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Overview

The Monge-Kantorovich mass transfer: how to transfer a ”pile
of dirt” from one place to another with minimum energy

I Difficult problem with many local minima

I Applications in geoscience, image registration ...

I Analyzed by many see survey by Evans

I Very little numerical treatment Benamou and Brenier,

Angenent et-al, Oberman, Oliker,
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Optimal mass transport
Find a vector field u that moves a mass µ0(x) into µ1(x) in an
optimal way

min M(u) =

∫
Ω

|u− x|2µ0(x) dx = ‖u− x‖2
µ0

s.t c(u) = det(∇u)µ1(u)− µ0(x) = 0

µ0, µ1 > 0
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Difficulties

Difficulties

I Highly nonlinear constraint

I May have local minima

I Consistent discretization is difficult

I Large scale applications

A short and not inclusive list:

I Reformulation Kantorovich 48

I Solving using a Monge-Ampre formulation Oliker 94

I Control problem in space time Benamou and Brenier 00

I Polar factorization Angenent Haker & Tannenbaum 04
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More about the problem

min M(u) = ‖u− x‖2
µ0

s.t c(u) = det(∇u)µ1(u)− µ0(x) = 0

Can be shown that

I Smooth

I Possible local solutions

I Global min is curl free ∇× u = 0 ⇔ u = ∇φ



The obvious option - Sequential Quadratic

Programming

min M(u) = ‖u− x‖2
µ0

s.t c(u) = det(∇u)µ1(u)− µ0(x) = 0

I Can be solved using SQP

I May converge to a local minima (not curl free)



More about SQP

min M(u) = ‖u− x‖2
µ0

s.t c(u) = det(∇u)µ1(u)− µ0(x) = 0

I Have been developed in the 80’s

I Commonly used for many non-convex problems

I Successfully used for problems evolving from PDE’s

I Nontrivial globalization mechanism



More about SQP

Closely related to Newton’s method on the Lagrangian

L M(u) = ‖u− x‖2
µ0

+

∫
Ω

p(det(∇u)µ1(u)− µ0(x)) dx

At each iteration approximately solve

min (δu,A(u, p)δu) + (δu, g(u, p))

s.t Bδu+ c(u) = 0



More about SQP

min M(u) = ‖u− x‖2
µ0

s.t c(u) = det(∇u)µ1(u)− µ0(x) = 0

I Smooth

I Mesh independence properties

I Need to deal with KKT systems

I Preconditioners necessary



Modified Objective function

Use the properties of the solution to get better global
attraction

min M(u) = ‖u− x‖2
µ0

+ α

∫
Ω

|∇ × u|2 dx

s.t c(u) = det(∇u)µ1(u)− µ0(x) = 0

I Does not change the minima, but bias towards the global
one

I May converge to a local minima (not curl free)



The method of Angenent Haker and Tannenbaum

(AHT)

Use the properties of the solution to obtain a different problem

I Find an initial MP map u0 such that

det(∇u0)µ1(u0) = µ0(x)

I Set u(s) = u0 and solve

min
s

M(s) = ‖u0(s−1)− x‖2
µ0

s.t c(s) = det(∇s)µ0(s) = µ0(x)



The method of AHT

min
s

M(s) = ‖u0(s−1)− x‖2
µ0

s.t c(s) = det(∇s)µ0(s) = µ0(x)

Assuming the constraint is feasible linearize to obtain

∇ · µ0δs(s
−1) = 0

δu = −(∇u)δs(s−1)

Therefore

δu = −µ−1
0 (∇u)δζ

∇ · δζ = 0
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The method of AHT

δu = −µ−1
0 (∇u)δζ

∇ · δζ = 0

First variation in the functional yields

δM = (δζ, u) + h.o.t

AHT: Choose δζ such that it is div-free and minimize (δζ, u)

Can be done by the Helmhotz decomposition of u



The method of AHT

Helmhotz decomposition of u

u = δζ +∇ξ
0 = ∇ · δζ

δζ = (I −∇∆−1∇· )u

therefore

ut = −µ−1
0 (∇u)(I −∇∆−1∇· )u



The method of AHT

Helmhotz decomposition of u

u = δζ +∇ξ
0 = ∇ · δζ

δζ = (I −∇∆−1∇· )u

therefore

ut = −µ−1
0 (∇u)(I −∇∆−1∇· )u



Generalization of AHT

I We have ∇ · δζ = 0 ⇔ δζ = ∇× δη

I and therefore δM = (u,∇× δη) = (∇× u, δη)

I Steepest descent direction δη = −∇× u

I But any direction δη = −A∇× u
with A SPD works

Lead to

µ0(∇u)−1ut = −∇× A∇× u

u(0) = u0



Generalization of AHT

Use artificial time to obtain the IVP

µ0(∇u)−1ut = −∇× ∆−1∇× u

u(0) = u0

Theorem (AHT): The flow converges to the global minimizer
of the problem



Is the AHT method global?

method h = 1/100 h = 1/10

RK4

BDF3

trap

For infinitesimal small steps yes - For any finite step no!



From 2 local methods to a global method

I The AHT method is a PDE with an invariant

I Well known that without projection cannot converge

I Examples - harmonic oscillator does not preserve energy
after discretization, div free for Navier Stokes

I Need to include the constraint directly in the computation



From 2 local methods to a global method
Combine with SQP - local convergence to the constraint

Algorithm

I Initialize

min ‖u− x‖2
µ0

+ α‖∇ × u‖2 s.t c(u) = 0

I If needed
I Update

ûk+1 = uk − µ−1
0 (∇u)∇× ∆−1∇× u

I Project using SQP

min ‖uk+1 − ûk+1‖2µ0

s.t det(∇uk+1)µ1(uk+1) = µ0(x)
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Discretization

min M(u) = ‖u− x‖2
µ0

s.t c(u) = det(∇u)µ1(u)− µ0(x) = 0

Two options

I Discretize and optimize

I Optimize and discretize

Do not commute! I prefer the first whenever possible



Consistent discretization
Discretization of the constraint, use finite-volume approach (H

& Modersitzki 04)∫
Ω

det(∇u)µ1(u) dx =

∫
Ω(u)

µ1(x) dx

Use staggered grid for stable discretization of differential
operators



Solution of linear systems

At each iteration solve

I Vector Laplacian (use MG)

I A KKT system of the form(
M(µ) C>u
Cu 0

)

I Solve the reduced system

A = CuM(µ)−1C>u

I Possible to show that A corresponds to a second order
elliptic operator



Further challenges

I High contrast det(∇u)µ1(u) = µ0(x)

µ0(∇u)−1ut = −∇× ∆−1∇× u

u(0) = u0

I Multigrid for the KKT system

I Adaptive mesh refinement



Results

I Grid size 1283

I Problem solved in the first stage



Preliminary results

I Grid size 1283

I Problem not solved in the first stage

I 2 iterations of AHT needed



Conclusion and Future work

I Developed a new method for the OMT problem

I Initial MP map by stabilized SQP

I Projection - globalize the problem

I Conservative discretization

I In most cases, initial map is the solution to the problem

I A few correction steps needed if not
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