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Introduction & Motivation

•Stochastic PDE’s :

•Solutions are no longer deterministic. 
•Main interest: statistical properties, such 
as mean, variance.
•Multi-scale structures.

•Fluid Dynamics
•Engineering
•Material Sciences
•Biology 
•Finance…



Introduction & Motivation
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Such as  diffuse light in optics.



Introduction & Motivation

Applications in sensing
Raman spectroscopy for bio and environmental sensing
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Introduction & Motivation

• Photonic Crystal (designed) as the medium

• goal: model the incoherent source and simulate output

• First step in the design of Photonic Crystal spectrometers

• Wave propagation is governed by Maxwell equations 

a

Input Source
(incoherent) 
at A

Output at B 
(electric field 
intensity)
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Optimal design of the shapes of Photonic Crystals for largest band gap  (Kao-
Osher-Yablonovitch, 05)



Maxwell Equation

Maxwell equations:
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Helmholtz wave equation:

electric field
magnetic field
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Helmholtz wave equation

z-invariant structure implies
two sets of decoupled equations 
Transverse Magnetic (TM) (Ez,Hx,Hy)
Transverse Electric (TE) (Hz,Ex,Ey)
3D space structure reduces to 2D 
Helmholtz TM wave equation:
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PDE’s are linear.



Direct Method for PC Spectrometer
• Incoherent property implies the direct (brute-force) method.

• Input nonzero point source               at     , and

• Compute output electric field at B

• Total electric intensity at B:

• Why point source? Non-point sources, such as plane waves, 
lead to coherent outputs.

• Pro: correct physics (linear equations + incoherent outputs). 

• Con: very inefficient.
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A Stochastic Model

Spatially incoherent source

Stochastic model

More general: 
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10ax10a Photonic Crystal as 
the simulation medium
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Stochastic Helmholtz Wave Equations

Current density is a stochastic source.

Solution for electric field is random. 

Monte Carlo simulation is slow, and hard to recover the 
incoherent properties

Our strategy: WCE.
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Monte Carlo

•Traditional methods, Monte Carlo (MC) 
simulations,

•Not many computational methods available.

•Solve the equations realization by realization. 
•Each realization, the equations become deterministic and 
solved by classical methods. 
•The solutions are treated as samples to extract statistical 
properties.



Monte Carlo

•MC can be very expensive:
•Has slow convergence, governed by law of large numbers 
and the convergence is not monotone.(    is the number of 
MC realizations)

•Need to resolve the fine scales in each realization to obtain 
the small scale effects on large scales, while only large scale 
statistics are of interests, such as long time and large scale 
behaviors.

•Hard to estimate errors

•Must involve random number generators, which need to be 
carefully chosen.
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Wiener Chaos Expansions

•Goal: Design efficient numerical methods.

•Separate the deterministic properties from 
randomness.
•Has better control on the errors.

•Avoid random number generators, all 
computations are deterministic.



Wiener Chaos Expansions

• Functions                    depends on Brownian 
motion 
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• contains infinitely many independent 
Gaussian random variables, is time and/or spatial 
dependent.
•WCE: decompose                      by orthogonal 
polynomials, similar to a spectral method, but 
for random variables.
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Wiener Chaos Expansions

• any orthonormal basis of              , such 
as harmonic functions in our computations. 
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• Define                             which are independent 
Gaussian.
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Wiener Chaos Expansions

•Cameron-Martin(1947): any                      
can be decomposed as  
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Wiener Chaos Expansions

•Statistics can be reconstructed from Wiener 
Chaos coefficients

•mean ),,(),( 0 xtuxtEu =

•variance
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•Higher order moments can be computed too.



Wiener Chaos Expansions

Properties of Wick’s products:
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Wiener Chaos Expansions

• Wiener Chaos expansions have been 
used in 

•Nonlinear filtering, Zakai equation (Lototsky, Mikulevicius 
& Rozovskii, 97)

•Stochastic media problems (Matthies & Bucher, 99)

•Theoretical study of Stochastic Navier-Stokes equations 
(Mikulevicius & Rozovskii, 02)



Hermite Polynomial Expansions

•A long history of using Hermite polynomials in 
PDE’s containing Gaussian random variables.

•Random  flows: Orszag & Bissonnette (67),
Crow & Canavan (70),
Chorin (71,74),
Maltz & Hitzl (79),

•Stochastic finite element: Ghanem, et al (91,99, …).

•Spectral polynomial chaos expansions:  
Karniadakis, Su and collaborators (a collection of papers), and …

•WCE for problems in fluid: Hou, Rozovskii, Luo, Zhou (04)



WCE for stochastic Helmholtz equation

Expand the source and electric field:

Take advantage of 

Equation is linear, so electric field has 
expansion
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WCE for stochastic Helmholtz equation

The stochastic equation is converted into a 
collection (decoupled) of deterministic 
Helmholtz equations 

Standard numerical methods, such as finite 
difference time domain (FDTD) in our 
simulation, can be applied.
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WCE for stochastic Helmholtz equation

WCE coefficients               are coherent!

The electric field intensity at output is 
computed by
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WCE for stochastic Helmholtz equation

The electric fields from point sources               
can be recovered by

Other moments can be computed by point 
source solutions in the standard ways.
Under relative general conditions, WCE 
coefficients decay quickly,
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Simulation of a spatially incoherent source

Extremely fast convergence for 10ax10a example 

Comparison of the direct method 
(brute-force) simulation and the 
WCE method

Convergence of the WCE method



Simulation of a spatially incoherent source (3)

Less than 1% error and more than one order of magnitude faster simulation, 
Over 2 order of magnitude faster simulations for practical photonic crystals. 

For 15 coefficients the gain in simulation time is 32, i.e., 32 times faster simulation
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For a 20ax10a example (doubled sized)



Conclusion

• Proposed a stochastic model for incoherent source

• Design a fast numerical method based on WCE to 
simulate the incoherent source for photonic crystals. 

• The method can be coupled with other fast Maxwell 
equations solvers.

• More than 2 order of magnitude faster simulations can 
be achieved for practical structures.

• The model and method are general and can be applied 
to other types of stochastic problems involving incoherent 
sources.
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