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The idea

Suppose two roads link two cities: a straight line highway and a longer
country path.
If everybody chooses the former, it will become and congested and less
performant of the latter. Hence everybody will change his mind and take
the other one. And it will be even worse !
Is there an equilibrium?

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

The objects

A finite graph with edges e ∈ E and a set of sources S and
destinations D,

the set C (s, d) = {σ from s to d} of possible paths from s to d ,

a demand input γ(s, d) denoting the quantity of commuters from
s ∈ S to d ∈ D,

an unknown repartition strategy (to be looked for) q = (qσ)σ such
that

∑
σ∈C(s,d) qσ = γ(s, d),

a consequent traffic intensity (depending on q) iq = (iq(e))e given
by iq(e) =

∑
e∈σ qσ,

an increasing function g : R+ → R+ such that g(iq(e)) represents
the congestioned cost of the edge e,

the cost for each path σ, given by c(σ) =
∑

e∈σ g(iq(e)) length(e).

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

The objects

A finite graph with edges e ∈ E and a set of sources S and
destinations D,

the set C (s, d) = {σ from s to d} of possible paths from s to d ,

a demand input γ(s, d) denoting the quantity of commuters from
s ∈ S to d ∈ D,

an unknown repartition strategy (to be looked for) q = (qσ)σ such
that

∑
σ∈C(s,d) qσ = γ(s, d),

a consequent traffic intensity (depending on q) iq = (iq(e))e given
by iq(e) =

∑
e∈σ qσ,

an increasing function g : R+ → R+ such that g(iq(e)) represents
the congestioned cost of the edge e,

the cost for each path σ, given by c(σ) =
∑

e∈σ g(iq(e)) length(e).

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

The objects

A finite graph with edges e ∈ E and a set of sources S and
destinations D,

the set C (s, d) = {σ from s to d} of possible paths from s to d ,

a demand input γ(s, d) denoting the quantity of commuters from
s ∈ S to d ∈ D,

an unknown repartition strategy (to be looked for) q = (qσ)σ such
that

∑
σ∈C(s,d) qσ = γ(s, d),

a consequent traffic intensity (depending on q) iq = (iq(e))e given
by iq(e) =

∑
e∈σ qσ,

an increasing function g : R+ → R+ such that g(iq(e)) represents
the congestioned cost of the edge e,

the cost for each path σ, given by c(σ) =
∑

e∈σ g(iq(e)) length(e).

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

The objects

A finite graph with edges e ∈ E and a set of sources S and
destinations D,

the set C (s, d) = {σ from s to d} of possible paths from s to d ,

a demand input γ(s, d) denoting the quantity of commuters from
s ∈ S to d ∈ D,

an unknown repartition strategy (to be looked for) q = (qσ)σ such
that

∑
σ∈C(s,d) qσ = γ(s, d),

a consequent traffic intensity (depending on q) iq = (iq(e))e given
by iq(e) =

∑
e∈σ qσ,

an increasing function g : R+ → R+ such that g(iq(e)) represents
the congestioned cost of the edge e,

the cost for each path σ, given by c(σ) =
∑

e∈σ g(iq(e)) length(e).

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

The objects

A finite graph with edges e ∈ E and a set of sources S and
destinations D,

the set C (s, d) = {σ from s to d} of possible paths from s to d ,

a demand input γ(s, d) denoting the quantity of commuters from
s ∈ S to d ∈ D,

an unknown repartition strategy (to be looked for) q = (qσ)σ such
that

∑
σ∈C(s,d) qσ = γ(s, d),

a consequent traffic intensity (depending on q) iq = (iq(e))e given
by iq(e) =

∑
e∈σ qσ,

an increasing function g : R+ → R+ such that g(iq(e)) represents
the congestioned cost of the edge e,

the cost for each path σ, given by c(σ) =
∑

e∈σ g(iq(e)) length(e).

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

The objects

A finite graph with edges e ∈ E and a set of sources S and
destinations D,

the set C (s, d) = {σ from s to d} of possible paths from s to d ,

a demand input γ(s, d) denoting the quantity of commuters from
s ∈ S to d ∈ D,

an unknown repartition strategy (to be looked for) q = (qσ)σ such
that

∑
σ∈C(s,d) qσ = γ(s, d),

a consequent traffic intensity (depending on q) iq = (iq(e))e given
by iq(e) =

∑
e∈σ qσ,

an increasing function g : R+ → R+ such that g(iq(e)) represents
the congestioned cost of the edge e,

the cost for each path σ, given by c(σ) =
∑

e∈σ g(iq(e)) length(e).

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

The objects

A finite graph with edges e ∈ E and a set of sources S and
destinations D,

the set C (s, d) = {σ from s to d} of possible paths from s to d ,

a demand input γ(s, d) denoting the quantity of commuters from
s ∈ S to d ∈ D,

an unknown repartition strategy (to be looked for) q = (qσ)σ such
that

∑
σ∈C(s,d) qσ = γ(s, d),

a consequent traffic intensity (depending on q) iq = (iq(e))e given
by iq(e) =

∑
e∈σ qσ,

an increasing function g : R+ → R+ such that g(iq(e)) represents
the congestioned cost of the edge e,

the cost for each path σ, given by c(σ) =
∑

e∈σ g(iq(e)) length(e).

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

The objects

A finite graph with edges e ∈ E and a set of sources S and
destinations D,

the set C (s, d) = {σ from s to d} of possible paths from s to d ,

a demand input γ(s, d) denoting the quantity of commuters from
s ∈ S to d ∈ D,

an unknown repartition strategy (to be looked for) q = (qσ)σ such
that

∑
σ∈C(s,d) qσ = γ(s, d),

a consequent traffic intensity (depending on q) iq = (iq(e))e given
by iq(e) =

∑
e∈σ qσ,

an increasing function g : R+ → R+ such that g(iq(e)) represents
the congestioned cost of the edge e,

the cost for each path σ, given by c(σ) =
∑

e∈σ g(iq(e)) length(e).

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

Wardrop equilibria

The global strategy q represents the overall distribution of choices of
commuters’ paths. Imposing a Nash equilibrium condition (no single
commuter wants to change his mind, provided all the others keep the
same strategy) gives the following condition:

σ ∈ C (s, d), qσ > 0⇒ c(σ) = min{c(σ̃) : σ̃ ∈ C (s, d)}.

This condition is well-known among geographical economists as Wardrop
equilibrium.
Existence of at least an equilibrium comes from the following variational
principle.

Filippo Santambrogio Congestion and Fast Marching Methods
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Variational principle

Optimizing an overall congestion cost means minimizing a quantity∑
e H(iq(e)) length(e) (H : R+ → R+ being an increasing function: for

instance with H(t) = tg(t) we get the total cost for all commuters)
among all possible strategies q.
Optimality conditions: if q is optimal, then it is a Wardrop
equilibrium for g = H ′.
To get a Wardrop equilibrium it is sufficient to solve a convex
optimization problem (where H will be the primitive of g).
Unless g(t) = tp, this problem does not amount to minimizing the total
cost of all commuters!
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Measures formulation

In a domain Ω ⊂ Rn the demand is represented by probabilities
γ ∈ P(Ω× Ω). We are given a set Γ ⊂ P(Ω× Ω), the set of admissible
demand couplings: usually Γ = {γ} or

Γ = Π(µ, ν) = {γ ∈ P(Ω× Ω) : (πX )]γ = µ, (πY )]γ = ν}.

Let us also set

C = {Lipschitz paths σ : [0, 1]→ Ω}
C (s, d) = {σ ∈ C : σ(0) = s,, σ(1) = d}.

We look for a probability Q ∈ P(C ) such that (π0,1)]Q ∈ Γ: it can be
expressed as Q = Qs,d ⊗ γ with Qs,d ∈ P(C (s, d)).
We want to define a traffic intensity iQ ∈M+(Ω) such that

iQ(A) = “how much ” the movement takes place in A . . .

Filippo Santambrogio Congestion and Fast Marching Methods
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Traffic intensity and overall congestion

For φ ∈ C 0(Ω) and σ ∈ C set

Lφ(σ) =

∫ 1

0

φ(σ(t))|σ′(t)|dt.

Define iQ by

< iQ , φ >=

∫
C

Lφ(σ)Q(dσ).

Optimization: we minimize the convex functional

F (iQ) =

{∫
H(iq(x))dx if iq << Ln,

+∞ otherwise

among all admissible strategies Q, H being a convex, increasing and
superlinear function. Typically H(t) = tp.

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

Traffic intensity and overall congestion

For φ ∈ C 0(Ω) and σ ∈ C set

Lφ(σ) =

∫ 1

0

φ(σ(t))|σ′(t)|dt.

Define iQ by

< iQ , φ >=

∫
C

Lφ(σ)Q(dσ).

Optimization: we minimize the convex functional

F (iQ) =

{∫
H(iq(x))dx if iq << Ln,

+∞ otherwise

among all admissible strategies Q, H being a convex, increasing and
superlinear function. Typically H(t) = tp.

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

Traffic intensity and overall congestion

For φ ∈ C 0(Ω) and σ ∈ C set

Lφ(σ) =

∫ 1

0

φ(σ(t))|σ′(t)|dt.

Define iQ by

< iQ , φ >=

∫
C

Lφ(σ)Q(dσ).

Optimization: we minimize the convex functional

F (iQ) =

{∫
H(iq(x))dx if iq << Ln,

+∞ otherwise

among all admissible strategies Q, H being a convex, increasing and
superlinear function. Typically H(t) = tp.

Filippo Santambrogio Congestion and Fast Marching Methods



logo

Contents
Discrete models

Continuous models
Duality and discretization

Gradient and convergences

Optimality conditions

Let Q = Q
s,d ⊗ γ be a minimizer and set ξ = H ′(iQ). For ξ ≥ 0 set

cξ(s, d) = inf
σ∈C(s,d)

Lξ(σ)

(it’s the conformal Riemannian distance induced by ξ).

γ minimizes
∫

cξdγ among γ ∈ Γ,

Q−a.e. Lξ(σ) = cξ(σ(0), σ(1)).

Hence γ solves a Kantorovich transport problem and almost any path
is geodesic (i.e. Wardrop equilibrium with respect to H ′).
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Finiteness of the minimum

In order to apply the theory, one needs min F (iQ) < +∞.

if Γ = Π(µ, ν), then one can choose Q optimal for Monge Problem
and apply De Pascale - Pratelli results to get Lp estimates on the
transport density;

if Γ = {γ} and µ = ν = Ln one can use incompressible fluid
mechanics results and get Q concentrated on uniformly L−Lipschitz
curves with (πt)]Q = µ, which implies iQ ∈ L∞ (and, composing
with diffeomorphisms, one arrives up to µ, ν ∈ Lp);

if Γ = {γ} and µ and ν are discrete one can construct by hand a Q
such that iQ(x) ≈ |x − xi |−1 near the atoms xi , which implies
iQ ∈ Lp for p < n.
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Applications

Where to use a continuous model instead of a network one?
In crowd and pedestrian motion, for instance.
As a large scale limit of car vehicle traffic models (look at the whole
L.A. area: you may notice more congested area without necessarily seeing
the one-dimensional structure of the road system).

G. Carlier, C. Jimenez , F. Santambrogio, Optimal transportation with traffic

congestion and Wardrop equilibria, SIAM Journal on Control and Opt. 47 (3):

1330–1350, 2008.
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The dual problem

(P) = min
Q admissible

∫
Ω

H(iQ);

(D) = max
ξ≥0
−
∫

H∗(ξ) +

(
min
γ∈Γ

∫
cξdγ

)
.

If Γ = Π(µ, ν) then minγ∈Γ

∫
cξdγ = Wcξ

(µ, ν) is the value of a
transport problem. If Γ = {γ} then we obviously have
(D) = maxξ≥0−

∫
H∗(ξ) +

∫
cξdγ.

Duality: (P) = (D).
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Duality and numerics

In the finite network case, the dual problem is usually analyzed instead of
the primal one for numerical purposes (simpler constraints, smaller
dimension. . . ). Here it will be the same.
From an optimal ξ one can retrieve the corresponding traffic density by
H ′(iQ) = ξ (we need H to be strictly convex).
This dual problem involves computing geodesic distances according to
the metric ξ, i.e. viscosity solutions of the Eikonal equation |∇U| = ξ.

F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio, Numerical

Approximation of Continuous Traffic Congestion Equilibria, we’re amost done
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Fast marching algorithm for distances

Take ξ ≥ 0 defined on a square grid of size h. Set U(x0) = 0. Look for

(DxU)2
i,j + (DyU)2

i,j = h2(ξi,j)
2,

where we denote

(DxU)i,j := max{(Ui,j − Ui−1,j), (Ui,j − Ui+1,j), 0}/h,
(DyU)i,j := max{(Ui,j − Ui,j−1), (Ui,j − Ui,j+1), 0}/h.

The Fast Marching Method (FMM) is a numerical method introduced
by Sethian for efficiently solving this system (whose solution converges to
cξ(·, x0)). The numerical complexity of the FMM is O(N log(N))
operations for a grid with N points.
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Grid discretization of the dual problem

(DD) = min J(ξ) =
∑

i

H∗(ξi )−
∑
j,k

γ(j , k)Uxj ;ξ(xk)

Ux ;ξ(y) : FMM solution of |∇U| = ξ with U(x) = 0, computed at y .
This problem is convex (ξ 7→ Ux,ξ(y) is concave) and we can solve it by a
gradient method.
Hence, we have to derive the U-term w.r.t. ξ.
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FMM Gradient computation

Compute Ux0,ξ(y) and let ξ vary. The value at y depends on the value of
two parents y1 and y2 through

(U(y)− U(y1))2 + (U(y)− U(y2))2 = h2ξ2(y)

or on the value of one parent only through

U(y)− U(y1) = hξ(y).

If ξ varies one gets either

δU(y) =
2h2ξ(y)δξ(y) + δU(y1)(U(y)− U(y1)) + δU(y2)(U(y)− U(y2))

2U(y)− U(y1)− U(y2)

or
δU(y) = hδξ(y) + δU(y1).

We can compute ∇ξU(y) recursively, under the same parental relation as
in FMM. This requires O(N2 log(N)) operations.
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Convergences - 1

We apply a usual subgradient algorithm (why subgradient? in general
U is not differentiable w.r.t. ξ, it happens where there are ex-aequo
among the parents):

ξ(1) = 1; ξ(k+1) = max{0, ξ(k) − ρkw
(k)}

where (w (k))i,j = (H∗)′(ξ
(k)
i,j ) + (v (k))i,j ∈ ∂J(ξ(k))

where v (k) is a vector in the subdifferential of the U−part at the previous
point ξ(k) and ρk is a suitable sequence of steps.
Standard theory applies an the iterative scheme converges to the
minimizer of the discretized functional.
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Convergences - 2

What about convergence when the discretization gets finer and finer? We
prove Γ-convergence of the h−discretized functional to the original dual
one (à la De Giorgi). This implies convergence of the minima and of the
minimizers.
Main tool for the Γ− lim inf: if ξh ⇀ ξ in Lp∗ (ξh being identified to a
cell-wise constant function), and Uh are the corresponding solutions of the
Eikonal equation, with Uh(x0) = 0, on the grid (according to FMM), then

lim sup
h→0

Uh(y) ≤ Uξ(y),

where Uξ is the solution of |∇U| = ξ (but ξ is only Lp∗ , everything has to
be properly defined!).
For the Γ− lim sup: standard converging results for FMM (upwind
schemes) are sufficient.
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Convergences - 2
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Other applications

Other problems involving geodesic distances under unknown metrics may
be approached through this gradient algorithm.
Military applications (Buttazzo, Davini, Fragalà and Macia)

max cξ(x0, x1) a ≤ ξ ≤ b,

∫
ξ ≤ M;

max Wcξ
(µ0, µ1) a ≤ ξ ≤ b,

∫
ξ ≤ M.

Travel time tomography (Cavalca and Lailly, Leung and Qian)

min

∫
|∇ξ|p +

∑
k

(cξ(xk , yk)− dk)2
.
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And now. . .
. . . numerical results
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