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Brownian motion vs. Lévy motion

Brownian motion: a Gaussian process

@ Independent increments: By, — By, and By, — By,
independent

@ Stationary increments with By — Bs ~ N(0,t — s)
@ Continuous sample paths, but nowhere differentiable

Reference:
|. Karatzas and S. E. Shreve,
Brownian Motion and Stochastic Calculus



Brownian motion vs. Lévy motion

A sample path for Brownian motion  Bt(w)

A Scalar Brownian Motion
2 T T

Figure: Continuous path, but nowehere differentable



Brownian motion vs. Lévy motion

A math model for Gaussian white noise %Bt(w)

Generalized time derivative of Brownian motion
Reason: Fourier transform of correlation of %Bt (w) is constant

Spectrum is constant: White light (Therefore: white noise)



Brownian motion vs. Lévy motion

Lévy motion Li(w): a non-Gaussian process

@ Independent increments: Ly, — Ly, and Ly, — L, independent

@ Stationary increments Ly — Lg ~ non-Gaussian distribution
(but depends only ont — s)
@ Stochastically continuous sample paths (continuous in
probability):
P(|Ly — Lg| >6) — O

whent — s, forall § > 0.

Note: There exist a modification of L; whose paths are
continuous from the right and have the left limits at every
time.

Reference:
D. Applebaum — Lévy Processes and Stochastic Calculus



Brownian motion vs. Lévy motion

A sample path for Lévy motion  L¢(w)

A Levy Motion

Figure: Jumps!



Brownian motion vs. Lévy motion

A math model for non-Gaussian white noise %Lt (w)

Generalized time derivative of Lévy motion
Reason: Fourier transform of correlation of %Lt(w) IS constant

Spectrum is constant: White light (Therefore: white noise)



Brownian motion vs. Lévy motion

Why Lévy motion Li(w): Jumps or flights

@ Abrupt change in geophysical processes

@ Extreme events (in weather and climate, etc)

@ For example:
1. Abrupt climate change such as Dansgaard-Oeschger
events.

Ditlevsen 1999: Ice record
2. Diffusion of scalars in some geophysical flows: Pauses
& jumpsl/flights

Shlesinger et al.: Lévy Flights and Related Topics in
Physics 1995



Brownian motion vs. Lévy motion

Random vs. deterministic variables

@ Random variable x(w): dice
Q is sample space (space of multiple chances)
2=1,2,3,45,6
@ Deterministic variable x: ball
Q has a single element (single chance)
Q=1



Brownian motion vs. Lévy motion

Random vs. deterministic orbits

@ Random orbit: x(w,t)
Q is sample space (space of chances)
Multiple realizations!
@ Deterministic orbit: x(t)
Q=1
Single realization!



Brownian motion vs. Lévy motion

Comparison

@ Deterministics: Play a ball (only one sample)
@ Stochastics: Play a dice (multiple sample)

@ Random dynamical systems: Play Brownian motion, or
Lévy motion, or other noises



Brownian motion vs. Lévy motion

Deterministic Dynamical Systems

x"=f(x) ,x(0)=xo
Solution map: ¢(t, Xg)
“Flow" property: ¢(t + s,Xg) = ©(t, ©(S,X0))



Brownian motion vs. Lévy motion

What is a random dynamical system?

@ Driving system (noise)
@ Stochastic flow property (“Cocycle")



Brownian motion vs. Lévy motion

Definition of Random Dynamical Systems

Driven flow & Cocycle property

e Model for noise: Driven flow
(Q, F,P) — a probability space.
{6 }+cr be a measurable flow on :

0:IRxQ—Q

such that
(1) 0is (B(IR) ® F, F)-measurable;
(2) 6o = idq, Ot 0 b, = Oy 41,510, 12 € IR

Driven flow: P-preserving measurable flow.



Brownian motion vs. Lévy motion

e Model for evolution:  Cocycle property ( “stochastic flow" )
A measurable random dynamical system on the measurable
space (H, B) over a driven flow (22, F, P, 6;) is a mapping

0 :RTxQxH—-H

with Measurability : ¢ is (B(IR) ® F @ B(H), F)-measurable,
and
Cocycle property :
©(0,w,x) =% € H,
<p(t+S,w,X)Zgo(t,esw,cp(s,w,X)) (1)

fort,scIRT, we Q,and x € H.



Brownian motion vs. Lévy motion

Visualizing the cocycle property
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Systems driven by Gaussian noise

Stochastic Differential Equations with Brownian motion

dX; = f(X¢)dt +g(Xi)dB;, Xo =X

Drift: f(Xt)
Diffusion: g(Xt)
Solution map: ¢(t,w, x)

Does this generate a random dynamical system?

Reference:
B. Oksendal — Stochastic Differential Equations



Systems driven by Gaussian noise

SDEs with Brownian motion

e Model for noise: Wiener shift 6;

Canonical sample space Q2 := Co(R,R") (set of continuous
functions)

Identifying sample paths: w(t) = Bt(w)

HtZQ—>Q

biw(s) == w(t +5s) —w(t)

e Model for evolution:  solution map ¢(t,w, X) has cocycle
property



Systems driven by Gaussian noise

SDEs with Brownian Motion: Generate a random dynamical
system

Under very general smoothness conditions on the coefficients,
a SDE driven by Brownian motion generates a random
dynamical system.

Reference:
L. Arnold — Random Dynamical Systems



Systems driven by Gaussian noise

SDEs with Lévy motion

dX; = f(Xt)dt + g(Xt)st, Xo =X

Drift: f(Xt)
Diffusion: g(Xt)
Solution map: (t,w,X)

Does this generate a random dynamical system?
Answer is incomplete, but very likely
Random dynamical systems driven by non-Gaussian

fluctuations

Reference: Kunita 2004



Systems driven by Gaussian noise

Two approaches for SDEs

Dynamical systems approach:
Invariant sets — Stationary states, periodic orbits, recurrent
states, stable manifolds, unstable manifolds, ......

Sample path approach:
Estimating distribution of the solution orbits — Mean,
variance, correlation, large deviation, small probability events,



Systems driven by Gaussian noise

Transport via Exit

Figure:



Systems driven by Gaussian noise
Exit time

dX; = f(Xt)dt + g(Xt)dBt, Xo given (2)

where f is an n—dimensional vector function, gisann x m

matrix function, and B;(w) is an m—dimensional Brownian
motion.

The generator is local:
AV = (V¥)TH() + 3 Trg()g" ()D?(v)] ©

where D? is the Hessain differential matrix and Tr denotes the
trace.

Exit time from a domain D: ox(w) :=inf{t : X; € oD}



Systems driven by Gaussian noise

How to compute mean exit time?

Mean exit time u(x) := Eox(w):

Au = -1,
ulpp = 0.

Refs: Naeh, Klosek, Matkowsky and Schuss 1990



Systems driven by Gaussian noise

Transport via Exit

Figure:



Systems driven by Gaussian noise

How to compute exit probability?

For a solution orbit started at x € D, which part of the boundary
does it escape through?
p(x): Exit probability from D through a part of the boundary

rc oD
Ap = O,
p|r = 1>
plap-r = O.

Refs: Schuss; Brannan-Duan-Ervin; Evans



Systems driven by Gaussian noise

Transport via Exit

Figure:



Systems driven by Gaussian noise

2D Example

= y+eBt1
= —x—y®+eB?



Systems driven by Gaussian noise

Phase portrait for unperturbed system:

X=Yy, §y=-x-y°
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Systems driven by Gaussian noise

Mean exit time from a domain: ¢ =0.6
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Figure: u(x,y): Mean exit time for orbit staring at (x,y)



Systems driven by Gaussian noise

Exit probability through a part of
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Figure: p(x,y): Likelihood for orbit staring at (x,y) to escape
through ' ¢ 9D



Systems driven by Gaussian noise

1D Example: Exit time vs. noise intensity

X = —X + x3 + B

Potential function U(x) = 3x? — zx*:

—x +x3=-U'(x)



Systems driven by Gaussian noise

Potential function U(x) for x = —x +x3 = —U’(x)
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Systems driven by Gaussian noise

Phase portrait for unperturbed system  x = —x + x3




Systems driven by Gaussian noise

Mean exit time from an interval:

e=0.5
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Systems driven by Gaussian noise

Mean exit time from an interval: ¢ =10.3
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Systems driven by Gaussian noise

Mean exit time from an interval: ¢ = 0.08
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Systems driven by Gaussian noise

Theorem: Freidlin-Wentzell

x = —U’(x) + B,

Mean exit time from a domain of an unperturbed stable
equilibrium:

Exo(c) ~ O(e?)




Systems driven by non-Gaussian noise

1D SDE with non-Gaussian Lévy noise

dX& = —U'(XF)dt + edLy, Xg =X

Potential function U(-) has a minimum at 0

Unperturbed system has a stable equilibrium at O

Lévy process L;(w): Stationary and independent increments,
with jumps. The jumps are described by Lévy jump measure
v(du) on R:

/ (U? A 1) p(du) < oo,
%\(0}

or equivalently,

/ w(du)
——— rv(du) < oo.
R\{0}1+U2



Systems driven by non-Gaussian noise

Lévy motion Li(w): a non-Gaussian process

@ Independent increments: Ly, — Ly, and Ly, — L, independent

@ Stationary increments Ly — Lg ~ non-Gaussian distribution
(but depends only ont — s)

@ Sample paths are right continuous with left limits at every
time (“Cadlag").



Systems driven by non-Gaussian noise

Lévy-Khintchine formula:

It is known that any Lévy process is completely determined by
the Lévy-Khintchine formula. This says that for any
one-dimensional Lévy process L, there existsaac R,d >0
and a measure v such that

_ 2 .
EeiML _exp{iaM_thH/ (™ —1—ixu I{|u| < 1})r(du)},
E\{0}

where |(S) is the indicator function of the set S, i.e., it takes
value 1 on this set and takes zero value otherwise.



Systems driven by non-Gaussian noise

Intuition for Lévy jump measure  v(u)

v(A): Number of jumps of “size” A, for A C R
v(R — {0}): Intensity of jumps (how often it jumps)

For example:
v(R — {0}) = oo = countable jumps on any finite time interval
v(R — {0}) < co = countable jumps on the whole time axis



Systems driven by non-Gaussian noise

a-stable symmetric Lévy Noise

Lévy jump measure: v(du) = Iu‘}m(du), with0 < o < 2
« = 2: Brownian motion B;

Heavy tail for 0 < o < 2:

1
P(|Lt| > u) ~ U

Light tail for o = 2:




Systems driven by non-Gaussian noise

a-stable symmetric Lévy Noise

Lévy jump measure: v(du) = Iu‘}m(du), with0 < oo < 2
The generator is nonlocal:

A=—(-A)2

« = 2: Brownian motion By, generator A = A

Fractional Fokker-Planck equation: Schertzer et al 2001

Question: Exit time in terms of the nonlocal generator?



Systems driven by non-Gaussian noise

Theorem: Exit time under «-stable Lévy Noise

Theorem

X = —U/(X) ol ELt,
Mean exit time from a domain containing an unperturbed stable
equilibrium:

1
EXO'(E) (RY gia

Imkeller and Pavlyukevich 2006



Systems driven by non-Gaussian noise

Another family of symmetric Lévy Noise

Lévy jump measure: v(du) = f(In|u|) lu?ﬂa, with 0 < o < 2 and

f > 0 measurable




Systems driven by non-Gaussian noise

Theorem: Mean exit time with a family of symmetric Lévy noises

Lemma

x = —U’(x) + el

with Lévy jump measure v(du) = f(In|u|) lu“’l‘ja.
Main assumption:
f(Inju/el) du
f(g) ‘u‘l—i-a

— v*(du).

Mean exit time from [—b, a] containing an unperturbed stable
equilibrium:
1 1

v (R\[-b,a]) f(e)

Ex o(e) ~




Systems driven by non-Gaussian noise
Ideas of Proof:

1. Estimating fR\[_K K] v(d(3))
f(Inlu/e]) du

2. Weak convergence of measures o e
3. Applying a result of Godovanchuk 1981




Systems driven by non-Gaussian noise

A specific example of symmetric Lévy Noise

1 du

Lévy jump measure: v(du) = TRTIFT Tapa with0 < a < 2



Systems driven by non-Gaussian noise

Theorem: Mean exit time with a specific Lévy noise

Theorem

x = —U/(x) +ely,

with Lévy jump measure v(du) = m |uf1‘ia.

Mean exit time from a domain containing an unperturbed stable
equilibrium:

|Ing|
E:Oé

Exa(e) ~ O(—-)

Yang and Duan: 2008



Systems driven by non-Gaussian noise

Mean exit time comparison

Mean exit times are in the order:

i) < O(“;E‘) < exp(f—z).

or symbolically:
Polynomial < Combined polyn. and natural logarithm < Exponential

Brownian noise < Our noise < «a-stable symmetric Lévy Noise



Conclusions

Conclusions

@ Non-Gaussian Lévy noise
@ Systems driven by non-Gaussian Lévy noise

@ Mean exit time estimate: exponential, polynomial,
combined polynomial & natural logarithm
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