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Overview

Drug release in the vascular system

Local analysis:
drug eluting stents.

◮ Mechanics

◮ Drug release

◮ Interaction with arteries

Global analysis:
the vascular network.

◮ Blood flow

◮ Perfusion

◮ Mass transfer



Local analysis: drug eluting stents

Motivations: atherosclerosis induces a re-
duction of the blood flow because of the
narrowing of the affected arteries

⇓

stents enlarge the arterial lumen and re-
store blood perfusion

Drawbacks: re-narrowing of an artery
at the same site where the stent was
placed

⇓

DES release anti-proliferative drugs
that prevent restenosis.
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Problem overview
Mechanics:

◮ analysis of balloon/stent expansion;

⇓ ⇓

Mass Transfer:

◮ drug release from a substrate;

◮ drug release in the arterial walls;

⇔

Fluid Dynamics:

◮ blood flow;

◮ filtration through arteries;



Problem overview
Mechanics:

◮ analysis of balloon/stent expansion; Global analysis:

◮ drug release in the
vascular network;

◮ what if the stent pattern
is too complex?

Mass Transfer:

◮ drug release from a substrate;

◮ drug release in the arterial walls;
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◮ filtration through arteries;



Mechanical analysis

Simulation of the stent expansion inside an atherosclerotic coronary artery:
Migliavacca F., Gervaso F., Prosi M., Zunino P., Minisini S., Formaggia L., Dubini G., Expansion and drug elution

model of a coronary stent, Comput. Methods. Biomech. Biomed. Engin., 10, 63-73, 2007.

Geometry: two hollow co-axial cylinders
artery internal diam.=2.15 mm, thickness=0.5 mm
plaque internal diam.=1.25 mm, thickness=0.45 mm

Material model: incompressible, isotropic
and hyperelastic material for each arterial
layer.
Mechanical analysis: the de-
formed geometry is the input on
which the drug release simulation
is carried out.
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Coupled balloon/stent expansion
performed by LaBS - Laboratory of Biological Structure Mechanics - Polimi
P. Zunino, C. D’Angelo, L. Petrini, C. Vergara, C. Capelli, F. Migliavacca, Numerical simulation of drug eluting

coronary stents: mechanics, fluid dynamics and drug release, MOX Report 3/2008, submitted.
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Governing principles for drug release

Erosion controlled
systems

Swelling controlled
systems

Diffusion controlled
systems

Drug release
from a polymeric substrate

Erosion

slow

fast slow

Swelling

fast

Diffusion
slowfast



Drug dissolution models

drug in solid phase ⇒ drug dissolved in water
permeating the substrate

Physical unknowns:

◮ d drug concentration in the dissolved phase

◮ s drug concentration in the solid pahse

◮ cs saturation

Parameters:

◮ D drug diffusivity

◮ kd dissolution rate

◮ ǫ porosity

ǫcs

d(t)

s(t)

∂td = D∆d − ∂ts, in (0, T ] × Ω,

∂ts = −kd s
2
3 (ǫcs − d), in (0, T ] × Ω,

References:

T. Higuchi, Rate of release of medicaments from ointment bases containing drugs in suspension,
J. Pharmac. Sci., 50 (1961), 874–875.

G. Fremming, U. Brohede, M. Stromme, Finite element analysis of the release of slowly dissolving drugs from

cilyndrical matrix systems, J. of Controlled Release, 107 (2005), 320–329.



Substrate erosion models

Surface erosion model:

x(t)

∂td = D∆d − ∂ts,

∂ts = −kd s
2
3 (ǫcs − d),

x(t)= L − Bt ,

the erosion velocity B

is determined experimentally.

Bulk erosion model:

∂t d = D∆d − ∂t s,

∂t s = −kd m(ǫcs − d),

∂t m= kem0 exp(−ket),

m: monomer concentration

clevage of polymer chains

monomer formation ⇔ drug dissolution
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Drug release in the arterial wall

Ωc : stent coating
releasing the drug

Concentration d(t , x)

Two subregions: Ωw : arterial wall
absorbing the drug

Concentrations

free drug
z }| {

a(t , x)
b(t , x)
| {z }

free binding sites

and c(t , x)
| {z }

=b0−b

Governing operators:

diffusion
(with ǫcs ≃ d0)

Lcd := −Dc∆d

Bcd := ∇d · nc

Interface conditions:

mass balance

B(a, d) :=


a − d
Dw∇a · n − Dc∇d · n

Governing operators:

diffusion and transport

Lw a := −Dw ∆a + u · ∇a,

B fw a := −Dw∇a · nw + Pw a

Reaction

a + b
k1
→ c, c

k2
→ a + b

Nw (a, b) := k1ab + k2(b − b0)

Sakharov D.V., Kalachev L.V., Rijken D.C., Numerical simulation of local pharmacokinetics of a drug after

intravascular delivery with an eluting stent, J. Drug Targ., 10(6), 507–513, 2002.
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A mathematical model for drug release in arteries

Governing equations
for the stent and the arterial wall:

Γfw

Γout

Γin
Γs,f

Γs,w

8

>>>>>>>><

>>>>>>>>:

∂ta + Lw a + Nw(a, b) = 0, in (0, T ] × Ωw ,

∂td + Lcd = 0, in (0, T ] × Ωc ,

∂tb + Nw(a, b) = 0, in (0, T ] × Ωw ,

Bfw a = 0, on (0, T ] × Γfw ,

Bcd = 0, on (0, T ] × ∂Ωc \ Γs,w ,

B(a, d) = 0, on (0, T ] × Γs,w ,
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A mathematical model for drug release in arteries

Governing equations for the stent,
the arterial wall and the lumen:

Γfw

Γout

Γin
Γs,f

Γs,w

8

>>>>>>>>>>>>><

>>>>>>>>>>>>>:

∂taw + Lw aw + Nw (aw , b) = 0, in (0, T ] × Ωw ,

∂taf + Lf af = 0, in (0, T ] × Ωf ,

∂td + Lcd = 0, in (0, T ] × Ωc ,

∂tb + Nw (a, b) = 0, in (0, T ] × Ωw ,

Bfw(af , aw ) = 0, on (0, T ] × Γfw ,

Bcd = 0, on (0, T ] × ∂Ωc \ (Γs,f ∪ Γs,w ),

B(aw , d) = 0, on (0, T ] × Γs,w ,

B(af , d) = 0, on (0, T ] × Γs,f ,

with Bfw(af , aw) :=

(

−Dw∇aw · nw − Pw (aw − af )

−Dw∇aw · nw − Df∇af · nf



Fluid dynamics

Drug can be transported by blood flow and plasma filtration inside the tissue.

Incompressible Navier-Stokes equations on a rigid domain are applied for
blood flow:

8

>>><

>>>:

∂tu f − µ∆u f + (u f · ∇)u f + ∇pf = 0 and ∇ · u f = 0, in (0, T ] × Ωf ,

u f = u in(t) on (0, T ] × Γin,

pf n f − µ∇u f n f = 0 on (0, T ] × Γout ,

u f = 0 on (0, T ] × Γfw ,

Filtration of plasma is described by Darcy’s law of filtration:

(

uw + kw
µw

∇pw = 0in (0, T ] × Ωw , and ∇ · uw = 0 in (0, T ] × Ωw ,

pw − δpf (t) = 0on Γfw ,

Time dependent data may account for blood pulsatility.



Computational limitations - multiple space scales

length ≃ 10 mm
diameter ≃ 3 mm
thickness ≃ 5 µm

the set up of a
conforming and regular
computational mesh is
extremely demanding

a multiscale approach
is required to treat

realistic geometries

Assumption: in Ωc the derivatives in the normal direction
w.r.t Γ are much larger than the tangential ones.
⇒ reduced model for the unknown d(t , z), for any x ∈ Γ. z

Γ



Computational limitations - multiple space scales

length ≃ 10 mm
diameter ≃ 3 mm
thickness ≃ 5 µm

the set up of a
conforming and regular
computational mesh is
extremely demanding

a multiscale approach
is required to treat

realistic geometries

Assumption: in Ωc the derivatives in the normal direction
w.r.t Γ are much larger than the tangential ones.
⇒ reduced model for the unknown d(t , z), for any x ∈ Γ. z

Γ



Computational limitations - multiple space scales

length ≃ 10 mm
diameter ≃ 3 mm
thickness ≃ 5 µm

the set up of a
conforming and regular
computational mesh is
extremely demanding

a multiscale approach
is required to treat

realistic geometries

Assumption: in Ωc the derivatives in the normal direction
w.r.t Γ are much larger than the tangential ones.
⇒ reduced model for the unknown d(t , z), for any x ∈ Γ. z

Γ



Computational limitations - multiple space scales

length ≃ 10 mm
diameter ≃ 3 mm
thickness ≃ 5 µm

the set up of a
conforming and regular
computational mesh is
extremely demanding

a multiscale approach
is required to treat

realistic geometries

Assumption: in Ωc the derivatives in the normal direction
w.r.t Γ are much larger than the tangential ones.
⇒ reduced model for the unknown d(t , z), for any x ∈ Γ. z

Γ



Model reduction for the stent coating (I)
A review of the Higuchi model

8

>>><

>>>:

∂t d − Dc ∂2
z d = 0 in (0, T ] × (−∞, 0),

∂zd = 0 on (0, T ] × {z = −∞},
d = 0 on (0, T ] × {z = 0},
d = d0 on {t = 0} × (−∞, 0),

indefinite slab

stent coating arterial wall

perfect sink

z = 0 z

d(t2, z)

d(t0, z)
d(t1, z)

d(t3, z)

Exact solution of the model:

d(t , z; x)

d0
= 1 − erf

„
z√

4Dct

«

, z ∈ (−∞, 0), t ∈ (0, T ], x ∈ Γ,

Explicit expression of the drug release rate (flux):

J(t ; x) = −Dc∂zd(t , z = 0; x) =

s

Dcd2
0

πt
, t ∈ (0, T ], x ∈ Γ.

This model is reliable for short time scales.

The total amount of drug that is released is unbounded!
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Model reduction for the stent coating (II)
An improved model

8

>>><

>>>:

∂t d − Dc ∂2
z d = 0 in (0, T ] × (0, ∆l),

∂zd = 0 on (0, T ] × {z = 0},
d = a(t , x) on (0, T ] × {z = ∆l},
d = d0 on {t = 0} × (0, ∆l),

stent coating arterial wall

finite slab

z = ∆l

a(t, x)

d0

zz = 0
If a(t , x) is quasi-steady:

d(t , z) − a(t , x)

d0 − a(t , x)
=

∞X

n=0

2(−1)n

(n + 1/2)π
e−(n+1/2)2kt cos

““

n +
1
2

”

π
z
∆l

”

,

Explicit expression of the Dirichlet to Neumann map:

−Dc∂zd(t ,∆l ; x)
| {z }

Neumann

= ϕ1(t)(d0 − a(t , x)
| {z }

Dirichlet

), ϕ1(t) :=
2Dc

∆l

∞X

n=0

e−(n+1/2)2kt

− Dc∂zd(t , ∆l ; x) = Dw∇a · nw

⇒ Robin-type coupling condition for drug release.
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A multiscale boundary conditions for drug release

The original model for drug release in the arterial wall:
8

>>>>>>>><

>>>>>>>>:

∂ta + Lw a + Nw(a, b) = 0, in (0, T ] × Ωw ,

∂td + Lcd = 0, in (0, T ] × Ωc ,

∂tb + Nw(a, b) = 0, in (0, T ] × Ωw ,

Bfw a = 0, on (0, T ] × Γfw ,

Bcd = 0, on (0, T ] × ∂Ωc \ Γs,w ,

B(a, d) = 0, on (0, T ] × Γs,w ,

reduced model for Ωc ⇒ boundary conditions on the (virtual) interface Γ:

8

>>><

>>>:

∂ta + Lw a + Nw (a, b) = 0, in (0, T ] × Ωw ,

∂tb + Nw(a, b) = 0, in (0, T ] × Ωw ,

Bfw a = 0, on (0, T ] × Γfw ,

Ba := Dw∇a · nw + ϕ1(t)(a − d0) = 0, on (0, T ] × Γs,w .

C. Vergara, P. Zunino, Multiscale boundary conditions for drug release from cardiovascular stents, MOX Report

15/2007, to appear on Multiscale. Model. & Simul.
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Numerical discretization

Linear finite elements for the space discretization of a(t , x) and b(t , x).

Fixed point iterative method for the treatment of the nonlinear term Nw(a, b).

Implicit Euler scheme for the time discretization.

J(t) ≃
r

Dcd2
s

πt

⇒ The release rate is fast but
it progressively slows down.

⇒ Adaptive time stepping.

Control the fraction of released drug f (t) ⇒ a-priori adaptivity:

Higuchi model ⇒ f (t) :=
q(t)

q(∞)
=

r

4Dct
π∆l2

, t =
π∆l2

4Dc
f 2

Given a fixed increment η for f (t) we have:

f n = nη, tn =
π∆l2

4Dc
(f n)2, ∆tn =

π∆l2

4Dc
η2(2n − 1), n = 1, . . . , N.
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Numerical Results - Drug release in the arterial wall

Geometrical model:
the stent and

the artery

Dissolved drug inside
the arterial walls

a(t , x):

Time scale: 3 days.

Extracelluar sites
filled with drug

b(t , x):

Time scale: 3 days.

Life V C++ finite element library (PoliMi-EPFL-Inria) www.lifeV.org

◮ the distribution of the drug inside the wall is substantially influenced by
the geometrical design of the stent.

◮ drug in the vessel wall is mainly present in the state attached to the
specific sites of the extra-cellular matrix.



Postprocessing - Quantitative analysis

Drug release dynamics:

Mw (t) =
R

Ωw

`
a(t , x) + c(t , x)

´
dV

Mc(t) = ∆l
R

Γ
ρ(t , x)dσ
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Drug dose:

accumulative concentration

z(x) =
R T

0

`
a(t , x) + c(t , x)

´
dt

Residence times:

τ (x) = |supp{a(t , x)+c(t , x) > ǫ}|



Numerical Results - Fluid dynamics
The stent induces blood recirculation and 3D secondary flow patterns

blood streamlines

drug isosurface

blood streamlines

Secondary flows strongly influence
drug release in blood.
C. D’Angelo, P. Zunino, Numerical simulation of the in-

teraction between blood flow and drug release from

stents accepted on Numerical Mathematics and Ad-

vanced Applications, Springer, Proceedings of ENU-

MATH 2007, Graz, Austria, September 2007.



Coupled drug release in blood and arterial wall

drug on the lumenal surface Γfw , t = 40 s

drug flux on the lumenal surface Γfw , t = 40 s

drug concentration lumen and wall, t = 40 s

drug concentration lumen and wall, t = 1 h



Global analysis: blood flow, perfusion, mass transfer
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Aim : blood flow and mass transport through arteries and tissues
Issue : manage the complexity of the vascular network

Idea: to separate the scales

8

>>>><

>>>>:

Capillary matrix ⇒ homogeneization
⇒ 3D models (Ω)

Small vessels ⇒ model reduction
⇒ 1D models (λ)
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Problem setting

Blood flow and tissue perfusion:

pv : Λ → R blood pressure in the vessels (1D)
pt : Ω → R blood pressure in the tissue (3D)

Mass transfer:

uv : Λ → R vessel concentration of chemicals (1D)
ut : Ω → R tissue concentration of chemicals (3D)

Coupling terms:

φ(pt, pv) flow rate from the vessel to the tissue
θ(ut, uv) mass transfer from the vessel to the tissue
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3D-1D coupling for blood flow

◮ 1D hyperbolic model for blood flow into small vessels

◮ 3D Darcy model for the flow into the capillary matrix

Find pt, pv (pressures) and qv (flow rate) such that
8

>><

>>:

∂

∂t

»
pv

qv

–

+ H
∂

∂s

»
pv

qv

–

+ r(pv, qv) = 0, t > 0, s ∈ Λ,

Ct
∂

∂t
pt + ∇ · (Kt∇pt) + αpt − φ(pt, pv)δΛ = fp, t > 0, ∈ Ω,

with suitable BC/IC, and where φ(pt, pv), H and r(pt, pv) are defined by

H =

»
0 c−1

l−1 0

–

, r(pv, qv) =

»
c−1φ
rqv

–

,

φ(pt, pv) = β(pv − p̄t), p̄t is the mean value of pt on the vessel surface

A. Quarteroni, L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system.

Handbook of numerical analysis. Vol. XII, 3–127, Handb. Numer. Anal., XII, North-Holland, Amsterdam, 2004.
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3D-1D models for mass transfer

◮ 1D advection-diffusion-reaction model for small vessels

◮ 3D transport model for the capillary matrix

Find the concentrations ut, uv such that
8

>><

>>:

A0
∂

∂t
uv +

∂

∂s

„

−A0Dv
∂uv

∂s
+ qvuv

«

+ φ(pt, pv)uv = 0, t > 0, s ∈ Λ,

∂

∂t
ut + ∇ · (−Dt∇ut + vut) + ωtut − θ(ut, uv)δΛ = fu, t > 0, ∈ Ω,

with suitable BC/IC, where

ωt = α(pt − pbed), v =
1
nb

Kt∇pt, θ(ut, uv) = γ(uv − ūt).

where ūt is the mean value of ut on the vessel surface
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Analysis of a model problem for mass transfer

A simplified problem featuring 3D-1D coupling:
8

><

>:

−∇ · (k∇u) + β(ū − u0)δΛ = 0 in Ω,

−k
∂u
∂n

= 0 on ∂Ω,

Weighted spaces : let H1
α(Ω) be the completion of C∞(Ω) w.r.t. the norm

‖f‖2
H1

α
(Ω) :=

Z

Ω

f (x)2dist(x , Λ)2α dx +

Z

Ω

|∇f (x)|2dist(x , Λ)2α dx , with |α| < 1

Let k ∈ L∞(Ω), β ∈ L∞(Λ), u0 ∈ L2(Λ), with k ≥ k0 > 0 in Ω, and

a(u, v) =

Z

Ω

k∇u · ∇v d + β

Z

Λ

ū(s)v(s)ds, F (v) = β

Z

Λ

u0(s)v(s)ds.

Theorem : there is δ ∈ (0, 1) and a positive function βmax(α) such that if
α ∈ (0, δ) and ‖β‖∞ ≤ βmax(α), problem a(u, v) = F (v) ∀v ∈ H1

−α(Ω),
admits a unique solution u ∈ H1

α(Ω). (from the Banach-Babuska-Necas Th.)
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Numerical approximation

FE semi-discretization Implicit Euler for time.

Geometrical model: given a 3D mesh the 1D model lies on its edges:

Finite elements:

test space 6= search space ⇒
The convergence of the FE
scheme lays on an inf − sup
condition for a(·, ·).

Time stepping:

fast flow in the 1D vessels and
slow flow in the 3D matrix

⇒
multirate scheme, different
time steps for the two sub-
problems.



Application: blood flow and oxygen transport

Numerical simulation of a branching artery and the surrounding tissue.

Blood perfusion. Oxygen transport.



New perspective: 1D models for stents

what to do if the stent pattern is too complex?

Approximate the stent structure with 1D segments.



Conclusions

Local-to-global model interaction is at the basis of the study of mass transfer
in the vascular system.

Scales Problem Model
Micro Capillary matrix, cells etc. local models

⇓
Meso small vessels, micro-devices etc. PDEs(1D)

model reduction
homogeneization

⇓
Macro vascularized tissues, organs etc. PDEs(3D)

Pharmacokineitc models play a fundamental role in medical applications:

◮ stents

◮ bone implants

◮ etc.
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