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@ Non-Linear Fokker-Planck Equations

@® Mixed finite element method

© Patlak-Keller-Segel Model

@ Porous Medium Equation

@ There's always a point you get in trouble - the Relativistic Heat Equation



Non-Linear Fokker-Planck Equations |

Consider the following minimization problem:

Given a density p,—1, find p, such that

p’ignf’u (E(pn) + /tn /]Rd c(u(x,t))p(x,t) dxdt)

under the constraint that

op _
E-I—V-(pu)—o

P(sta-1) = po—1,  p(- ta) = pn.




Non-Linear Fokker-Planck Equations Il

The optimality condition for the minimization problem is given by

- s (o5

p(X7 0) = PO(X)-
with no-flux boundary conditions. The energy E is given by

E= U  + 1% + W
~~ —~~ -~

internal energy potential energy interaction energy

Uip) = / U () dx
V(o) = / PGV
1
W(p) = 5 /R . W(x — y)p(x)p(y)dxdy



Quadratic Cost

Classical examples with cost functional c(x) = %
U(s) =slogs, V=0, W=0 heat equation
U(s) = nfjl, V=0 W=0 porous-medium type equation
U(s) = slogs, V given potential linear Fokker-Planck equation

1zl
3

U=0, V=0, W(z)= model for granular flow

W(z) non-local kernel continuous swarming models



Non-Quadratic Costs

The relativistic cost is given by
1
(x) = 1—4/1-3|x]2 |x|<c
9 x| > ¢

where ¢ > 0 can be interpreted as a maximal speed.
The corresponding optimality condition with U(s) = slog(s) — s is the
so-called relativistic heat equation

% R O\ B
VPRt =Vl

. P . .
The cost functional ¢(x) = % gives the well-known p-Laplace equation

o _

ot = V- ('V’)'HV”) :



Linearization |

Consider the linearized minimization problem

Given a density p,—1, find p, such that

pfg’iu < (pn) +/ / ) pn—1(x, t) dxdt)

under the constraint that
Ip
ot
p( ta-1) = pn—1,  p(*, tn) = pn.

+ V- (pn-1u) =0

The optimality condition is given by

)
p(x,0) = po(x)

and no flux boundary conditions.



Linearization Il

We introduce the new variables

_SE

= — and J=pn—1Vu
dp

I

We replace the time derivative by a finite difference quotient and obtain:

0E
Hn = Tpn(Pn)
Pn — \/'T—d|vjn = Pn—1
VAVl — ——ja =0
Pn—1

Problem is still non-linear, therefore we linearize E, for example

E (pn) = pn |Og pn E(pn) = pn (Iog pn71 + %)

n—1



Maximum Principle

Proposition

Let 0 < c1 < pn—1(x) < ¢ for all x € Q. Then the solution p, of
Pn — \Edivjn = Pn-1

1
VTV iy — jn = 0.

Pn—1

with p, = %(pn) satisfies

a<px)<ao VxeQ.

SE

Long time behavior of the Fokker-Planck Equation: Linearization with pu = 5o

guarantees decay of the numerical entropy, using a similar argument as in

e A. Arnold, A. Unterreiter, Entropy Decay of Discretized Fokker-Planck
Equations | - Temporal Semi-Discretization, Comp. Math. Appl. 46, No.
10-11, 2003




Variational formulation

Then the weak formulation is given by

Find pn, in € L*(Q) and j» € H(div, Q) such that:
/a(pn,l)pvdx—l—/u,,vdx:/f(p,,,l)vdx Vv € 1*(Q)
Q Q Q
/pnwdx — / VTdivj,w dx = / Pn—1wdx Yw € L2(Q)
Q Q Q

7/ VT div qdx f/ ! jnqdx =0 vq € H(div, Q)
Q Q Pn—1

Abstract formulation: Find v € V and p € Q solutions of
a(u,v)+ b(v,p)=(f,v) VveV
b(u,q) —c(p,q) =(g,q9) VqgeQ.

where a, b, ¢ are continuous bilinear forms.



Existence and Uniqueness
If the following conditions hold:
e ais a bounded and coercive, i.e.
la(u, V)| < [lallllullv][vilv VuveV
Ja>0 a(v,v) > allv|} VveW

with Vo = {v € V| b(v,p) =0 Vp € Q},

e b is bounded and satisfies the inf-sup-condition, i.e.

b(v.q)| < [blllviviale  WeV, geq
b(v,

3550 sup 29D > glqlle Ype Q
S vl

e c is bounded and coercive, i.e.

lc(p, )l < licllllllellqlle Vp,q € Q
3v>0 c(q,9) >lqlls Vg e Q

Then the system has a unique solution.



Conforming Finite Elements

Properties of H(div, Q) and L?(Q):
e o € H(div,Q) = o - n has to be continuous
e v € L*(Q) = no continuity requirements

The cheapest H(div, Q) conforming finite element is the Raviart Thomas

element defined by
Vi = {<a> +c<X> :a,b,ceR}
b y

Degrees of freedom are associated to the edges e; of the triangle:
/ ¢jneds =6;; i=1,2,3
&

The lowest order L2(2) conforming finite element space Q, contains the
element-wise constant functions.



Low Order Raviart-Thomas Elements

Degrees of freedom:

° P

*j

;

The De-Rham sequence:
[ [

Vi T Qh



Patlak-Keller-Segel Model |

PKS Model is used for describing the motion of cells attracted by a self-emitted
chemical substrate.

—Ac—p=—p)
pe = div (pV (log p — xc))
p(x,0) = po(x) > 0
with no-flux boundary conditions. Here
e ¢ denotes the concentration of the chemo-attractant
e p represents the cell density and

e Y is the sensitivity of the bacteria to the chemo-attractant.



Patlak-Keller-Segel Model Il

Total mass of system:

M::/ podx:/ p(x, t)dx.
R2 R?

Blow up behavior for M > Mc,

M. — {871' for unbounded domains Q C R?

47 for bounded, connected domains Q C R?

e A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite Time Aggregation
For The Critical Patlak-Keller-Segel Model in R?, Preprint UAB

e V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model:
energy estimates preventing blow up, Journal Mathématiques Pures et
Appliquées 86, 155-175, 2006



Mixed Finite Element Method |

We introduce new variables
o Concentration gradient: e = V¢
e Flux: j = pVu with p = 2—5 =logp— xc

Pn—Pn—1

and the following linearization p =~ log pp—1 + -
n

— xc.

Find ¢, pn, in € L2(Q) and e, j, € H(div, Q) such that

—/e~pdx+/cdivpdx:0
Q Q
/diverdx—/p,,rdx:—/(pg>rdx
Q Q Q
f/xcuder/ fn udxf/,u,,udx:f/(logpn,lJrl) udx
Q Q Pn-1 Q Q

- / pnvdx +/ VT divijavdx = —/p,,,lvdx
Q Q Q
1
/ ﬁundiqux—k/ jn-qdx =0
Q Q Pn—1

Ve € H(div, Q)
vr e 13(Q)
Yu e *(Q)
Vv € [3(Q)

Vq € H(div, Q).




Problem Setup

Initial density:

(x=x0)?+(y=¥0)?
2

C
pO(X,y) = %e

Domain: Square of size [-5,5] x [—5, 5] with discretization of 10348
triangles

Hp-mesh refinement in corner of expected blow up

replace

1 1

~
~

po—1 max(pn-1, h)

where h is the mesh size



Evolution of p with mass M = 107

(c) t=0.8 (d) t=14



Evolution of p with mass M = 107

(e)t=0

(g) t=0.8 (h)yt=1.4



Evolution of p with mass M = 6x

(k) t=0.8 NHt=1.4



Evolution of 4 densities p; with masses m; = 0.97

n)t=1

(o) t=4

(p) t=6
Figure: Evolution of four densities p with four masses m; = 0.97

[m]

=



Porous Medium Equations

We consider the porous medium type equations

pe = div (Vp™) = div (%pvpm*)
p(x,0) = po(x)
for m > 2 with homogenous Neumann boundary conditions. For m < 1 this
equation is known as the Fast Diffusion Equation (FDE).
Applications:
e Flow of a gas through a porous medium for m > 2,
e thin films with no surface tension for m = 4,

e and many other applications in physics ...

J. L. Vazquez, The Porous Medium Equation, Oxford University Press



Barenblatt-Pattle Solutions

Solution of the porous medium equation is given by the Barenblatt-Pattle
profile

V(|X‘, t) _ t*kN (Cl o M|X|2t72k) m—1
m +

where k = (N(m —1) +2)"".




Linearization of Porous Medium Equations

Introduce a new variable

p=—pmt
m—1

m e m—
m_1 (Pn—11 +(m=-1)""2(p— Pn—l))

Q

The flux is given by
i=pVu=pnaVp.
The linearized system then reads as

m(m—2) 1

—2
mpp 1 pn — ftn = — 1

m-—1
—pn + \/FdWJn = —Pn-1

1
—VTVun + p

n—

jn=0.



Porous Medium Equations

The variational formulation is given by:

Find pn, ftn € L*(R) and j. € H(div, Q) such that

/ mpl 2 pawdx — /u,,wdx = / m( 1 p,, “lwdx for all w € [*(Q)

— / p,,ﬁdx—k/ﬁdivj,,fdx = —/p,,_lﬁdx for all £ € L2(Q)
Q

/ VTpndive + / lj@dx =0 for all § € H(div, Q)
Q P




Numerical Discretization

For the numerical computations we

e replace

1 1

~

2—m

P2y max(pa-1, b2
where h is the mesh size
e and do a back-projection after each time step
= max(p, 0).

Problem Setup:
o Circle of radius r =2
e Time steps: 7 = 107! for PME, 7 = 102 for FDE
o Initial Guess: Barenblatt Profile at t = 0.1



Numerical Simulation for m =3

(d) t=15 (e) t=15
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(f) Difference of the approximated solu-
tion to the BP solution in L2 norm




Numerical Simulation for m =5

(g) t=120 (h) t=20

Difrsncs s
i

(i) Difference of the approximated solu-
tion to the BP solution in L? norm



Numerical Simulation for m =3

(1) t=0.25




Numerical Simulation for m = 0.8

(o) t=1




Relativistic Heat Equation |

Relativistic heat equation (RHE) is given by

9 = vdiv PNp

o 7+ 5 IVP
p(x,0) = o(x)

where v > 0 is a constant representing a kinematic viscosity and c is the speed
of light.
Asymptotic behavior :

e For ¢ — oo the solutions of the RHE converge to the solution of the heat
equation pr = vAp.

e For v — oo the solutions of the RHE converge to the solution of

op . Vp
ot — (”w)'



Relativistic Heat Equation Il

The solution of the limiting equation with initial data po(x) = axc(x), a >0
is given by

where
C(t):={xe€ RV d(x, C) < t}.

For further information

e F. Andreu, V. Caselles, J.M. Manzon and S. Moll, On The Relativistic
Heat Equations And An Asymptotic Regime Of It, Preprint

o V. Caselles, Convergence Of The Relativistic Heat Equations To The Heat
Equations As ¢ — oo, Publ. Mat. 51 (2007), 121-142

e R. J. McCann, M. Puel, Constructing A Relativistic Heat Flow By
Transport Time Steps



Relativistic Heat Equation IlI

Consider

9 =vdiv Ve

ot /1 +2 v2 \vmz

and introduce new variables ;1 = log p and the flux j = pVu. Using the same
linearization as for the Keller-Segel model we obtain

1
Pn— pin =1 —log ps—1
Pn—1
—pn + \/;d|VJn = —Pn-1

Lvﬂn + Jn =0
V14| Va1 Pn—1

Problem: Higher order basis functions for p




1D Discretization

Introduce a new variable o = p, - then the linearized system is given by

c—px=0
% 1o, o) -0
1+ % 7
Find o € L?(Q) and p € H*(Q) such that
/awdx — /pxwdx =0 for all w € L*()

-/

- Uﬁxdx /%pfdx = —/%ﬁfdx for all £ € H'(Q).

ﬁ

v2
72




Relativistic Heat Equation
c=10andrv=1.0

Time evolution of rho according to the relativistic heat equation

b oooocooooo
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Relativistic Heat Equation

c=1el0and v =1.0

tho according to the

Time evolution of tho according to the heat equation




Relativistic Heat Equation
c=1.0and v =1e20

Time evolution of tho with v=1€20

S ooooooooo
[Tt

Exact Solution: p(x,0.5) = $x(_1 1



What's still left to do

e Extension of the numerical scheme to use higher order basis functions
e Long-time behavior of numerical scheme

e Newton method after linearization of Wasserstein distance

Software: NETGEN/NGSolve developed by Joachim Schéberl, RWTH Aachen



What's still left to do

e Extension of the numerical scheme to use higher order basis functions
e Long-time behavior of numerical scheme

e Newton method after linearization of Wasserstein distance

Software: NETGEN/NGSolve developed by Joachim Schéberl, RWTH Aachen

Thank you very much for your attention !
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