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Brownian motion: a Gaussian process

Independent increments: Bt2 − Bt1 and Bt3 − Bt2
independent

Stationary increments with Bt − Bs ∼ N(0, t − s)

Continuous sample paths, but nowhere differentiable

Reference:
I. Karatzas and S. E. Shreve,
Brownian Motion and Stochastic Calculus
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A sample path for Brownian motion Bt(ω)
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A math model for Gaussian white noise d
dt Bt(ω)

Generalized time derivative of Brownian motion

Reason: Fourier transform of correlation of d
dt Bt(ω) is constant

Spectrum is constant: White light (Therefore: white noise)
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Lévy motion Lt(ω): a non-Gaussian process

Independent increments: Lt2 −Lt1 and Lt3 −Lt2 independent

Stationary increments Lt − Ls ∼ non-Gaussian distribution
(but depends only on t − s)

Stochastically continuous sample paths (continuous in
probability):

P(|Lt − Ls| > δ) → 0

when t → s, for all δ > 0.
Note: There exist a modification of Lt whose paths are
continuous from the right and have the left limits at every
time.

Reference:
D. Applebaum — Lévy Processes and Stochastic Calculus
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A sample path for Lévy motion Lt(ω)
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A math model for non-Gaussian white noise d
dt Lt(ω)

Generalized time derivative of Lévy motion

Reason: Fourier transform of correlation of d
dt Lt(ω) is constant

Spectrum is constant: White light (Therefore: white noise)
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Why Lévy motion Lt(ω): Jumps or flights

Abrupt change in geophysical processes

Extreme events (in weather and climate, etc)

For example:
1. Abrupt climate change such as Dansgaard-Oeschger
events.

Ditlevsen 1999: Ice record
2. Diffusion of scalars in some geophysical flows: Pauses
& jumps/flights

Shlesinger et al.: Lévy Flights and Related Topics in
Physics 1995
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Random vs. deterministic variables

Random variable x(ω): dice
Ω is sample space (space of multiple chances)
Ω = 1, 2, 3, 4, 5, 6

Deterministic variable x : ball
Ω has a single element (single chance)
Ω = 1
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Random vs. deterministic orbits

Random orbit: x(ω, t)
Ω is sample space (space of chances)
Multiple realizations!

Deterministic orbit: x(t)
Ω = 1
Single realization!
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Comparison

Deterministics: Play a ball (only one sample)

Stochastics: Play a dice (multiple sample)

Random dynamical systems: Play Brownian motion, or
Lévy motion, or other noises
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Deterministic Dynamical Systems

x ′ = f (x) , x(0) = x0

Solution map: ϕ(t , x0)
“Flow" property: ϕ(t + s, x0) = ϕ(t , ϕ(s, x0))
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What is a random dynamical system?

Driving system (noise)

Stochastic flow property (“Cocycle")
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Definition of Random Dynamical Systems

Driven flow & Cocycle property

• Model for noise: Driven flow
(Ω,F , P) — a probability space.
{θt}t∈IR be a measurable flow on Ω:

θ : IR × Ω → Ω

such that
(1) θ is (B(IR) ⊗F ,F)-measurable;
(2) θ0 = idΩ, θt1 ◦ θt2 = θt1+t2 , t1, t2 ∈ IR.

Driven flow: P-preserving measurable flow.
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• Model for evolution: Cocycle property ( “stochastic flow" )
A measurable random dynamical system on the measurable
space (H,B) over a driven flow (Ω,F , P, θt) is a mapping

ϕ : IR+ × Ω × H → H

with Measurability : ϕ is (B(IR) ⊗F ⊗ B(H),F)-measurable,
and
Cocycle property :

ϕ(0, ω, x) = x ∈ H,

ϕ(t + s, ω, x) = ϕ(t , θsω, ϕ(s, ω, x)) (1)

for t , s ∈ IR+, ω ∈ Ω, and x ∈ H.
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Visualizing the cocycle property
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Stochastic Differential Equations with Brownian motion

dXt = f (Xt)dt + g(Xt)dBt , X0 = x

Drift: f (Xt)
Diffusion: g(Xt)
Solution map: ϕ(t , ω, x)

Does this generate a random dynamical system?

Reference:
B. Oksendal — Stochastic Differential Equations
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SDEs with Brownian motion

• Model for noise: Wiener shift θt

Canonical sample space Ω := C0(R, Rn) (set of continuous
functions)
Identifying sample paths: ω(t) ≡ Bt(ω)

θt : Ω → Ω

θtω(s) := ω(t + s) − ω(t)

• Model for evolution: solution map ϕ(t , ω, x) has cocycle
property
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SDEs with Brownian Motion: Generate a random dynamical
system

Under very general smoothness conditions on the coefficients,
a SDE driven by Brownian motion generates a random
dynamical system.

Reference:
L. Arnold — Random Dynamical Systems
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SDEs with Lévy motion

dXt = f (Xt)dt + g(Xt)dLt , X0 = x

Drift: f (Xt)
Diffusion: g(Xt)
Solution map: ϕ(t , ω, x)

Does this generate a random dynamical system?
Answer is incomplete, but very likely
Random dynamical systems driven by non-Gaussian
fluctuations

Reference: Kunita 2004
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Two approaches for SDEs

Dynamical systems approach:
Invariant sets – Stationary states, periodic orbits, recurrent
states, stable manifolds, unstable manifolds, ......

Sample path approach:
Estimating distribution of the solution orbits – Mean,
variance, correlation, large deviation, small probability events,
......
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Transport via Exit
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Exit time

dXt = f (Xt)dt + g(Xt)dBt , X0 given (2)

where f is an n−dimensional vector function, g is an n × m
matrix function, and Bt(ω) is an m−dimensional Brownian
motion.
The generator is local:

Av = (∇v)T f (x) +
1
2

Tr [g(x)gT (x)D2(v)], (3)

where D2 is the Hessain differential matrix and Tr denotes the
trace.

Exit time from a domain D: σx(ω) := inf{t : Xt ∈ ∂D}
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How to compute mean exit time?

Mean exit time u(x) := Eσx(ω):

Au = −1,

u|∂D = 0.

Refs: Naeh, Klosek, Matkowsky and Schuss 1990
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Transport via Exit
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How to compute exit probability?

For a solution orbit started at x ∈ D, which part of the boundary
does it escape through?
p(x): Exit probability from D through a part of the boundary
Γ ⊂ ∂D

Ap = 0,

p|Γ = 1,

p|∂D−Γ = 0.

Refs: Schuss; Brannan-Duan-Ervin; Evans
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Transport via Exit
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2D Example

ẋ = y + εḂ1
t

ẏ = −x − y3 + εḂ2
t
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Phase portrait for unperturbed system: ẋ = y , ẏ = −x − y3

x ’ = y        
y ’ = − x − y3
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Mean exit time from a domain: ε = 0.6
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Figure: u(x , y): Mean exit time for orbit staring at (x , y)
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Exit probability through a part of boundary: ε = 0.6
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Figure: p(x , y): Likelihood for orbit staring at (x , y) to escape
through Γ ⊂ ∂D
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1D Example: Exit time vs. noise intensity

ẋ = −x + x3 + εḂt

Potential function U(x) = 1
2x2 − 1

4x4:
−x + x3 = −U ′(x)
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Potential function U(x) for ẋ = −x + x3 = −U ′(x)
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Phase portrait for unperturbed system ẋ = −x + x3
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Mean exit time from an interval: ε = 0.5
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Mean exit time from an interval: ε = 0.3
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Mean exit time from an interval: ε = 0.08
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Theorem: Freidlin-Wentzell

Theorem

ẋ = −U ′(x) + εḂt ,

Mean exit time from a domain of an unperturbed stable
equilibrium:

Exσ(ε) ∼ O(e
1

ε
2 )
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1D SDE with non-Gaussian Lévy noise

dX ε
t = −U

′

(X ε
t )dt + εdLt , X0 = x

Potential function U(·) has a minimum at 0
Unperturbed system has a stable equilibrium at 0
Lévy process Lt(ω): Stationary and independent increments,
with jumps. The jumps are described by Lévy jump measure
ν(du) on R: ∫

R\{0}
(u2 ∧ 1) ν(du) < ∞,

or equivalently,

∫
R\{0}

u2

1 + u2 ν(du) < ∞.
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Lévy motion Lt(ω): a non-Gaussian process

Independent increments: Lt2 −Lt1 and Lt3 −Lt2 independent

Stationary increments Lt − Ls ∼ non-Gaussian distribution
(but depends only on t − s)

Sample paths are right continuous with left limits at every
time (“Càdlàg ").
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Lévy-Khintchine formula:

It is known that any Lévy process is completely determined by
the Lévy-Khintchine formula. This says that for any
one-dimensional Lévy process Lt , there exists a a ∈ R, d > 0
and a measure ν such that

EeiλLt = exp{iaλt−dt
λ2

2
+t

∫
R\{0}

(eiλu−1−iλu I{|u| < 1})ν(du)},

where I(S) is the indicator function of the set S, i.e., it takes
value 1 on this set and takes zero value otherwise.
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Intuition for Lévy jump measure ν(u)

ν(A): Number of jumps of “size" A, for A ⊂ R

ν(R − {0}): Intensity of jumps (how often it jumps)

For example:
ν(R − {0}) = ∞ ⇒ countable jumps on any finite time interval
ν(R − {0}) < ∞ ⇒ countable jumps on the whole time axis
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α-stable symmetric Lévy Noise

Lévy jump measure: ν(du) = 1
|u|1+α

(du), with 0 < α < 2
α = 2: Brownian motion Bt

Heavy tail for 0 < α < 2:

P(|Lt | > u) ∼ 1
uα

Light tail for α = 2:

P(|Bt | > u) ∼ e−u2/2
√

2πu
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α-stable symmetric Lévy Noise

Lévy jump measure: ν(du) = 1
|u|1+α

(du), with 0 < α ≤ 2
The generator is nonlocal:
A = −(−∆)

α

2

α = 2: Brownian motion Bt , generator A = ∆

Fractional Fokker-Planck equation: Schertzer et al 2001

Question: Exit time in terms of the nonlocal generator?
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Theorem: Exit time under α-stable Lévy Noise

Theorem

ẋ = −U ′(x) + εL̇t ,

Mean exit time from a domain containing an unperturbed stable
equilibrium:

Exσ(ε) ∼ 1
εα

Imkeller and Pavlyukevich 2006
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Another family of symmetric Lévy Noise

Lévy jump measure: ν(du) = f (ln |u|) du
|u|1+α

, with 0 < α < 2 and
f > 0 measurable
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Theorem: Mean exit time with a family of symmetric Lévy noises

Lemma

ẋ = −U ′(x) + εL̇t ,

with Lévy jump measure ν(du) = f (ln |u|) du
|u|1+α

.
Main assumption:

f (ln |u/ε|)
f̃ (ε)

du
|u|1+α

⇀ ν∗(du).

Mean exit time from [−b, a] containing an unperturbed stable
equilibrium:

Ex σ(ε) ∼ 1
ν∗(R \ [−b, a])

1

f̃ (ε)
.
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Ideas of Proof:

1. Estimating
∫

R\[−K ,K ] ν(d(u
ε ))

2. Weak convergence of measures f (ln |u/ε|)

f̃ (ε)
du

|u|1+α

3. Applying a result of Godovanchuk 1981
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A specific example of symmetric Lévy Noise

Lévy jump measure: ν(du) = 1
| ln |u||+1

du
|u|1+α

, with 0 < α < 2
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Theorem: Mean exit time with a specific Lévy noise

Theorem

ẋ = −U ′(x) + εL̇t ,

with Lévy jump measure ν(du) = 1
| ln |u||+1

du
|u|1+α

.
Mean exit time from a domain containing an unperturbed stable
equilibrium:

Exσ(ε) ∼ O(
| ln ε|
εα

)

Yang and Duan: 2008
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Mean exit time comparison

Mean exit times are in the order:

O(
1
εα

) < O(
| ln ε|
εα

) < exp(
C
ε2 ).

or symbolically:

Polynomial ≺ Combined polyn. and natural logarithm ≺ Exponential

Brownian noise ≺ Our noise ≺ α-stable symmetric Lévy Noise
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Conclusions

Non-Gaussian Lévy noise

Systems driven by non-Gaussian Lévy noise

Mean exit time estimate: exponential, polynomial,
combined polynomial & natural logarithm
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