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1. NAVIER-STOKES BOUSSINESQ EQUATIONS FOR CONVECTION AND
THEIR DARCY/STOKES/HYDROSTATIC SINGULAR LIMITS
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2. THE ANGENENT-HAKER-TANNENBAUM (AHT) MODEL FOR OPTIMAL
TRANSPORT VIEWED AS DARCY OR STOKES BOUSSINESQ SYSTEMS

3. A CONVEXITY PRINCIPLE FOR THE HYDROSTATIC BOUSSINESQ
EQUATIONS LEADING TO A GLOBAL EXISTENCE THEOREM

4. SOME COUPLED MONGE-AMPERE SYSTEMS INCLUDING HOSKINS’
SEMI-GEOSTROPHIC EQUATIONS AND A FULLY NONLINEAR
CHEMOTAXIS MODEL

5. A STRINGY GENERALIZATION OF THE DB MODEL LEADING TO A
MAGNETIC RELAXATION MODEL A LA ARNOLD-MOFFATT

6. THE CROSS-BURGERS EQUATION: A MODEL OF MAGNETIC REVERSAL
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A NAVIER-STOKES BOUSSINESQ '"NSB’ MODEL I

Let D be a smooth bounded domain D C R3 in which moves an
incompressible fluid of velocity v(t,x) at x € D, t > 0, subject to:

NSB: €0tv+(v-V)V)+ Kv+Vp=y V:.-v=0

Kv =av —rvAv

with a >0, ¢ >0, v > 0 and v =0 along 0D.

The force field y is subject to the advection equation

oty + (v V)y = G(x,y)

where G is a given smooth function with bounded derivatives.

~
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‘ CONVECTION THEORY I

K = _Aa G = 0, y//e37 y=nmnes, nN-= n(tax) cR namely:

e(Okv+ (v-V)v) —Av+Vp=mnes, V-v=0, dn+ (v-V)n=pAn

with p > 0.

For i = 0, global existence of weak solutions in 3D follows from

Danchin-Paicu.)

~

CLASSICAL CONVECTION THEORY corresponds to the special case

Leray /Diperna-Lions theory, while global existence of smooth solutions in
2D follows from Hou-Li 2005 and Chae 2006. (See also recent work by

/
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‘ THREE LIMITS OF THE NS BOUSSINESQ MODEL I

While keeping unchanged

Oy + (v - V)y=G(xy) V- -v=0

and dropping inertia terms, we consider three possible limit regimes:

~

STOKES — BOUSSINESQ SB: e=a=0, v=1 = —-Av+Vp=y

(the limit ¢ — 0 can be rigorously justified, YB 2007)

DARCY — BOUSSINESQ DB: ce=v=0, a=1 = v+Vp=y

(the limit ¢ — 0 can be rigorously justified, YB 2007)

HYDROSTATIC — BOUSSINESQ HB: e=v=a=0 = Vp=yYy

\_

(here the rigorous justification of the limit ¢ — 0 seems widely open!)
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THE ANGENENT-HAKER-TANNENBAUM MODEL

As G = 0, the Darcy-Boussinesq and Stokes-Boussinesq models coincide

Hni;w!rsi ie

k

with the Angenent-Haker-Tannenbaum model

AHT: Oty+(v-V)y=0, Kv+Vp=y, V-v=0

We (formally) get

[ ivte0 = xPax2 [ [ (v v, dxdo = [ [y(0,5) - xl?dx

So, we expect, ast > +oo,v—-0, (y,p) — (¥y*°,p°), so that

is a curl-free ’‘rearrangement’ of the given initial vector field y(t =0, -).
This was the original goal of the AHT model,
in order to solve the polar factorization problem arising in optimal
transport theory (cf. Y.B. CPAM 1991).
Existence of local or global smoth solutions is proven by
K Agenent-Haker-Tannenbaum in STAM J. Math. Analysis 2003. /
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THE HYDROSTATIC BOUSSINESQ (HB) EQUATIONS

1) A CONVEXITY PRINCIPLE

The Hydrostatic Boussinesq '"HB’ system

HB: Oy+(v-V)y=G(x,y), V-v=0, Vp=y

looks strange since there is no direct equation for v.
Let us consider, for simplicity, the case of 2 space variables x = (x1,x2)
and write v = (—0160,020), where 0(t,x1,x2) is a ’stream function’ for v.
Taking the 2D curl of the evolution equation in y = (01p, d2p), we find:

011p 0220 + O22p 0110 — 2012p 0120 = 01(G2(x,Vp)) — 02(G1(x, VD))

which is a well posed

LINEAR ELLIPTIC EQUATION IN ¢ WHEN D2p(t,x) >0

So, a natural SOLVABILITY CONDITION FOR THE HB SYSTEM is

K p(t,x) is a CONVEX function of x € D. /
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THE HYDROSTATIC BOUSSINESQ (HB) EQUATIONS

2) EVOLUTION OF "OBSERVABLES’ IN BOUSSINESQ SYSTEMS

For each suitable test function f, we define the ’observable’

t— pe(t) = | (y(t.x))dx

where y is solution to one of the Boussinesq systems NSB,SB,DB,HB

Since

Opy + (v-V)y = G(x,y)

where

V-v =0,

V//8D7

we always get, for each suitable test function f,

d

dt Jp

D

£(y(t,x))dx = / (VE)(y(t, %)) - G(x, y(t,x))dx
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3) ’'OBSERVABLES’ AND THE CONVEXITY PRINCIPLE
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THE HYDROSTATIC BOUSSINESQ (HB) EQUATIONS

The Hydrostatic Boussinesq '"HB’ model
requires the field y to be a gradient |y = Vp

Under the A PRIORI CONVEXITY ASSUMPTION

p(t,x) is a CONVEX function of x € D | (D being supposed to be convex),

the field y is COMPLETELY DETERMINED

by the knowledge of all observables |t — pg(t) = / f(y(t,x))dx
D

NB: This is a typical result of OPTIMAL TRANSPORT THEORY
YB, CRAS Paris 1987 and CPAM 1991, Smith and Knott, JOTA 1987, cf. Villani,
Topics in optimal transportation, AMS, 2003, see also papers, lecture notes and books

by Rachev-Riischendorf, Evans, Caffarelli, Urbas, Gangbo-McCann, Otto,

K A mbrosio-Savaré, Villani, Trudinger-Wang and many others contributions... /
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THE HYDROSTATIC BOUSSINESQ (HB) EQUATIONS

4) A GLOBAL EXISTENCE RESULT

YB 2007, inspired by G. Loeper, SIAM J. Math. Anal. 2006

THEOREM

Assume G(x,y) to be a smooth function with bounded first derivatives.
Let C be the convex cone of all maps y € L?(D,R3)
such that y(x) = Vp(x) a.e. in D for some CONVEX convex lsc function p.

Then, for each yg € C, there is (t — y(t,-)) € CO(R4,L2%(D,R3))
valued in the cone C such that y(t =0,:) = yo and

d

5 | B exax = [ (V%) Gey(tx)dx

D

(for all test functions f) which we call a
SOLUTION WITH CONVEX POTENTIAL TO THE HB SYSTEM

\ Oy +(v-V)y =G(x,y), V-v=0, y=Vp /
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SOME COUPLED MONGE-AMPERE SYSTEMS

1) DERIVATION FROM THE HB SYSTEM

Under the POTENTIAL CONVEXITY assumption, the HB system

HB: atY+(Vv)y:G(X7y)7 y = Vp, V.-v=0

is (formally) equivalent to the coupled Monge-Ampére system

CMA : 3p+V-(pw) =0, w=G(Vp*(t,x),x), p=det(D?p*(t,x))

where p* is the LEGENDRE-FENCHEL transform
p*(t,X) — Sup Xi_p(tai)
xeD

Indeed, using the change of variable x = Vp(t,X) <= X = Vp*(t,x),

d

5 f(x)det(sz*(t,x))dx— /Vf(x) - G(Vp*(t,x),x)det(sz*(t,x))dx

d

.k

Fy(6,%)d% — [ (TO((t.%) G ¥(t,%)d% = 0

/
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SOME COUPLED MONGE-AMPERE SYSTEMS

2) TWO EXAMPLES

Example 1: Setting G(x,y) = (y2 — x2,x1 — y1,0) we recover Hoskins’

SEMI-GEOSTROPHIC equations.

Then, the CONVEXITY PRINCIPLE for the HB system EXACTLY

corresponds to the CULLEN-PURSER PRINCIPLE.

cf. Cullen-Norbury-Purser 1991, Benamou-Brenier 1998,

Cullen-Gangbo 2001, Loeper 2006.

Example 2: With G(x,y) = ¥>* where 3 > 0 is a constant, Setting

B

Vp*(ta X) = X /va(ta X)

we get

CMA : Otp+ V- (pw) =0, w = Vi(t,x),

p = det(I — AD2y(t, x))
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SOME COUPLED MONGE-AMPERE SYSTEMS
3) FULLY NONLINEAR CHEMOTAXIS

The resulting system can be seen as a FULLY NON-LINEAR
CHEMOTAXIS model.

Indeed, Assuming |G| << 1, the MONGE-AMPERE becomes

p =det(I — D3 (t,x)) =1 — BAY + O(5?)

which approximates the CHEMOTAXIS model (without viscosity)
considered by Jager and Luckhaus Trans. AMS 1992:

Otp+ V- (pw) =0, w=Viy(t,x), p=1-—FAY(t, x))

\_
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SOME COUPLED MONGE-AMPERE SYSTEMS

4) CONVEXITY PRINCIPLE AND ENTROPY CONDITION

In one space variable the approximation is exact:

Otp+ Ox(pw) =0, p=1— [B0xw

In that case, the system can be reduced to the inviscid BURGERS

equation

Bew + Ox (W2 /2) = %

fits with the CONVEXITY PRINCIPLE we used for the HB system.

\_

and the Kruzhkov-Oleinik ENTROPY CONDITION condition EXACTLY

/

pril 5, 2008

14



Hni;va]'sil.é

ICE  SOBHH—ANTHES
k /’-

A STRINGY DARCY-BOUSSINESQ MODEL:
1) THE DB SYSTEM IN LAGRANGIAN COORDINATES

The Darcy-Boussinesq DB system reads

oy + (v-V)y = G(x,y),

v+ Vp=y,

V-v=0

Let us introduce the time dependent volume preserving map

acD= X(t,a) e D

\_

Setting

defined by

X (t,a) = v(t, X(t,a)), X(t

=0,a) =a

Y(t7 a) — Y(ta X(t7 a))a

we get

OtY (t,a) = G(X(t,a),Y(t,a)),

Ot X(t,a) + (Vp)(t,X(t,a)) = Y(t,a)
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A STRINGY DARCY-BOUSSINESQ MODEL:

2) THE DB/AHT SYSTEM AS A GRADIENT FLOW

In the special case G = 0, the DB system can be interpreted also as a

get Y(t,a)=Y(t =0,a) = Yg(a) (since G =0 ) and, therefore,

atX(tﬂ a) T (VP)(t7 X(t7 a)) — YO(a)

as the GRADIENT FLOW of the functional

X € VPM(D) — % /D X (a) — Yo(a)|?da

where VPM(D) is the set of all VOLUME PRESERVING MAPS of D

of the volume preserving constraint.

\_

Angenent-Haker-Tannenbaum AHT model. In Lagrangian coordinates, we

Following Angenent-Haker-Tannenbaum, this model should be understood

embedded in the Hilbert space L?(D,R9) and p is the Lagrange multiplier

/
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A STRINGY DARCY-BOUSSINESQ MODEL:

3) STRINGY GENERALIZATION OF THE DB MODEL

A natural generalization of the DB model amounts to consider
the set of ’strings’ of volume preserving maps
X:s€[0,1] — X(s,-) € VPM(D)
and the corresponding gradient flow for the Dirichlet functional

1 1
J[X] = —/ / 10sX (s, a)|?dads
2/o Jp

The resulting equation reads

Ot X(t,s,a) + (Vp)(t,s, X(t,s,a)) = 0ssX(t, s, a)

where p is a Lagrange multiplier for the incompressibility constraint.

The (formal) energy balance is:

d 1 1
—/ / 10sX(t,s,a)|?dads = —2/ / 0t X (t,s,a)|*dads
dt Jo Jp o /D
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A STRINGY DB MODEL
4) EQUATIONS WRITTEN IN EULERIAN COORDINATES

Going back to Eulerian coordinates by setting

Ot X(t,s,a) = v(t,s, X(t,s,a)), 9sX(t,s,a) =Db(t,s, X(t,s,a)),

we get two differential constraints (since X(t,s, ) is volume preserving)
and a compatibility condition (using 0;0sX = 0s0¢X):

V.v=V:-b=0, 0b+(v-V)b=0v+(b-V)v

Then, the equation | 0:X(t,s,a) + (Vp)(t,s, X(t,s,a)) = 0ss X (t, s, a)

reads, in Eulerian coordinates, | v+ Vp=0sb+ (b-V)b

\_
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A STRINGY DB MODEL
5) INTERPRETATION AS A MAGNETIC RELAXATION MODEL

We can see the stringy DB model, written in Eulerian coordinates,

v+Vp=08sb+(b-V)b, &b+ (v-V)b=0v+(b-V)v, V.- v=V-b=0

as a MAGNETIC RELAXATION MODEL A LA ARNOLD-MOFFATT
(see Arnold-Khesin, Springer 1998, Moffatt JFM 1985)

The EQUILIBRIUM STATES formally obtained as t — +o0

v(t =00,8,x) =0, b(t=o00,s,%x) =B(s,x), p(t =00,s,%x) =P(s,x)

are indeed solutions to the EULER EQUATIONS

VP=06;B+(B-V)B, V-B=0

N /
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of the stringy DB model of form

THE CROSS-BURGERS EQUATION
1) DERIVATION FROM THE STRINGY DB MODEL

X(t,s,a) =U(t,s)a, YVae D

Ot U(t,s) + S(t,s)U(t,s) = 0ssU(t,s)

OsU(t,s)a = B(t,s) x (U(t,s)a), Vae D

OtB(t,s) + B(t,s) x 0sB(t,s) = 0ssB(t,s)

\_

In the special case when D is the unit ball of R3, we find special solutions

where U(t,s)

is valued in THE ORTHOGONAL GROUP O(3) and subject to:

where each S(t,s) is a real symmetric 3 X 3 matrix.
Introducing for each (t,s) the unique vector B(t,s) € R® such that

we get for B(t,s) what we call THE CROSS-BURGERS EQUATION

/
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THE CROSS-BURGERS EQUATION

2) A MAGNETIC REVERSAL PHENOMENON 1

Special solutions of the CROSS-BURGERS EQUATION read

B(t,s) = (f(t)cos(27ws), f(t)sin(27s), g(t))

where

df d
— = 2n(g — 2m)f, T8 _ _onf2
dt dt

For g(t =0) > 4n, f(t =0) # 0, we can check that

This looks like a magnetic reversal

\_

g(t=+400) =47 —g(0) <0, f(t=+o00)=0, even when [f(t=0)| << 1.
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THE CROSS-BURGERS EQUATION
3) A MAGNETIC REVERSAL PHENOMENON 2

g(0) = 36.2830925, f(0) = 0.075, g(+oo0) = —23.7167
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Figure 1: g(t) and f(t) versus t
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