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GOAL: Illustrate connection between
deterministic PDE'’s
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Portray solutions of some partial differential equations as expec-
tations of stochastic processes with the aim of garnering insight
into properties of solutions. Particular example examined: the
Navier-Stokes equations in 3-d. Descriptions will be given of two
types of representations. First: Fourier-transformed solutions as
given by LeJan and Sznitman (1997). Second: physical space
representations. Both give existence and uniqgueness of solutions
for all time for ‘small’ initial data and on short time intervals for
‘large’ initial data.
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Background and illustration

e twoO simple examples

Navier-Stokes: an extra twist

e Fourier space

e Physical space

Comments
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EXAMPLE : The heat equation and Brownian motion

Ou_ 1
ot 2
u(z,0) = f(x)

Space

Brownian motion W

u(z,t) = /f(fb’ — Ky, t)dy K(y,t) = (2mt) "2 explvI?/2t

u(z,t) = Exf(W(1))



Fourier transform:

Qe t) = (2r) %2 /Rd e~ €Ty (z e, ¢ c RY

ou €%
ou_ KIS
ot 2

(&, 1) = F(&)e E°H/2 = F(e)P(Se > 1)

e—161°t/2 is the Fourier transform of K (y,t)

u(a,t) = [ f@ = 9Ky, Ddy = Eof(W (D)



KPP reaction-diffusion equation

=" _4u?—u with u(z,0) = f(z)

McKean(1975):If |f(x)| <1
w(z,t) = By || fVO 1)

i<N(t)

Markov process W: branching Brownian motion



Omnibus idea:

e Mild formulation

e Recognize transition probabilities



USE IDEA T0O: Connect

random processes:.
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solutions to the Navier-Stokes equations:
ou

a—l—u-VuzuAu—Vp-l-g V-u=20 uog(z) = u(zx,0)
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Navier-Stokes equations in 3-d
Ou 4 4. Vu = vAu— Vp+ g, pressure p and forcing g
incompressible fluids: V.-u=20
initial data: ug(x) = u(x,0)

mild solutions: u = e"'?ug — [(e’/=)A PV . (4@ u)(s)ds

t
—I—/O e’/(t_s)APg(s)ds
P: Leray projection onto divergence free vector fields
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Ledan and Sznitman (1997): Fourier NS
t
a(e,t) = e Ml ag(e) + [ (2m) 3/ vl
S—=
{ —iP¢ [an,t— )¢ A€ —n,t - s)dn

+P: §(6,t—s) } ds

Theorem: (LJ-S, 1997) Suppose that

sup [¢%|io(8)] < (2m)*/2v/2 and  sup 2[g(¢, )| < (2m)3/2v/4.
§ £#£0,t>0

Then there is a unique mild solution {u(z,t) : € R3,t > 0} to
the Navier-Stokes equations with

sup  |¢]2la(e, t)] < (2m)3/%.
£#0,t>0
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KEY: Weight @ by [£|?
The crucial magical realization:

for h(¢) = |€]72,  hxh(&) = c €| h(E),

This kernel is used to give Markov spatial transition prob-
ability

hxh(€) _  clé]

€IR(E)  In|?1€ —nl?

dH¢(n) =

P, projection matrix w Q¢ z = —i(eg - 2) Pew
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Rewriting the Fourier NSE in terms of

2
x(&1) =[¢l%a(st) and  @(&, 1) = >g(&, 1)

x(§,t) = e VP xo(€) + fEvie2e VIl
{3 evlax(nt — ) @¢ x(€ = m,t — s)dH,(n)

+3(&,t — ) }ds
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Conditional expectation:

X(&,1) = Ee (x0()1[S¢ > 1]
+{0g cv x(1,t — S¢) ®¢ x(§ —n,t — S¢)

+(1 = 0¢) ¢(&,t — Se) J1[S, < 1])

Motivates formulation of stochastic process and iterative
functional

[ x0(8) S >t

E(£7t> = 9 CVE(nat_S) ®§E(f—777t—5) SSt,O’Z 1

- P(€,t — S¢) S<t,o=0
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Time

( x0(8)

| =(6t) =3 aw=®¢=

\ qb({§7t — fig)

Spectral Space

Markov walk on tree
PROPOSITION: If E£|E(t)| < 00, then

a(€, 1) = cvl€|TEe=(t)
provides a mild solution to the Navier-Stokes equations.
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Non-negative Fourier multiplier majorizing kernel:

hx h(§) < c[|h(E)

and ¢ = | |h the probabilistic construction gives:

With y =

blm

PROPOSITION: If E§|E(t)| < oo, then a(€,t) = cyh(f)Egz(t)
provides a mild solution to the Navier-Stokes equations.

THEOREM(BCDGOOTW, 2004): If both

()| 36, 0]
ne) —@ A SR erhe S

then there is a unique mild solution {u(z,t) : « € R3,t > 0} to
the Navier-Stokes equations with

sup h(§)|u(g,t)| < cv.
£7£0,t>0

sup
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Fourier multiplier majorizing kernels in R3: h* h(&) < |€|h(€)

Le-Jan Snitzman kernels:

Ce_a|£|
ho(§) = —5, h1(§) =
|€|2 €]
A couple of BCDGOOTW kernels:
ho 5(&) = clelP~2e7E” a0, Bgelo0,1)

Here O < B8 < 1 allows smooth compactly supported initial data.

— 3
h(¢) = cy/t>o(7rt) Hl . (@)2 )dt

Note: the class of majorizing kernels is log-convex.
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Majorizing kernel formulation:

Go to a scalar comparison equation

U(g,t) = e_V|§I2tUO(§) + c/t_O |§|€—V\§|25U x U(E,t — s)ds

S=

Comparison equation: set U(&,t) = |u(&,t)|

The steady state solution:

Uso(&) = cl€| ™ Uso * Uso(€)

gives candidates for the majorizing kernels.

Comparison equation: Blomker, Romito, Tribe (2007)
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Physical space analogue

uw(x,t) = / uo(x — y) K (y, 2vt)dy
/ /R3 |Z| K(z 2vs)bq(z;u(x — z,t — s),u(x — z,t — s))

Y2 K (y, 2vs)dy )

( am V8|Z|4 [{y-|y|§|2|}

bo(z;u(x — z,t — s),u(x — z,t — s)) }

-+ [ K(z,2vs)P,

=
A7|z|3 Hy:ly|<|z[}

K (y,2vs)dy(I — 3ezel) ] g(x — z,t — 3) } dzds
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K(y,t) = (2rt)~3/2e—lv1?/2t

ey =y/lyl, Py=1—eye,

b1(y;u,v) = (u-ey)Pyv 4+ (v - ey)Pyu
bo(y; u,v) = (b1(y;u,v) +u- (I — 3eye, v ey) /2

C1 — P. Co — (I — 36z€tz)/2

Lemma:

b (y; w,v)[ < ullv] and bi(yiu,v) = 2 by(y;

)

S

u
hj
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Scalar comparison steady state equation:
— —27712
U(z) = c [, ga vl "U=(z — y)dy

Motivation for majorizing kernel:

h(x) > c/y€R3 y| R (z — y)dy
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Introduce majorizing kernel pairs (h,h):

(A) [rzh?(z —y)|y|2dy < h(z) h scales u, dominates |u]
and

(A) Jgz h(z — v)|y|~tdy < h(x) h scales g, dominates |g|

w(x,t)

h scaled solution xo(x) = x(x,0) initial data
xXr

x(z,t) =

g(x,t)

p(z,t) = e

scaled forcing
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Building blocks of probabilistic representation:
spatial and temporal transition densities

spatial: built from the majorizing kernels and based on

h2(z —y)|y| =2
Jr3 h?(z — y)|y|~2dy

iterative term

and
h(z — )y~
Jr3 h(z — y)|y|~Ldy
T he actual spatial transition densities:
ly| =zl *h2 (@ — 2)1][|z] > [y]]
27 [r3 2| 72h?(z — 2)dz

forcing term

(branch point)

fly,z|lx) =

[yl |21 3h (e — 2)1[]2] > Jyl]
27 Jp3|z|"Th(z — 2)dz

f(y72|33) = (input forcing)
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Temporal transition densities:

densities for waiting times between branches; conditional on spa-
tial location
J— 2
Fo(slz) = cps™2/2|z |3~ |27/ 4vs

. o 2
F1(sly) = cps™3/2|y|eIvI7/4vs

If the kernel h is excessive
h(y)K(x —y,2ut)

h-Brownian motion
h(x)

J(y, t|x) =

25



Time

Space

Vu’'s h-Brownian motion
Xy'S Markov branching rw
Tv'S waiting times

oy'S 0O or 1
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Stochastic iterative functional T on tree;: start with leaves
and work down branches:

m(X5) Bo(Tys0(t — 70), Tyu1(t — 70))
if Oy — 1, T S t

To(t) = xo(Vu(t)) +
m(Xg) cop(Xp,t —70p) If 0y, =0, 79 <t

e B, randomized b;.’s

Vu'S h-Brownian motion _
e Cy randomized.:.

X»'S Markov branching rw
'S waiting times P, or —(I- 3€Zv€tZU)/2
o,'S 0 or 1
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Normalization multipliers:

[ ly|72h2(z — y)dy
h(x)

[y~ th(z — y)dy
h(x)

m(x) = cp

m(x) = cy

Since (h,h) is a majorizing kernel pair, the magnitude of the
multipliers is controlled.

28



Time
<
S

e

Space

PROPOSITION: If E4|T(¢)| < oo, then

uw(x,t) = h(x)EzT (1)

provides a mild solution to the Navier-Stokes equations.
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Theorem: If h is excessive, (h,h) is @a majorizing kernel pair,
and

o () 9(e, 6)
OO

are both uniformly small enough, then

w(x,t) = h(x)ExY(t)

IS an unique mild solution to the NS equations for all time
and bounded in magnitude by c,h(x) for each x and all ¢.

Proof of theorem: Easy contraction argument by induction on
finite binary tree* shows that |T| is uniformly bounded if the
magnitudes of both xg and ¢ are uniformly small enough. It
follows that x(z,t) = E;xTy(t) exists and is uniformly bounded in
magnitude. Uniqueness takes a little bit more. ]

finite with probability 1!
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Regularity (no forcing): Ladyzhenskaya-Prodi-Serrin condition;
If a solution uw to the NS equations satisfies

/OT(/ lu(z, t)|9dx)"dt < oo

for some ¢ > 3,r > r(q) > 0, then u is regular on [0, T1].

Take a majorizing kernel h(x) proportional to
1

(1+ 2=

Corollary: If ¢ =0 and for some ~ € (3/2,13/8)

sup(1 =+ |z)* 2= |ug ()|

Is finite, then there exists a unique regular solution to the
NS equations for ¢t < T'(v).

Proof: Modifies probability model somewhat since these h's are
not excessive.

for any ~ € (3/2,13/8)
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Comments:

e Short time existence for large initial data: speed up branching
in time

e Branching is finite with probability 1; controls 'blow-up’

e Incompressibility is partially captured in the transition prob-
abilities

e Family of branching diffusions connected to physical process
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