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Is the evolution of the surface of the Earth
stochastic or deterministic?

Most geoscientists believe that several aspects of the
Earth’s surface are stochastic
There is however no universal agreement on the
relative importance of stochastic versus deterministic
forces
In recent years it has been possible to simulate on
computational clusters physically based model for
erosion where the water and sediment flow are coupled
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Ill-posedness makes a deterministic system
stochastic!

It was discovered that whereas these dynamical
models are strongly ill-posed (i.e. smallest scales grow
the fastest), it was still possible to simulate the solutions
The reason is that the nonlinearities saturate the
exponential growth of the instabilities
However, the deterministic equations for landsurface
evolution turn into stochastic equations driven by noise
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A Statistical Theory of Landsurfaces

The solutions of the equations describing the evolution
of the landsurface are therefore not deterministic, but
stochastic processes
These stochastic processes are characterized by their
scaling properties
In particular by β and χ which are called respectively
the temporal and spatial roughness exponents and z
the dynamic exponent χ = βz
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The Scaling of the Variogram for Landsurfaces
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Figure: The scaling exponents of the variogram are shown as a
function of time, for an initial landsurface with a slope of 8.5
degrees, on a log-log plot. Four different exponents (slopes) are
shown, along with their regression coefficients, and a statistically
stationary state (with slope zero) is emerging, furthest to the right.



Quantifying
Stochasticity

in
Geoscience,

Erosion

Birnir

Stochastic
Landsurfaces

Applications

Turbulent
Rivers

The scalings of the statistical quantities

There is an equivalence between time and distance in
space t ∼ |x |z given by the dynamic exponent z
The system (width function) roughens initially as t to
the power β

Eventually the system gets into a statistically stationary
state where it does not roughen any more, but spatial
fluctuations scale with the lag variable (correlation
length), to the power χ
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River Valleys with Uplift
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River Valleys



Quantifying
Stochasticity

in
Geoscience,

Erosion

Birnir

Stochastic
Landsurfaces

Applications

Turbulent
Rivers

Outline

1 Stochastic Landsurfaces

2 Applications

3 Turbulent Rivers



Quantifying
Stochasticity

in
Geoscience,

Erosion

Birnir

Stochastic
Landsurfaces

Applications

Turbulent
Rivers

What did we learn from the simulations?

Some features of the landsurface are deterministic, for
example, the width of the valleys
Other features are stochastic, for example, the
roughness of the surface
The stochastic features are characterized by the
scalings of the statistical laws



Quantifying
Stochasticity

in
Geoscience,

Erosion

Birnir

Stochastic
Landsurfaces

Applications

Turbulent
Rivers

What did we learn from the simulations?

Some features of the landsurface are deterministic, for
example, the width of the valleys
Other features are stochastic, for example, the
roughness of the surface
The stochastic features are characterized by the
scalings of the statistical laws



Quantifying
Stochasticity

in
Geoscience,

Erosion

Birnir

Stochastic
Landsurfaces

Applications

Turbulent
Rivers

What did we learn from the simulations?

Some features of the landsurface are deterministic, for
example, the width of the valleys
Other features are stochastic, for example, the
roughness of the surface
The stochastic features are characterized by the
scalings of the statistical laws



Quantifying
Stochasticity

in
Geoscience,

Erosion

Birnir

Stochastic
Landsurfaces

Applications

Turbulent
Rivers

What did we learn from the simulations?

Some features of the landsurface are deterministic, for
example, the width of the valleys
Other features are stochastic, for example, the
roughness of the surface
The stochastic features are characterized by the
scalings of the statistical laws



Quantifying
Stochasticity

in
Geoscience,

Erosion

Birnir

Stochastic
Landsurfaces

Applications

Turbulent
Rivers

Hack’s Law

The length ` of the main river in a river
basin scales with the area A of the river
basin as

` ∼ A0.58
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The Amazon River Basin
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Strahler’s Order of Streams

Streams without tributaries have order 1.

When two streams of order n join, they form a stream of
order n+1

When two streams of different orders join, the resulting
stream inherits the higher order of the two.
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Horton’s Bifurcation Ratios

Horton discovered that if N(n)denotes the number of
streams of order n and L(n) is their mean length then
the length and bifurcation ratios

Rl = N(n)/N(n + 1)
Rb = L(n + 1)/L(n)

are constant over the entire river basin.
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Probability of Exceedance

The probability that the area of a subbasin exceeds a
certain value a, scales with a

P(area of subbasin > a) ∼ a−0.42

All the known scaling laws for landsurfaces are
determined by just two exponents (assuming uniform
drainage density)
Hack’s exponent and the meandering exponent of
rivers (Dodds and Rothman)
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How can these statistical quantities and their
scalings be used?

We can compute the transport of water, chemicals, and
sediment by a river network
The residue of inorganic CO2 in glacier rivers scales
with discharge with the same exponent as the
probability of exceedance (Karidiĉ Univ. of Iceland,
2008)
If the turbulent flow is releasing CO2, we might be able
to estimate the total release of CO2 from the Amazon
basin
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Turbulent Flow in Rivers

The flow in the river satisfies the Navier-Stokes
Equation

vt + v ·∇v = ∆v + ∇{∆−1[trace(∇v)2]} (1)

Let v = U + u

ut + Uu = νuxx −uux + ∂
−1
x (ux )2 + ∑

k 6=0
h1/2

k dβ
k
t ek

Each ek = e2πikx comes with its own independent
Brownian motion βk

t , hks are coefficients giving the
color
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The Statistical Theory of Rivers

Theorem

In one dimension the Navier-Stokes equation (with
pressure) driven by colored noise, has a unique solution if U
is sufficiently large. Moreover, there exists a unique
measure left invariant by the flow. The flow is ergodic and
strongly mixing and the second structure function
(variogram) scales with roughness exponent χ = 3/4 in the
statistically stationary state

S2(x)∼ |x |3/2

All the statistical properties of the solution are determined
by the invariant measure.
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How does one get the invariant measure for the
sediment flow?

One way is to find it for the coupled nonlinear PDEs
describing the water and sediment flow
If we know surface structures, young landsurface
concave hills or mature landsurface convex mountains,
we can linearize about them
Then it is enough to know the color for the water flow
that constitutes the noise driving the sediment flow
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Sections of Landsurface
Top concave hills, bottom convex mountains
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Hack’s Law

A∼ `D

The avalanche dimension is D = 1 + χ, ` being the
length of the main river. Then the width of the basin in
the direction perpendicular to the main river, is `χ,
χ = 3/4 = 0.75, whereas along the main river it is `,
hence

`∼ A
1

1+χ

≈ A0.58
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Meanderings of the Mississippi
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The Meandering Exponent (in the lab) is
Determined by Turbulent Flow, S(k)∼ k−5/2
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The Scalings of a River

There are actually three ranges in Hack’s law that have
been identified:
Scaling exponent 1/2, Channelization
Scaling exponent 2/3, Evolution of concave to convex
surfaces
Scaling of Shocks, Bores, Hydraulic Jumps
River turbulence causes the scaling exponent 3/4
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Conclusions

All the scaling laws of landsurface theory and river
meanderings are determined by the roughness
coefficient of turbulent flow in rivers
The theory gives an invariant measure that determines
all the statistics of river flow and landsurface evolution
The turbulent flow in rivers possesses a scaling
corresponding to Hölder continues functions of order
3/4. This scaling corresponds to Hack’s law and river
meanderings that cover the whole river basin
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