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Non-Linear Fokker-Planck Equations I

Consider the following minimization problem:

Given a density ρn−1, find ρn such that

inf
ρ,ρn,u

 
E(ρn) +

Z tn

tn−1

Z
Rd

c (u (x , t)) ρ (x , t) dxdt

!
under the constraint that

∂ρ

∂t
+∇ · (ρu) = 0

ρ(·, tn−1) = ρn−1, ρ(·, tn) = ρn.



Non-Linear Fokker-Planck Equations II

The optimality condition for the minimization problem is given by

∂ρ

∂t
= ∇ ·

»
ρ (∇c∗)

„
∇δE

δρ

«–
ρ(x , 0) = ρ0(x).

with no-flux boundary conditions. The energy E is given by

E = U|{z}
internal energy

+ V|{z}
potential energy

+ W|{z}
interaction energy

U(ρ) =

Z
Rn

U (ρ (x)) dx

V(ρ) =

Z
Rn

ρ(x)V (x)dx

W(ρ) =
1

2

Z
Rn×Rn

W (x − y)ρ(x)ρ(y)dxdy



Quadratic Cost

Classical examples with cost functional c(x) = |x|2
2

U(s) = s log s, V = 0, W = 0 heat equation

U(s) = sm

m−1
, V = 0, W = 0 porous-medium type equation

U(s) = s log s, V given potential linear Fokker-Planck equation

U = 0, V = 0, W (z) = |z|
3

model for granular flow

W (z) non-local kernel continuous swarming models



Non-Quadratic Costs

The relativistic cost is given by

c(x) =

(
1−

q
1− 1

c2 |x |2 |x | < c

∞ |x | ≥ c

where c > 0 can be interpreted as a maximal speed.
The corresponding optimality condition with U(s) = s log(s)− s is the
so-called relativistic heat equation

∂ρ

∂t
= ∇ ·

0@ ρ∇ρq
ρ2 + 1

c2 |∇ρ|

1A
The cost functional c(x) = |x|p

p
gives the well-known p-Laplace equation

∂ρ

∂t
= ∇ ·

“
|∇ρ|p−2∇ρ

”
.



Linearization I

Consider the linearized minimization problem

Given a density ρn−1, find ρn such that

inf
ρ,ρn,u

 
E(ρn) +

Z tn

tn−1

Z
Rd

c (u (x , t)) ρn−1 (x , t) dxdt

!
under the constraint that

∂ρ

∂t
+∇ · (ρn−1u) = 0

ρ(·, tn−1) = ρn−1, ρ(·, tn) = ρn.

The optimality condition is given by

∂ρ

∂t
= div

„
ρn−1∇

„
∂E

∂ρ

««
ρ(x , 0) = ρ0(x)

and no flux boundary conditions.



Linearization II

We introduce the new variables

µ =
δE

δρ
and j = ρn−1∇µ

We replace the time derivative by a finite difference quotient and obtain:

µn =
δE

δρn
(ρn)

ρn −
√
τ div jn = ρn−1

√
τ∇µn −

1

ρn−1
jn = 0

Problem is still non-linear, therefore we linearize E , for example

E (ρn) = ρn log ρn Ẽ (ρn) = ρn

„
log ρn−1 +

ρn − ρn−1

ρn−1

«



Maximum Principle

Proposition

Let 0 < c1 ≤ ρn−1 (x) ≤ c2 for all x ∈ Ω. Then the solution ρn of

ρn −
√
τ div jn = ρn−1

√
τ∇µn −

1

ρn−1
jn = 0.

with µn = δE
δρn

(ρn) satisfies

c1 ≤ ρn (x) ≤ c2 ∀x ∈ Ω.

Long time behavior of the Fokker-Planck Equation: Linearization with µ = δE
δρn

guarantees decay of the numerical entropy, using a similar argument as in

• A. Arnold, A. Unterreiter, Entropy Decay of Discretized Fokker-Planck
Equations I - Temporal Semi-Discretization, Comp. Math. Appl. 46, No.
10-11, 2003



Variational formulation

Then the weak formulation is given by

Find ρn, µn ∈ L2(Ω) and jn ∈ H(div,Ω) such that:Z
Ω

a(ρn−1)ρvdx +

Z
Ω

µnvdx =

Z
Ω

f (ρn−1)vdx ∀v ∈ L2(Ω)Z
Ω

ρnwdx −
Z

Ω

√
τ div jnw dx =

Z
Ω

ρn−1wdx ∀w ∈ L2(Ω)

−
Z

Ω

√
τµn div qdx −

Z
Ω

1

ρn−1
jnqdx = 0 ∀q ∈ H(div,Ω)

Abstract formulation: Find u ∈ V and p ∈ Q solutions of

a(u, v) + b(v , p) = 〈f , v〉 ∀ v ∈ V

b(u, q)− c(p, q) = 〈g , q〉 ∀ q ∈ Q.

where a, b, c are continuous bilinear forms.



Existence and Uniqueness

If the following conditions hold:

• a is a bounded and coercive, i.e.

|a(u, v)| ≤ ‖a‖‖u‖V ‖v‖V ∀ u, v ∈ V

∃ α > 0 a(v , v) ≥ α‖v‖2
V ∀ v ∈ V0

with V0 = {v ∈ V | b(v , p) = 0 ∀p ∈ Q},
• b is bounded and satisfies the inf-sup-condition, i.e.

|b(v , q)| ≤ ‖b‖‖v‖V ‖q‖Q ∀v ∈ V , q ∈ Q

∃ β > 0 sup
v∈V

b(v , q)

‖v‖V
≥ β‖q‖Q ∀p ∈ Q

• c is bounded and coercive, i.e.

|c(p, q)| ≤ ‖c‖‖‖Q‖q‖Q ∀p, q ∈ Q

∃ γ > 0 c(q, q) ≥ γ‖q‖2
Q ∀q ∈ Q

Then the system has a unique solution.



Conforming Finite Elements

Properties of H(div,Ω) and L2(Ω):

• σ ∈ H(div,Ω) ⇒ σ · n has to be continuous

• v ∈ L2(Ω) ⇒ no continuity requirements

The cheapest H(div,Ω) conforming finite element is the Raviart Thomas
element defined by

Vh =

( 
a

b

!
+ c

 
x

y

!
: a, b, c ∈ R

)
Degrees of freedom are associated to the edges ei of the triangle:Z

ei

φj · nei ds = δi,j i = 1, 2, 3

The lowest order L2(Ω) conforming finite element space Qh contains the
element-wise constant functions.



Low Order Raviart-Thomas Elements

Degrees of freedom:

• ρ, µ

• j

The De-Rham sequence:

H(div,Ω) −−−−−→
div

L2(Ω)??yIh

??yPh

Vh −−−−−→
div

Qh



Patlak-Keller-Segel Model I

PKS Model is used for describing the motion of cells attracted by a self-emitted
chemical substrate.

−∆c − ρ = −〈ρ〉
ρt = div (ρ∇ (log ρ− χc))

ρ(x , 0) = ρ0(x) ≥ 0

with no-flux boundary conditions. Here

• c denotes the concentration of the chemo-attractant

• ρ represents the cell density and

• χ is the sensitivity of the bacteria to the chemo-attractant.



Patlak-Keller-Segel Model II

Total mass of system:

M :=

Z
R2

ρ0dx =

Z
R2

ρ(x , t)dx .

Blow up behavior for χM > MC ,

Mc =

(
8π for unbounded domains Ω ⊂ R2

4π for bounded, connected domains Ω ⊂ R2

• A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite Time Aggregation
For The Critical Patlak-Keller-Segel Model in R2, Preprint UAB

• V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model:
energy estimates preventing blow up, Journal Mathématiques Pures et
Appliquées 86, 155-175, 2006



Mixed Finite Element Method I

We introduce new variables

• Concentration gradient: e = ∇c

• Flux: j = ρ∇µ with µ = δE
δρ

= log ρ− χc

and the following linearization µ ≈ log ρn−1 +
ρn−ρn−1

ρn−1
− χc.

Find c, ρn, µn ∈ L2(Ω) and e, jn ∈ H(div,Ω) such that

−
Z

Ω

e · pdx +

Z
Ω

c div pdx = 0 ∀e ∈ H(div,Ω)Z
Ω

div erdx −
Z

Ω

ρnrdx = −
Z

Ω

〈ρ0〉rdx ∀r ∈ L2(Ω)

−
Z

Ω

χcudx +

Z
Ω

ρn

ρn−1
udx −

Z
Ω

µnudx = −
Z

Ω

(log ρn−1 + 1) udx ∀u ∈ L2(Ω)

−
Z

Ω

ρnvdx +

Z
Ω

√
τ div jnvdx = −

Z
Ω

ρn−1vdx ∀v ∈ L2(Ω)Z
Ω

√
τµn div qdx +

Z
Ω

1

ρn−1
jn · qdx = 0 ∀q ∈ H(div,Ω).



Problem Setup

• Initial density:

ρ0(x , y) =
c

2π
e−

(x−x0)2+(y−y0)2

2

• Domain: Square of size [−5, 5]× [−5, 5] with discretization of 10348
triangles

• Hp-mesh refinement in corner of expected blow up

• replace

1

ρn−1
≈ 1

max(ρn−1, h)

where h is the mesh size



Evolution of ρ with mass M = 10π

(a) t = 0 (b) t = 0.4

(c) t = 0.8 (d) t = 1.4



Evolution of ρ with mass M = 10π

(e) t = 0 (f) t = 0.4

(g) t = 0.8 (h) t = 1.4



Evolution of ρ with mass M = 6π

(i) t = 0 (j) t = 0.4

(k) t = 0.8 (l) t = 1.4



Evolution of 4 densities ρi with masses mi = 0.9π

(m) t = 0 (n) t = 1

(o) t = 4 (p) t = 6

Figure: Evolution of four densities ρ with four masses mi = 0.9π



Porous Medium Equations

We consider the porous medium type equations

ρt = div (∇ρm) = div

„
m

m − 1
ρ∇ρm−1

«
ρ(x , 0) = ρ0(x)

for m ≥ 2 with homogenous Neumann boundary conditions. For m < 1 this
equation is known as the Fast Diffusion Equation (FDE).

Applications:

• Flow of a gas through a porous medium for m > 2,

• thin films with no surface tension for m = 4,

• and many other applications in physics . . .

J. L. Vazquez, The Porous Medium Equation, Oxford University Press



Barenblatt-Pattle Solutions

Solution of the porous medium equation is given by the Barenblatt-Pattle
profile

V (|x |, t) = t−kN

„
C1 −

k (m − 1)

2m
|x |2t−2k

« 1
m−1

+

where k = (N(m − 1) + 2)−1.

(a) m = 2 (b) m = 6 (c) m = 0.6



Linearization of Porous Medium Equations

Introduce a new variable

µ =
m

m − 1
ρm−1

≈ m

m − 1

“
ρm−1

n−1 + (m − 1) ρ̃m−2 (ρ− ρn−1)
”

The flux is given by

j = ρ∇µ ≈ ρn−1∇µ.

The linearized system then reads as

mρm−2
n−1 ρn − µn = −m(m − 2)

m − 1
ρm−1

n−1

−ρn +
√
τ div jn = −ρn−1

−
√
τ∇µn +

1

ρn−1
jn = 0.



Porous Medium Equations

The variational formulation is given by:

Find ρn, µn ∈ L2(Ω) and jn ∈ H(div,Ω) such thatZ
Ω

mρm−2
n−1 ρnωdx −

Z
µnωdx = −

Z
m(m − 2)

m − 1
ρm−1

n−1 ωdx for all ω ∈ L2(Ω)

−
Z

Ω

ρnξdx +

Z √
τ div jnξdx = −

Z
ρn−1ξdx for all ξ ∈ L2(Ω)Z

Ω

√
τµn div θ +

Z
1

ρ̃
jθdx = 0 for all θ ∈ H(div,Ω)



Numerical Discretization

For the numerical computations we

• replace

1

ρ2−m
n−1

≈ 1

max(ρn−1, h)2−m

where h is the mesh size

• and do a back-projection after each time step

ρ = max(ρ, 0).

Problem Setup:

• Circle of radius r = 2

• Time steps: τ = 10−1 for PME, τ = 10−3 for FDE

• Initial Guess: Barenblatt Profile at t = 0.1



Numerical Simulation for m = 3

(d) t = 15 (e) t = 15

(f) Difference of the approximated solu-

tion to the BP solution in L2 norm



Numerical Simulation for m = 5

(g) t = 20 (h) t = 20

(i) Difference of the approximated solu-

tion to the BP solution in L2 norm



Numerical Simulation for m = 3

(j) t = 0 (k) t = 0.1 (l) t = 0.25

(m) t = 0.5 (n) t = 1



Numerical Simulation for m = 0.8

(o) t = 1 (p) t = 2



Relativistic Heat Equation I

Relativistic heat equation (RHE) is given by

∂ρ

∂t
= ν div

0@ ρ∇ρq
ρ2 + ν2

c2 |∇ρ|2

1A
ρ(x , 0) = ρ0(x)

where ν > 0 is a constant representing a kinematic viscosity and c is the speed
of light.
Asymptotic behavior :

• For c →∞ the solutions of the RHE converge to the solution of the heat
equation ρt = ν∆ρ.

• For ν →∞ the solutions of the RHE converge to the solution of

∂ρ

∂t
= c div

„
ρ
∇ρ
|∇ρ|

«
.



Relativistic Heat Equation II

The solution of the limiting equation with initial data ρ0(x) = αχC (x), α > 0
is given by

ρ(x , t) = α
|C |
|C(t)|χC(t) (x)

where

C(t) := {x ∈ RN : d(x ,C) ≤ t}.

For further information

• F. Andreu, V. Caselles, J.M. Manzon and S. Moll, On The Relativistic
Heat Equations And An Asymptotic Regime Of It, Preprint

• V. Caselles, Convergence Of The Relativistic Heat Equations To The Heat
Equations As c →∞, Publ. Mat. 51 (2007), 121-142

• R. J. McCann, M. Puel, Constructing A Relativistic Heat Flow By
Transport Time Steps



Relativistic Heat Equation III

Consider

∂ρ

∂t
= ν div

0@ ∇ρq
1 + ν2

c2
|∇ρ|2
ρ2

1A

and introduce new variables µ = log ρ and the flux j = ρ∇µ. Using the same
linearization as for the Keller-Segel model we obtain

1

ρn−1
ρn − µn = 1− log ρn−1

−ρn +
√
τ div jn = −ρn−1

√
τp

1 + |∇µn−1|2
∇µn +

jn
ρn−1

= 0

Problem: Higher order basis functions for µ



1D Discretization

Introduce a new variable σ = ρx - then the linearized system is given by

σ − ρx = 0

−∂ρ
∂t

+ ∂x

0@ σq
1 + ν2

c2
|σ̃|2
ρ̃2

1A = 0.

Find σ ∈ L2(Ω) and ρ ∈ H1(Ω) such thatZ
σωdx −

Z
ρxωdx = 0 for all ω ∈ L2(Ω)

−
Z

1q
1 + ν2

c2
|σ̃|2
ρ̃2

σξxdx −
Z

1

τ
ρξdx = −

Z
1

τ
ρ̃ξdx for all ξ ∈ H1(Ω).



Relativistic Heat Equation
c = 1.0 and ν = 1.0
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Relativistic Heat Equation
c = 1e10 and ν = 1.0
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Relativistic Heat Equation
c = 1.0 and ν = 1e20
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Time evolution of rho with v=1e20
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Exact Solution: ρ(x , 0.5) = 1
2
χ[−1,1]



What’s still left to do

• Extension of the numerical scheme to use higher order basis functions

• Long-time behavior of numerical scheme

• Newton method after linearization of Wasserstein distance

Software: NETGEN/NGSolve developed by Joachim Schöberl, RWTH Aachen

Thank you very much for your attention !
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