stokes

• Well-posedness: open field!!!

Now we will see a specific model as a benchmark
to present and test our novel numerical approach
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Benchmark Problem: Mathematical Model

0 x

y

H

L

η (x,t)

Fluid: Navier-Stokes eqs

%f(∂tu + u · ∇u) = −∇p + µ∆u, ∇ · u = 0, in Ω× (0, T ),

u = (u1, u2): fluid velocity; p: pressure, %f : fluid density, µ: fluid viscosity.

Dynamic and Kinematic Interfacial Coupling:

%shs∂
2
t η + aη − b∂2

xη − γ∂t∂
2
xη = p|y=η(x,t) on (0, L)× (0, T ) ,

∂tη = u2|y=η(x,t), u1|y=η(x,t) = 0

η: transverse displacement; %s: structure density; hs: structure thickness;
a, b, γ: elastic constants. (Causin, Gerbeau, Nobile 2005)
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Traditional Partitioned Schemes (Loosely Coupled)

Farhat et al. 1998, Zhao et al. 1998, Quarteroni et al. 2000

1. Given η and ∂tη at tn

2. Use ∂tη at tn as Dirichlet condition for the fluid → compute u, p
fluid solver with given b.c.

3. Use it to force the structure → compute η and ∂tη
structure solver with given load

4. go to tn+1 and Step1

STRUCTUREFLUID

t tn n+1

cheap and modular
stable in aeroelasticity, unstable in blood flow

ADDED MASS EFFECT Causin, Gerbeau, Nobile 2005
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Strongly Coupled Schemes

• Implicit: iterate between fluid and structure till the coupling conditions
are satisfied to a certain tolerance. Quarteroni, Nobile, Formaggia

STRUCTUREFLUID

t tn n+1

20



Strongly Coupled Schemes

• Implicit: iterate between fluid and structure till the coupling conditions
are satisfied to a certain tolerance. Quarteroni, Nobile, Formaggia

• Monolithic: linearize the problem, write a large system involving all
the unknwowns, use iterative techniques to solve the nonlinear problem.
Hughes, Taylor

FLUID

STRUCTURE

COUPLING

COUPLING

ttn n+1
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Strongly Coupled Schemes

• Implicit: iterate between fluid and structure till the coupling conditions
are satisfied to a certain tolerance. Quarteroni, Nobile, Formaggia

• Monolithic: linearize the problem, write a large system involving all
the unknwowns, use iterative techniques to solve the nonlinear problem.
Hughes, Taylor

• Quasi-Monolithic: a thin structure is incorporated into the fluid equa-
tions via a Robin-like boundary condition. Nobile, Vergara
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Strongly Coupled Schemes

• Implicit: iterate between fluid and structure till the coupling conditions
are satisfied to a certain tolerance. Quarteroni, Nobile, Formaggia

• Monolithic: linearize the problem, write a large system involving all
the unknwowns, use iterative techniques to solve the nonlinear problem.
Hughes, Taylor

• Quasi-Monolithic: a thin structure is incorporated into the fluid equa-
tions via a Robin-like boundary condition. Nobile, Vergara

• Semi-Implicit: strong coupling between fluid pressure and structure
displacement, while the fluid velocity is decoupled. Gerbeau, Grandmont,

Quaini, Quarteroni

Our Goal: combine stability of strongly coupled schemes
with low computational cost and modularity of loosely coupled schemes
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Kinematically-coupled scheme: Main Ideas

Guidoboni, Glowinski, Cavallini, Canic, Lapin (AML)

→ Time-discretization via operator splitting.
Splitting at differential level: freedom to use different time steps and/or
space approximations in different substeps

→ Cardinal role of kinematic condition. (Kinematically-coupled scheme)
(1) first-order formulation → operator-splitting theory
(2) link velocities of fluid & structure → Added-Mass Effect

→ Split hyperbolic & parabolic parts.
Traditional schemes follow multi-physics: fluid vs structure
Our scheme follows multi-math: hyperbolic vs parabolic
Deeply related to our analytical studies on well-posedness
Kim, Canic, Guidoboni, Mikelic
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Mathematical Model: New notation

Assume small displacement → fix fluid domain

%f∂tu = Φ(u, p), ∇ · u = 0, in Ω× (0, T ),

%shs∂
2
t η = Ψ(η) + Π(∂tη) + Υ(u, p) on (0, L)× (0, T ),

∂tη = u2|y=H on (0, L)× (0, T ),

with:

Φ(u, p) = −%fu · ∇u−∇p + µ∆u

Ψ(η) = −aη + b∂2
xη → elasticity

Π(∂tη) = γ∂2
x∂tη → viscoelasticity

Υ(u, p) = p|y=H → interfacial hydrodynamic load
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Mathematical Model: New notation

Assume small displacement → fix fluid domain

%f∂tu = Φ(u, p), ∇ · u = 0, in Ω× (0, T ),

%shs∂
2
t η = Ψ(η) + Π(∂tη) + Υ(u, p) on (0, L)× (0, T ),

∂tη = u2|y=H on (0, L)× (0, T ),

with:

Φ(u, p) = −%fu · ∇u−∇p + µ∆u

Ψ(η) = −aη + b∂2
xη → elasticity

Π(∂tη) = γ∂2
x∂tη → viscoelasticity

Υ(u, p) = p|y=H → interfacial hydrodynamic load

Use the kinematic condition ∂tη = u2|y=H

to obtain a first-order formulation
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Mathematical Model: New formulation

%f∂tu = Φ(u, p), ∇ · u = 0, in Ω× (0, T ),

%shs∂
2
t η = Ψ(η) + Π(∂tη) + Υ(u, p) on (0, L)× (0, T ),

∂tη = u2|y=H on (0, L)× (0, T ),

becomes:

%f∂tu = Φ(u, p), ∇ · u = 0, in Ω× (0, T ) ,

%shs∂tu2|y=H = Ψ(η) + Π(u2|y=H) + Υ(u, p) on (0, L)× (0, T )

∂tη = u2|y=H on (0, L)× (0, T ) .
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Mathematical Model: New formulation

%f∂tu = Φ(u, p), ∇ · u = 0, in Ω× (0, T ),

%shs∂
2
t η = Ψ(η) + Π(∂tη) + Υ(u, p) on (0, L)× (0, T ),

∂tη = u2|y=H on (0, L)× (0, T ),

becomes:

%f∂tu = Φ(u, p), ∇ · u = 0, in Ω× (0, T ) ,

%shs∂tu2|y=H = Ψ(η) + Π(u2|y=H) + Υ(u, p) on (0, L)× (0, T )

∂tη = u2|y=H on (0, L)× (0, T ) .

Now we can properly apply the operator splitting technique
for the time discretization
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Operator Splitting Method

Consider the initial value problem:

∂tϕ + A(ϕ, t) = 0 in (0, T ), ϕ(0) = ϕ0 (2)

Assume A = A1 + A2.

Let ϕn = ϕ(tn) be given.

1. Solve first

∂tϕ + A1(ϕ, t) = 0 in (tn, tn+1), ϕ(tn) = ϕn (3)

and then set ϕ(tn+1) = ϕn+1/2.

2. Then solve

∂tϕ + A2(ϕ, t) = 0 in (tn, tn+1), ϕ(tn) = ϕn+1/2 (4)

and then set ϕ(tn+1) = ϕn+1.

(see e.g. Yanenko (1971), Marchuk(1975,1990), Glowinski (2003))
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Operator Splitting Method - Remarks

• the decomposition is not unique

• the communication between sub-steps is through the initial conditions
→ modules of black boxes

• freedom of using different time steps and/or spatial approx. for the
same variable in different substeps

• stability may be achieved with different choices for the decomposition
of A

• splitting error may compromise accuracy
→ symmetrization
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Kinematically-coupled scheme

Step1:
%f∂tu = Φ(u, p), ∇ · u = 0, in Ω× (0, T ) ,

%shs∂tu2|y=H = Ψ(η) + Π(u2|y=H) + Υ(u, p) on (0, L)× (0, T )

∂tη = u2|y=H on (0, L)× (0, T ) .

Step2:
%f∂tu = Φ(u, p), ∇ · u = 0, in Ω× (0, T ) ,

%shs∂tu2|y=H = Ψ(η)+Π(u2|y=H) + Υ(u, p) on (0, L)× (0, T )

∂tη = u2|y=H on (0, L)× (0, T ) .

STRUCTUREFLUID

t tn n+1
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Kinematically-coupled scheme: Step1

Given u(tn) = un, η(tn) = ηn, and ∂tη(tn) = gn, solve:

%f∂tu = Φ(u, p), ∇ · u = 0, in Ω× (tn, tn+1) ,

%shs∂tu2|y=H = Π(u2|y=H) + Υ(u, p) , on (0, L)× (tn, tn+1) ,

and then set u(tn+1) = un+1/2 and p(tn+1) = pn+1.

MAIN IDEA:
The hydrodynamic part of the structure equation

Π(u2|y=H) + Υ(u, p)
(viscoelasticity and fluid stress on the interface)

are treated together with the fluid equations
→ more inertia on the interface avoiding Added-Mass effect
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Kinematically-coupled scheme: Step2

Given η(tn) = ηn, and ∂tη(tn) = u2|n+1/2
y=H , solve:

∂tη = u2|y=H

%shs∂tu2|y=H = Ψ(η)

on (0, L)× (tn, tn+1), and then set η(tn+1) = ηn+1 and ∂tη(tn+1) = u2|n+1
y=H .

MAIN IDEA:
The elastic part of the structure equation

Ψ(η)
is non-dissipateive and it is treated in a separate step

→ non-dissipative solver
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Blood Flow - Numerical Test

Benchmark Test: Formaggia et al. 2001. SHOW MOVIE

t

p(t)

τ
max

viscosity µ 0.035 poise
fluid density ρf 1 g/cm3

young modulus E 0.75 106 dynes/cm3

poisson coefficient σ 0.5 [1]
structure density ρs 1.1 g/cm2

structure thickness hs 0.1 cm

shear modulus G E hs
2(1+σ) dynes/cm

structure viscoelasticity γ 0.01 poise · cm
inlet pressure p̄max 2 104 dynes/cm2

inlet pressure duration τmax 5 ms
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Results with the kinematically-coupled scheme
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Results with implicit scheme by Formaggia et al. 2001
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Different time steps: displacement

0 1 2 3 4 5 6
−0.01

0

0.01

0.02

0.03

0.04

0.05

x axis [cm]

η 
[c

m
]

time = 0.015 [s]

 

 

∆ t = 5× 10−6

∆ t = 1× 10−5

∆ t = 1× 10−4

38



Different time steps: pressure
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Different time steps and mesh size: displacement
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Different time steps and mesh size: pressure
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Blood Flow - Numerical Test

Benchmark Test: density ratio beyond critical limit

viscosity µ 0.035 poise
fluid density ρf 10 g/cm3

young modulus E 0.75 106 dynes/cm3

poisson coefficient σ 0.5 [1]
membrane density ρs 1.1 g/cm2

membrane thickness hs 0.1 cm

shear modulus G E hs
2(1+σ) dynes/cm

membrane viscoelasticity γ 0.01 poise · cm
inlet pressure p̄max 2 104 dynes/cm2

inlet pressure duration τmax 5 ms

SHOW MOVIE
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Comparison with implicit schemes - Flow rate
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Implicit
Kinematically Coupled

0 2 4 6
−20

0

20

40

vessel axis [cm]

q 
[c

m
2 /s

]

time = 7⋅ 10−3 s

0 2 4 6
0

20

40

vessel axis [cm]

q 
[c

m
2 /s

]

time = 5⋅ 10−3 s

0 2 4 6
−20

0

20

40

vessel axis [cm]

q 
[c

m
2 /s

]

time = 9⋅ 10−3 s

0 2 4 6
−20

0

20

40

vessel axis [cm]

q 
[c

m
2 /s

]
time = 11⋅ 10−3 s

(Implict scheme results from Nobile PhD Thesis)
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Capillary Surface - Slot Coater

Γ

u=(1,0)
Γ

Γ

0

0

0

Γ (t)

Γ1

x

x

0 1

2

L 0

η (x,t)1

H

L

(t)

Milestone work: Silliman (1979)

Monolithic Algorithm: Pasquali and Scriven (2004).

Comparison splitting/monolithic:
G. Guidoboni, R. Glowinski, M. Pasquali. Submitted to JCAM.
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Time evolution of the free surface profile
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Time evolution of the height of the free surface at x = 8

0 5 10 15 20 25 30 35 40

0.5

0.52

0.54

0.56

0.58

0.6

0.62

t

y(
x=

8)

Monolithic solver
Splitting algorithm

46



FUTURE DIRECTIONS

• Thick structure: work in progress

• Accuracy: first-order. Symmetrization?

• 3-D

• Clinically relevant problems
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