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Overview

• LP formulations of the (package) assignment

model

• Sealed-bid and ascending-price auctions are

different solution methods to the LP formu-

lation

• Focus on the Vickrey-Clarke-Groves (VCG)
auction

– Each buyer demands only one indivisible object

– A buyer may demand multiple indivisible objects
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The combinatorial auction setting

� An auctioneer with indivisible units of K

commodities for sale, ω ∈ ZK
+

� B buyers, indexed b = 1, 2, ..., B

� Buyer b has non-decreasing utility over (zb, m)

zb is a package of the indivisible objects

m is a divisible good (money)

Ub(z, m) = ub(z) + m

� Each buyer knows his utility function; it is

his private information

How to conduct an auction that maximizes the

gains from trade?
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Incentive compatibility

A buyer bids truthfully if his bids on packages

are equal to his utilities.

An auction is dominant strategy incentive com-

patible if each buyer maximizes his payoff by

bidding truthfully regardless of what strategy

other buyers follow.

An auction is ex post incentive compatible if

each buyer maximizes his payoff by bidding truth-

fully as long as other buyers bid truthfully.
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Marginal products of buyers1

The (maximum) gains from trade are

V (N) ≡ max{
B∑

`=1
u`(z`)|

B∑
`=1

z` ≤ ω}

where N = {s, 1, 2, ..., B}. The maximum is

attained at an efficient assignment Z∗ = (z∗1, z
∗
2, ..., z

∗
B).

Gains from trade when buyer b is excluded:

V (N\b) ≡ max{∑
6̀=b

u`(z`)|
∑
`
z` ≤ ω}

Buyer b’s marginal product is

MPb ≡ V (N)− V (N\b)

Let Z∗ = (z∗1, z
∗
2, ..., z

∗
B) be an efficient alloca-

tion (at which V (N) is attained). Buyer b’s

social opportunity cost is

SOCb ≡ V (N\b)− ∑
6̀=b

u`(z
∗
` )

1Seller’s marginal product MPS = V (N). However, seller is not viewed as a strategic
player with private information so MPS will play no role. The seller defines the rules of
the auction and steps back.
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A sealed-bid VCG auction is efficient and

dominant strategy incentive compatible

1. Buyers submit sealed-bids, one for each bundle.

2. Compute the assignment that maximizes the sum of

submitted bids.

3. For each buyer, compute the assignment that maxi-

mizes sum of bids with the buyer excluded.

4. Each buyer receives the allocation computed in 2,

and pays his social opportunity cost (computed un-

der the presumption that bidding is truthful).

In any selling scheme no buyer can hope to ex-

tract more than his marginal product. In the

VCG auction, buyer b’s surplus is

ub(z
∗
b )−SOCb = ub(z

∗
b )−[V (N\b)−∑

6̀=b
u`(z

∗
` )] = MPb

where Z∗ = (z∗b ) is the efficient assignment from

step 2., and V (N\b) is from step 3.
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Proof that VCG auction is dominant strategy

Let v`(z`), ` 6= b, be the bids of bidders other than b. (It

does not matter whether bidders ` 6= b bid truthfully.)

Bidder b is truthful: submits ub(zb) as bids.

Bidder b lies: submits vb(zb) as bids.

The VCG allocations are

Bidder b is truthful: (z∗1, z
∗
2, ..., z

∗
B)

Bidder b lies: (z′1, z
′
2, ..., z

′
B)

VCG auction rules imply

ub(z
∗
b ) +

∑
6̀=b

v`(z
∗
` ) ≥ ub(z

′
b) +

∑
6̀=b

v`(z
′
`)

To compute VCG payments let

∑
6̀=b

v`(ẑ`) ≥
∑
6̀=b

v`(z`), ∀(z`)

Then,

ub(z
∗
b )−

[ ∑
6̀=b

v`(ẑ`)−
∑
6̀=b

v`(z
∗
` )

]
≥ ub(z

′
b)−

[ ∑
6̀=b

v`(ẑ`)−
∑
6̀=b

v`(z
′
`)

]
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The assignment model

Koopmans & Beckman (1957), Gale (1960), Shapley & Shu-

bik (1972), Gretsky, Ostroy & Zame (1999)

� B buyers, indexed b.

� S sellers (or rather objects), indexed s. Each

seller’s cost is zero.

� Each buyer has utility for one object. Unit

demand assumption.

ubs buyer b’s utility for object s, ubs ≥ 0.

xbs “fraction” of object s allocated to buyer b.

ps price of s.

πb = maxs{ubs − ps, 0} is buyer b’s surplus

� No budget constraint: Each b’s endowment

of money > maxs ubs
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Definitions

• A feasible assignment, (b, sb)b, is an alloca-

tion of sellers (objects) to buyers.

• An efficient (feasible) assignment maximizes

the sum of utilities of buyers.

• A vector of prices p = (p1, p2, ..., pS) is Wal-

rasian if it supports a feasible assignment,

(b, sb)b. That is

ub sb
− psb

≥ ubs − ps, ∀s, ∀b.

Results

�Walrasian prices exist in the assignment

model.

� The set of assignments supported by a

Walrasian price vector is the set of effi-

cient assignments.
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A linear programming formulation of

the assignment model

LP1

max
n∑

b=1

n∑
s=1

ubsxbs

s. t.

∑
s

xbs ≤ 1, ∀b∑
b
xbs ≤ 1, ∀s

xbs ≥ 0

DLP1, dual of LP1

min
n∑

b=1
πb +

n∑
s=1

ps

s.t.

πb + ps ≥ ubs, ∀b, s

πb, ps ≥ 0
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Linear programming characterization

1. All extreme points of LP1 are integer.

2. Any efficient assignment is a solution to

LP1.

3. DLP1 solution set is the set of Walrasian

prices and buyer surpluses.

4. One corner of the DLP1 solution set is

the smallest Walrasian price vector.

5. This corner simultaneously gives each buyer

his marginal product.

6. Any efficient auction finds a solution to

LP1.

7. The sealed-bid VCG auction implements

corner of DLP1 preferred by all buyers.
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Sealed-bid VCG auction in the assignment

model

1. Implements the smallest Walrasian price (i.e.,

price at which Demand = Supply).

• The smallest Walrasian price exists.

2. At the smallest Walrasian price each bidder

gets his marginal product.

• This smallest price is the only market

clearing price at which Demand = Sup-

ply after any single buyer is removed from

the economy.

Ascending-price implementation of VCG

auction

1. A dynamic mechanism for discovering the

smallest price at which Demand = Supply.

2. A primal-dual algorithm on the LP formu-

lation of the underlying exchange economy.

11



An ascending-price VCG auction in the

assignment model (Demange, Gale, and Sotomayor 1986)

The following auction is ex post incentive com-

patible.

0. Start with price zero for each object.

1. Buyers report their demand sets at current

prices. If there is no overdemanded set, go

to Step 3; otherwise go to Step 2.2

2. Choose a minimal overdemanded set. Raise

prices of all objects in this set until some

buyer changes his demand set. Go to Step 1.

3. Assign each buyer an object in his demand

set at current prices. Stop.

T – a subset of objects.

I(T ; p) – set of buyers whose demand at prices p is

in T.

T is overdemanded if |I(T ; p)| > |T |.

2An assignment is feasible iff there is no overdemanded set (Hall 1935).
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Buyers’ utilities

A B φ

u1 4 7 0

u2 8 7 0

u3 6 4 0

Steps in the auction

pA pB D1 D2 D3 OD

− 0 0 B A A {A}
0 < θ < 1 θ 0 B A A {A}
− 1 0 B A, B A {A, B}

0 < θ < 5 1 + θ θ B A, B A {A, B}
− 6 5 B A, B φ, A ∅
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The auction as a primal-dual algorithm

• Fix a DLP1 feasible solution, (π0
b , p0

s)

• b’s demand set at prices (p0
s):

Db(p
0) = { s |π0

b = ubs−p0
s ≥ ubs′−p0

s′,∀s′}

• xbs ≥ 0 satisfies complementary slackness

w.r.t. (π0
b , p0

s):

If xbs > 0 then s ∈ Db(p
0).

• Solutions which satisfy complementary slack-

ness w.r.t. (π0
b , p0

s) (but are not necessarily

LP1 feasible) are in the feasible region of

RP1 below.
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RP1

min
N∑

b=1

N∑
s=1

c0
sws

s. t.
∑

s∈Db(p
0)

xbs = 1, ∀b
∑

{b|s∈Db(p
0)}

xbs − ws = 1, ∀s ∈ ∪bDb(p
0)

xbs, ws ≥ 0,

where

c0
s =


1, if s in minimal overdemanded set at prices p0

0, otherwise.

DRP1

max
∑
b
µb +

∑
s

νs

s. t.

µb + νs ≤ 0, ∀b, s ∈ Db(p
0)

νs ≤ cs, ∀s.

New variables in DRP1 and RP1:

• ws is amount of excess demand for object s.

• µb is rate of decrease of b’s surplus.

• νs is rate of increase of price of object s.
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The ascending-price auction

0. Start with price zero for each object.

1. Buyers report their demand sets at current prices. If there

is no overdemanded set, go to Step 3; otherwise go to Step 2.

2. Choose a minimal overdemanded set. Raise prices of all

objects in this set until some buyer changes his demand

set. Go to Step 1.

3. Assign each buyer an object in his demand set at current

prices. Stop.

The primal-dual algorithm

0. Let i = 0 and let the initial DLP1 feasible solution be p0 = 0

(with the implied πb’s).

1. Obtain LP1 “solution” satisfying complementary slackness

w.r.t. prices pi. If solution is LP1 feasible go to Step 3;

otherwise go to Step 2.

2. Compute minimal overdemanded set and use it to deter-

mine objective fn. coefficients of RP1. Increase pi in the

direction indicated by solution to DRP1, until further in-

creases render DRP1 infeasible; call this price pi+1. Incre-

ment i← i + 1. Go to Step 1.

3. Assign each buyer an object in his demand set at current

prices. Stop.
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The Package Assignment Model

(Bikhchandani and Ostroy 2002)

• B buyers, b = 1, 2, ..., B.

• 1 seller, indexed s.

• k=1,2,...,K distinct indivisible commodities.

• ω ∈ ZK
+ , endowment of seller s.

• N = {s, 1, 2, ..., B} is the set of agents.

• Agent’s utility functions

Ub(z, m) = ub(z) + m, ∀b.
Us(y, m) = m, 0 ≤ y ≤ ω.

• No budget constraint:

Each b’s endowment of money > ub(ω)

• All agents are price takers.
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An efficient assignment maximizes the sum of

buyers’ utilities:

Z∗ ≡ arg max
Z=(zb)

{
B∑

b=1
ub(zb)|

∑
b
zb ≤ ω}.

A pricing function is 〈pb(z)〉, ∀z ≤ ω, ∀b.

The price paid or received for a package may

be non-linear in the objects in the package and

may different for different buyers, i.e., non-anonymous.

The revenue received by the seller for feasible

assignment Z = (zb) is

P (Z) ≡
B∑

b=1
pb(zb).
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A pricing equilibrium is a [ Z∗ = (z∗b ), 〈p∗b(·)〉 ]
such that p∗b(·) ≥ 0, and

• Z∗ is a feasible assignment,

• buyers maximize utilities: for all b,

ub(z
∗
b )− p∗b(z

∗
b ) ≥ ub(z)− p∗b(z), ∀z

• seller maximizes profits: for all feasible as-

signments Z ′

P ∗(Z∗) ≥ P ∗(Z ′).

To rationalize non-linear, non-anonymous pricing, impose

the following trade restrictions:

B1. Each buyer may buy at most one package from the

seller

B2. Buyers may not resell packages to each other after

buying from the seller
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A Linear Programming Formulation

LP2

max
B∑

b=1

∑
z

xb(z)ub(z)

s.t.

∑
z

xb(z) = 1, ∀b (1)∑
Z

xs(Z) = 1 (2)

xb(z)− ∑
Z∈Gb(z)

xs(Z) = 0, ∀z, ∀b (3)

xb( · ), xs( · ) ≥ 0

xb(z) is fraction of package z consumed by b

xs(Z) is fraction of assignment Z sold

Gb(z) is the set of assignments in which b

gets package z.

(1) Sum of fractions of packages bought is = 1

for each buyer.

(2) Sum of fractions of assignments sold is = 1.

(3) Demand = Supply.
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πb = maxz{ub(z)− pb(z)} is buyer b’s surplus

πs = maxZ{P (Z)} is seller’s revenue (profit)

DLP2

min
πs,(πb)

πs +
B∑

b=1
πb

s.t.

πb − [ub(z)− pb(z)] ≥ 0, ∀z ∀b
πs − P (Z) ≥ 0, ∀Z = (zb)

Complementary slackness

Utility max. xb(z)[πb − (ub(z)− pb(z))] = 0

Profit max. xs(Z)[πs − P (Z)] = 0

If LP2 has an integer-valued optimal solution

then solutions to DLP2 are pricing equilibria.
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The set of efficient assignments are (inte-

ger) optimal solutions to LP2.

1. All extreme points of feasible region of LP2

are integer valued.

[ Z∗ = (z∗b ), 〈p∗b(·)〉 ] is a pricing equilib-

rium if and only if Z∗ is an optimal so-

lution to LP2 and 〈p∗b(·)〉 is an optimal

solution to DLP2.

2. Pricing equilibrium exists.

3. Pricing equilibrium outcomes are efficient.

However, pricing equilibria may be manipula-

ble. (That is, an auction with payments determined by

a pricing equilibrium may not be incentive compatible.)
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Existence of non-manipulable prices

Buyers are substitutes if for any subset of buy-

ers T

MPT ≥
∑

b∈T
MPb
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Existence of non-manipulable prices

MPb is an upper-bound on pricing equilibrium

payoffs of buyer b

Define 〈pb(·)〉 as a marginal product (mp) pric-

ing equilibrium if π∗(pb) = MPb, ∀b.

Equivalently, an mp pricing equilibrium satisfies

pb(z
∗
b ) = social opportunity cost of z∗b , ∀b.

An mp pricing equilibrium exists if and

only if buyers are substitutes.

〈pb(·)〉 is an mp pricing equilibrium for E
if and only if for all b, 〈pb(·)〉b′ 6=b is a pric-

ing equilibrium for E−b.

An mp pricing equilibrium (and only an mp

pricing equilibrium) is non-manipulable.
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Buyers are substitutes 
Buyer b’s 

     payoff 

 

 

        VCG auction 

MPb        payoff point 

 

 

 

 

 

 

 

  Projection of 

  pricing equilibrium 

  payoffs 

 

 

 

             MPb
o  Buyer b 

          payoff 

 

Figure 1a:  Projection of pricing equilibrium payoffs into the 

space of payoffs of any two buyers, when (all) buyers are 

substitutes 
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Buyers are not substitutes 
Buyer b’s 

     payoff 

 

 

        VCG auction 

MPb        payoff point 

 

 

 

 

 

 

 

  Projection of 

  pricing equilibrium 

  payoffs 

 

 

 

             MPb
o  Buyer b 

          payoff 

 

Figure 1b:  Projection of pricing equilibrium payoffs into the 

space of payoffs of two buyers, when buyers are not 

substitutes 
 



Gross substitutes condition on utilities.

The demand sets at two linear price vectors P = (p1, p2, ..., pK),

P = (p1, p2, ..., pK):

Db(P ) ≡ arg max
z
{ub(z)− P · z}

Db(P ) ≡ arg max
z
{ub(z)− P · z}

Let

S(P , P ) ≡ {k ∈ K| pk = pk }

For any z, define zS

zS
k ≡

 zk if k ∈ S

0, otherwise.

The utility function ub(·) satisfies gross substitutes if

P ≤ P then for any z ∈ Db(P ) there exists z ∈ Db(P )

such that zS ≤ z.

If buyers’ utilities are gross substitutes then buyers

are substitutes.

Gross substitute functions satisfy discrete concavity

(Murota 2003)
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Ascending-price auctions as primal-dual

algorithms

If buyers are substitutes, then ascending-price

auctions that implement the sealed-bid VCG

auction outcome exist.

• Formulate an “appropriate” LP which yields

efficient assignments.

• One solution to dual of LP is a non-manipulable

price vector.

• Run a primal-dual algorithm which finds the

non-manipulable price vector.

In order to get an ex post incentive compatible

auction, primal-dual algorithm must end at an

mp pricing equilibrium.
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Ascending-price VCG auctions

• Homogeneous objects

Decreasing marginal utility (Ausubel 1997)

• Heterogeneous objects

Gross substitutes (de Vries, Schummer, and Vohra 2007)

In all of the above settings

� The buyers are substitutes condition is sat-

isfied

� The nice properties of auctions under unit

demand assumption extend
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Ascending-price but not VCG auctions

• Heterogeneous objects

Gross substitutes: (Kelso and Crawford 1982),

(Gul and Stacchetti 2000)

Without gross substitutes assumption: (Parkes

and Ungar 2002), Ausubel and Milgrom 2002)

These auctions are not ex post incentive com-

patible.

If bidders bid truthfully then these auctions yield

an efficient assignment. But no reason to expect

truthful bidding.
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Efficient, ascending-price auctions in private value models with quasilinear utility 
 

 

 

MODEL/PAPER 

 

BUYERS ARE 

SUBSTITUTES? 

IMPLEMENT MP 

PRICING 

EQUILIBRIUM? 

 

INCENTIVE 

COMPATIBLE? 

ASCENDING-

PRICE VICKREY 

AUCTION? 

 

Assignment Model  

(CK, DGS) 

 

 

Yes 

Yes  

(smallest Walrasian 

equilibrium) 

Ex post incentive 

compatible 

(EPIC) 

 

 

Yes 

Homogenous objects, 

diminishing marginal 

utility (A1) 

 

 

Yes 

 

 

Yes 

 

 

EPIC 

 

 

Yes 

Heterogeneous objects, 

gross substitute preferences 

(KC, GS, M) 

 

 

Yes 

No  

(Walrasian but not 

MP pricing eq.) 

 

 

No 

 

 

No 

Heterogeneous objects, 

gross substitute preferences 

(A2, AM, dVSV) 

 

 

Yes 

 

 

Yes 

 

 

EPIC 

 

 

Yes 

 

Minimum Spanning Tree 

(BdVSV
 
) 

 

 

Yes 

 

 

Yes 

 

 

EPIC 

 

 

Yes 

Heterogeneous objects, no  

restriction on preferences 

(PU, AM, dVSV) 

 

 

No 

No 

(MP pricing eq. 

need not exist) 

 

 

No 

 

 

No 
 

 

Abbreviations:  
 

A1:  Ausubel (1997)      A2: Ausubel (2000) 

AM: Ausubel and Milgrom (2002)    BdVSV  Bikhchandani, de Vries, Schummer, and Vohra (2002) 

CK:  Crawford and Knoer (1981)    DGS: Demange, Gale, and Sotomayor (1986) 

DVSV: de Vries, Schummer, and Vohra (2003)   KC:  Kelso and Crawford (1982) 

GS:  Gul and Stacchetti (2000)    M: Milgrom (2001) 

PU: Parkes & Ungar  (2000) 



Summary

When buyers are substitutes, an ascending-price

VCG auction is:

1. A dynamic mechanism for discovering an

mp pricing equilibrium.

A. An mp pricing equilibrium exists.

B. An mp pricing equilibrium is the only

pricing equilibrium at which Demand =

Supply after any single buyer is removed

from the economy.

2. Gives each bidder his marginal product. That

is, it implements the VCG auction.

3. A primal-dual algorithm on an appropriate

LP formulation of the underlying exchange

economy.
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Limitations

Very little is known about combinatorial auc-

tions when

• Budget constraints

• Information externalities

• Consumption externalities
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