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Difficult problem with many local minima
Applications in geoscience, image registration ...
Analyzed by many see survey by Evans

Very little numerical treatment Benamou and Brenier,
Angenent et-al, Oberman, Oliker,



Optimal mass transport

Find a vector field u that moves a mass jio(x) into () in an
optimal way

win M(w) = [ fu = afola) do = = s,
0
ste(u) = det(Vu)pi(u) — po(z) =0
Mo, 1 > 0
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Large scale applications

A short and not inclusive list:

Reformulation Kantorovich 48
Solving using a Monge-Ampre formulation Oliker 94
Control problem in space time Benamou and Brenier 00

Polar factorization Angenent Haker & Tannenbaum 04



More about the problem

min M(u) = [ju—z|?,
st e(u) = det(Vu)p(u) — po(x) =0

Can be shown that
Smooth
Possible local solutions
Global minis curl free Vx u=0 < u=V¢



The obvious option - Sequential Quadratic
Programming

min M(u) = ||u—x||iO

st e(u) = det(Vu)p(u) — po(x) =0

Can be solved using SQP

May converge to a local minima (not curl free)



More about SQP

min M(u) = ||u—x||i0

st c(u) = det(Vu)ui(u) — po(z) =0

Have been developed in the 80's
Commonly used for many non-convex problems
Successfully used for problems evolving from PDE’s

Nontrivial globalization mechanism



More about SQP

Closely related to Newton's method on the Lagrangian

L Mu) = lu—=z|, +/Q p(det(Vu)p (u) — po(x)) d

At each iteration approximately solve

min (ou, A(u,p)ou) + (du, g(u,p))
st Bou+c(u)=0



More about SQP

min M(u) = ||u—foLO

st e(u) = det(Vu)p(u) — po(x) =0

Smooth
Mesh independence properties
Need to deal with KKT systems

Preconditioners necessary



Modified Objective function

Use the properties of the solution to get better global
attraction

min M(u) = |jlu— xHiO +a/ |V x ul?®dx
0
st e(u) = det(Vu)uy(u) — po(z) =0

Does not change the minima, but bias towards the global
one

May converge to a local minima (not curl free)



The method of Angenent Haker and Tannenbaum
(AHT)

Use the properties of the solution to obtain a different problem

Find an initial MP map ug such that

det(Vuo ) (uo) = po()

Set u(s) = ug and solve

msin M(s) = ||Uo(8_1)—$||io

st e(s) = det(Vs)uo(s) = po(x)



The method of AHT

min M(s) = [luo(s™") — [l

ste(s) = det(Vs)uo(s) = po(x)

Assuming the constraint is feasible linearize to obtain
V- pods(s™') =0
du = —(Vu)ds(s™)



The method of AHT

min M(s) = [luo(s™") — [l

ste(s) = det(Vs)uo(s) = po(x)

Assuming the constraint is feasible linearize to obtain
V- pods(s™') =0
du = —(Vu)ds(s™)

Therefore

bu = 41y (Vu)iC
V-46(=0



The method of AHT

ou = —py" (Vu)aC
V.8 =0

First variation in the functional yields

SM = (3¢, u) + h.ot

AHT: Choose 6¢ such that it is div-free and minimize (3¢, u)

Can be done by the Helmhotz decomposition of u



The method of AHT

Helmhotz decomposition of u

= 0C+ V¢
0 = V-6
5¢=(I—-VA'V-)u
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uy = —pig (Vu)(I — VATV )u
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Generalization of AHT

Wehave V- 0( =0 < 0=V x dn
and therefore M = (u, V x 0n) = (V X u,dn)
Steepest descent direction 6n = —V X u

But any direction 0n = — AV x u
with A SPD works

Lead to

po(Vu) tuy = =V x AV x u
u(0) = wug



Generalization of AHT

Use artificial time to obtain the IVP

po(Vu) tuy = =V x AV x u
u(0) = ug

Theorem (AHT): The flow converges to the global minimizer
of the problem



Is the AHT method global?

method h =1/100 h=1/10

N

BDF3

trap

For infinitesimal small steps yes - For any finite step no!



From 2 local methods to a global method

The AHT method is a PDE with an invariant
Well known that without projection cannot converge

Examples - harmonic oscillator does not preserve energy
after discretization, div free for Navier Stokes

Need to include the constraint directly in the computation



From 2 local methods to a global method
Combine with SQP - local convergence to the constraint



From 2 local methods to a global method
Combine with SQP - local convergence to the constraint

Algorithm
Initialize

min [Ju— |2 +al|V x ul]* st c(u) =0

If needed
Update

U1 = ug — p1g (Vu)V x A7V x u

Project using SQP
min  |upr1 — U,

.t det(Vuggr)pr (ues1) = po(@)



Discretization

min M(u) = [ju—z|?,

ste(u) = det(Vu)ui(u) — po(x) =

Two options
Discretize and optimize

Optimize and discretize

Do not commute! | prefer the first whenever possible



Consistent discretization

Discretization of the constraint, use finite-volume approach (H
& Modersitzki 04)

/Qdet(Vu)/Ll(u) dx —/ p(x) dz

Q(u)

Use staggered grid for stable discretization of differential
operators



Solution of linear systems

At each iteration solve
Vector Laplacian (use MG)
A KKT system of the form

M(p) C,
Cy 0
Solve the reduced system

A=CM(p)~'C,

Possible to show that A corresponds to a second order
elliptic operator



Further challenges

High contrast det(Vu)u(u) = po(x)

po(Vu) tuy = =V x A7V x u
u(0) = ug

Multigrid for the KKT system
Adaptive mesh refinement



Results

» Grid size 1283
» Problem solved in the first stage



Preliminary results

o o
D ©®

Problem not solved in the first stage
2 iterations of AHT needed




Conclusion and Future work

Developed a new method for the OMT problem
Initial MP map by stabilized SQP
Projection - globalize the problem

Conservative discretization



Conclusion and Future work

Developed a new method for the OMT problem
Initial MP map by stabilized SQP
Projection - globalize the problem

Conservative discretization

In most cases, initial map is the solution to the problem

A few correction steps needed if not



