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Motivations for this work

How to detect causal features (leading
to e.qg. clustering) in data sets making
minimal a priori assumptions?

A mathematical theory of records where
the record variable and time are put on
an equal footing.

This gives a well defined acausal null
model.

Application to Seismicity.
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Large earthquakes can be da



What's the point?

¢ earthquakes & records go
together naturally:

+ Earth quakes are so devastating!
+ Will the next one be a record?

+ This is NOT subject of present
talk.

[l's \What relationship is meant then?




Epistemology

¢ Use ONLY relations between
events.

+ Do not impose any scales.

¢ This includes NOT selecting
large events as being more
important than the others to
begin with.

e A sparse but indefinite number
of causal predecessors (a
network of earthquakes).




Two approaches so far...

¢ Two approaches: networks
of earthquakes and
aftershocks (M. Baiesi & MP:
PRE (2004); Nonlin. Proc.
Geophys. (2005)

| # Earthquakes as a record
i\l 'breaking process.




Our definition of records

Assume there was an earthquake

some time
nen in Sic
nen in Ca
nen in Co

C
C
C
C
C
C

ago in Erice.
ney ...

gary ...
ogne ...

nen in Rome ...
nen in Palermo...
nen again in Erice...

Each successive event in this sequence
IS considered a "record”, as seen from
Erice: a record in closeness




But why should Erice (or any
other place) be special?




Because we assumed that there was
one in Erice before.

ONE earthquake might happen by
chance, but TWQO?

Why not? If the first happened a
million years ago?

And if the epicenter is next street?
Hmm — what about five million years?

And If the epicenter is under the next
building? And why five million years?
Why not two? or ten?

—— Successive records in closeness
have more chance to be causally
connected than earthquakes chosen
at random




Formally

A,B,C, . . .: space-time events

Question: under which conditions is it
likely that pair of events (A,B) are
causally related?

(not via a chain of dependencies)
-inite memory: close in time
~inite interaction range: close in space

| Finite speed of propagation: not too
close in time, unless very close in
space

—— all depends on model details




Least Model Dependent Approach

e Assume t, < t;.

e Then A,B are likely to be causally related, if
there was no other event C at intermediate time
t, <t <tg, which was also closer to A than B,
or no C such that

dac = [Xg = Xal < [Xg = Xp| = dag.
e In that case: B Is new record In closeness to A,
or B is “recurrence” of A

e Draw directed link between any two events A,B,
If B is recurrence of A

e — — directed causal network of recurrences or
records




An example

Each node has an In-
degree kin and an OUt- E.g. eight events A, ... Az with ¢, < 5 < ... 15!
degree k_

Zero'th order assign-
ment of causes and
effects.

Record property is
preserved under
addition of new nodes
with time.




A null model: random processes

give acausal hetworks
* iid distributed events: the joint pdf
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* single-event distributions factorize:

P1(X, 1) = pe(X)pe(t)

— simplest theory of records

— explicit results for any acausal network:
significant statistical differences in the real data
set are due to causality!




Notice:

e Distributions of spatial & temporal distances from recur-
rence-defining event Ay = (Xg,%p) are often more useful; if
no integration over A, is made, then distance distributions
also factorize, with single-distance distributions p,;(!) and
pi(t). The latter still depend on A4, in general.

e Assumptions of stationarity / translation invariance are
not needed, if distances are transformed according to:

[ t
| — &= [} dl' (1" t— 7= /ﬂ dt' e (t') . (1)

e The new (*“canonical”) variables £,7 are — just as [ and ¢
— random variables. Their densities are either constant or
step functions with height 1, such that the integrals over
the densities are either finite or infinite. Which case is
realized depends on the specific problem.



e One has thus four cases. Denoting

\ = /ﬂ Td(l). o= /[. " dtp(b), (2)

one can have

1. integrable spacial distance distributions (A < ~), and
non-integrable temporal distance distributions (o =
~c). This is typically the case for events happening in
a finite volume, but stationary in infinite time.

2. A = occ but ¢ < oc. This might result from infinite
space, or from events clustering in space so strongly.
that their distance distribution is non-integrable. In
contrast, stationarity is broken by a cutoff which ren-
ders the time differences integrable.

3. & 4. the other two cases are analogous.



A theory of records

Typical sequence of recurrences (reference event Ag is at orign):

(L

iy

0.0

Event (&,7;) is recurrence, if no other event in shaded region;
— density of events: p(£,7) = e~ 57,



The four different cases: distinguished by different
integration regions:

e unrestricted: recurrence (record) density is equal (ex-
actly!) to 1/7 resp. 1/£. Densities in original coordinates
are obtained by inverting the transformation to canonical
coordinates.

E.g. stationary, space = RY:  p(t) = 1/t, p(l) = D/,
independent of event rates!

e resticted (integrable event densities): more complicated,
but still analyvtically easy:

A
pr(7) = /D dep(e,r) = r1(1 - ),

and same (with A — o) for &.
Original coordinates, R” : — characteristic length (time)



scales [*, 1", e.g. 7 D]P-1

event density for | < [*(T),l <R,
pi(l) =4 D/l for [ > I*(T),l <R,
0 for | > R,

It N.L,T are { # of events, system size, duration }:

I*=L/N, t*=T/N.



Correlations between recurrences:

— multidimensional integrals over exponentials & step func-
tions

E.g.:
q(t,t’") = prob. density{ two successive events at time
distances t > t' from A, are both recurrences}
= l/t2 plus correction terms for finite event rate A.

Similar results for

e p(t,t') = prob. density{ any two events at t > t' are recurrences|
e spatial correlations
e distributions of fixed rank recurrences

e m—recurrences (similar to m—records: there are only m
other events which are “better”)



Network properties for random
events in space-time

1 1
Pi(k) = 7 Z (i =1)- - (lk—1 = 1)
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A complex spatiotemporal
phenomena
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Degree distributions for the network of records
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FIG. 8: (Color online) In- and out-degree histograms for dif-
ferent values of m. For a given earthquake, the in-degree
(out-degree) k is the number of links directed at it
(originating from it) as defined in Section II. Open
(red) symbols correspond to the in-degree, filled (black) sym-
bols correspond to the out-degree. Error bars can be esti-

mated as /N (k). The red lines correspond to Poisson distri-
butions with the same respective mean and normalization.



More Signatures of Causality: Recurrence
length distribution is stationary and reveals a
length scale: the rupture length

I:t(?”) ~ L[p % 101}.45??1
Lo = 0.012km.

[*(m) is the
position of the
maximum. It is
iIndependent of T
whereas in null
model
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Distribution of first recurrences also
gives the same length scale

 [n contrast,
the null model
gives a
monotonic
Increasing
function
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first recurrence 1s much more likely to happen at a typical
distance of [* than predicted by the null model. This en-
hancement goes along with a suppression of recurrences

with [ < [F



Signatures of causality: Hierarchy of
scales in the cascade of recurrences

In contrast, the
null model is
iIndependent of
| and only
Increasing
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Conclusions

¢ Benchmark tests for models
of seismicity or other
processes.

+ Application to other
phenomena.

¢ Generalization to more than
'one event at a time??
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Analytic results for a random process on a
fractal of dimension D

P(T)dT is the probability that a recurrence occurs in the time
interval [T — dT, T] after the defining event. If a recurrence
occurs in this interval, then this is necessarily the closest event
in space during the entire interval [0, T]. Since the process is
stationary, the probability for this to happen is dT/T , and P(T) =
1/T.

The probability density P(l) that a recurrence occurs at a spatial
distance | from the defining event is similarly obtained: To be a
recurrence, an event within distance | from the defining one
must be the closest in time. The chance that the closest event in
time is within in a distance interval [|—dlI, ] is Ddl/l, and thus P(l)

= D/I.



Earthquakes as a Record Breaking Process
(Davidsen, Grassberger & MP (2005))

 Event B is a recurrence of a previous
event A if no intervening event
happened in the spatial disk centered
on A of radius AB in the time interval
betweengT Bp B is the closest
tim7 in space to A up

to that time; it Is
a record. Link all

A pairs of recur-
rences.



Analytic results for a random process on a
fractal of dimension D

P(T)dT is the probability that a recurrence occurs in the time
interval [T — dT, T] after the defining event. If a recurrence
occurs in this interval, then this is necessarily the closest event
in space during the entire interval [0, T]. Since the process is
stationary, the probability for this to happen is dT/T , and P(T) =
1/T.

The probability density P(l) that a recurrence occurs at a spatial
distance | from the defining event is similarly obtained: To be a
recurrence, an event within distance | from the defining one
must be the closest in time. The chance that the closest event in
time is within in a distance interval [|—dlI, ] is Ddl/l, and thus P(l)

= D/I.



Self Organized Criticality

e Avalanches with a power law distribution

» Correlations over many space and time scales
e Solves ‘fine-tuning’ problems

 Fundamental parameters are emergent

Robust & universal mech-
anism —> simple models

P. Bak, C. Tang and K. Wiesenfeld ('87)



A viewpoint

* Geophysicist Yan Y. Kagan of the
University of California at Los Angeles
agrees :

"the distinction between aftershocks and main
shocks is relative.” Within slowly changing
continental areas, aftershocks can rumble on
for centuries.”



Standard Method: Space-time windows
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time

Events in the window may not be correlated to mainshock,
or events outside may be correlated.

How to estimate errors?
Observer imposes space, time, and magnitude scales.

Aftershocks are associated to only one previous event,
which is also chosen by the observer.

Cannot describe swarms, remote triggering and other
manifestations of seismic complexity in space-time-magnitude.



One approach: the null hypothesis &

metric
Consider a pair of events (i,j) with [; < t whose distance
=|r;- 1|, and time {;; = (1;— ,-) The mean number of

events of magmtude W|th|n Am of M; is
Nj; = (constant) (Am) tij (rij)270 bm,

if the events are occurring at random in space and time according
to the Gutenberg-Richter law.

But event /j actually occurred relative to J.
Pair is correlated if “surprise” C,-J- =1/n,-j >> ]

Space and time intervals are selected by the actual sequence of
events and not by the observer. “"Unbiased”



Distribution of correlations between all
pairs of earthquakes with m>2.5
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Many surprising pairs of events which could not occur by chance.
Link events with ¢ > c. .
Massive data reduction with small errors.

A sparse network gives a renormalized description of seismicity.



Complex network of earthquakes and
aftershocks (Marco Baiesi and MP 2004)
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Some universal properties of the network

1
[\S]
I

I
\

log,, probability

log,, degree

Scale free

C(k)

0.01

0.1-

Highly clustered




Distances between correlated events

« Typical distance depends

, | . on magnitude of main-
TN, shock, m
4 _Fe  Power law tail for all m
% “+ Can be rescaled onto a
S Sn universal curve, inde-
RS N pendent of m

100m  TKm 10Km “100Km I‘E)OO‘Km ¢ l*~100m W|th G=O-37

New scaling law for seismicity. Contradicts
theory of finite aftershock zones.



Omori Law (1/t+A) for aftershock rates

= Aftershocks for

o B earthquakes of ALL
pie= AR H N * magnitudes, M, obey
- Omori law
= Rate ~ t1 e “Vtcutoff
|(wam=7.1
12 g om=73 ~ 5.25+0.74m
— "t~ 10 sec
...... time span of catalogue
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