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Optimality vs. Feasibility
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Kineo CAM and LAAS/CNRS, Toulouse, France

Integrated into Robcad (eM-Workplace)

Add-ons for 3D Studio Max, Solidworks

Direct users: Renault, Airbus, Ford, Optivus, ...
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Fraunhofer Chalmers Centre and Volvo Cars, Sweden
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Marcelo Kallman, UC Merced

James Kuffner, CMU
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Kagami and H7 Planning

University of Tokyo and AIST
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From Nic Simeon, LAAS/CNRS
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The world is more or less continuous.

Computation is discrete.

� 1970s: Grids, logic-based planning

� 1980s: Combinatorial motion planning

� 1990s: Sampling-based motion planning

Also: Planning problems are implicitly encoded.
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Lozano-Perez, 1979

Cobs O

Reasoning about exact geometry

Cobs

qI

qG

Cfree

Cobs

Cobs

Motion planning progressed after identifying the right spaces.
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O’Dunlaing, Yap, 1982; Schwartz, Sharir, 1983.
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Exact, structure-preserving discretizations.

Beautiful, complete algorithms.

NEED A SLIDE OR TWO THAT GIVES VARIOUS OPTIMAL LEVEL SET LOOKING MOTION PLANNING
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uT

xG

Compute a collision-free velocity field over the C-space.

Generally better than tracking a path.
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Lindemann, LaValle, CDC 2005; Lindemann, LaValle, RSS, 2006;

Lindemann, Hussein, LaValle, CDC 2006.

Instead of using the gradient of a navigation function as the vector field,

we construct one directly. We do this as follows:

� Partition the space into simple cells.

� Use the cell connectivity graph to determine a high-level motion plan.

� Define local vector fields on each cell which are compatible with the

motion plan.

� Appropriately blend the vector fields together to obtain a global vector

field.
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xgoal
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xgoal
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PART I

Introductory Material

Chapters 1-2

PART II

Motion Planning

Chapters 3-8

(Planning in Continuous Spaces)

Planning Under
Differential Constraints

PART IV

Chapters 13-15

Planning
Decision-Theoretic

PART III

Chapters 9-12

(Planning Under Uncertainty)

Free download (≈ 1000 pages): http://planning.cs.uiuc.edu/
Also published by Cambridge University Press, May 2006.
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Terminology
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Where have information spaces arisen?

Early appearance of concept: H. Kuhn, 1953

� Extensive form games
Unknown state information regarding other players.

� Stochastic control theory
Disturbances in prediction and measurements cause imperfect state

information.

� Robotics/AI
Uncertainty due to limited sensing.

Alternative names: belief states, knowledge states, hyperstates
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The configuration space is the crucial space for mechanics, motion

planning.

The state (phase) space is the crucial space in system theory.

Sensing

Actuation

M E

The information space is the natural space that arises for autonomous

systems with sensing and actuation uncertainties.



The History Information Space
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The history I-state at time t is:

ηt = (ũt, ỹt)

with
Input space: U

Input history: ũt : [0, t) → U

Observation space: Y

Observation history: ỹt : [0, t] → Y

The history I-space, Ihist, is the set of all possible ηt for all t ∈ [0,∞).

Problems:

� Ihist is enormous!

� How do we know that goals are achieved?
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There is a state space, X .

The state could represent robot configuration, velocity, environment

model, and so on.

Some potential interference from “nature”:
Nature input history: θ̃t : [0, t) → Θ

Nature observation history: ψ̃t : [0, t] → Ψ

State transition equation: x′ = Φ(x, ũt, θ̃t)

Observation equation: y = h(x̃t, ψ̃t)

Initial conditions: η0 defined, and ηt = (η0, ũt, ỹt).
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Two approaches:

1. Take all of the information available, and try to estimate the state.

A feedback plan is expressed as π : X → U .

2. Solve the task entirely in terms of an information space.
A feedback plan can be expressed as π : Ihist → U .

The second is more interesting (to me, at least).

Attempt to “live” in the information space!

Estimation is sufficient , but often not necessary .
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Construct information mappings (I-maps ) to transform the I-space:

κ : Ihist → Ider

Define a plan as π : Ider → U .

Examples:

State estimation: κ : Ihist → X ηt 7→ x̂(t)
Time feedback: κ : Ihist → [0,∞) ηt 7→ t

Sensor feedback: κ : Ihist → Y ηt 7→ y(t)
Limited memory: κ : Ihist → Imem ηt 7→ ηt−1,t

Nondeterministic: κ : Ihist → Indet ηt 7→ X(t) ⊆ X

Probabilistic: κ : Ihist → Iprob ηt 7→ p(x|ηt)
Kalman filter: κ : Ihist → Igauss ηt 7→ (µt,Σt)



Sufficient I-Maps
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Try to “live” in some Ider.

We need to make an information transition equation.

Does the derived I-state contain sufficient information for computing

transitions?

Enables the robot’s memory to be smaller.



A Simple Inference Problem

Planning Algorithms
Overview

Information Spaces

Gap Navigation Trees

Learning Point
Arrangements

Other Problems

Conclusions

UCLA IPAM Numerics and Dynamics for Optimal Transport 2008 – 24 / 76

b

c

a

History I-state: abbacbacabababcabcbba

Question: Are the agents in the same room?



Living in a Tiny I-Space
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This two-bit machine can read strings of any length and correctly report

the answer.
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[Worked out with F. Cohen and B. Tovar]
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More holes, more beams, more agents, ...
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Mention state space is X = SE(2) × E



Optimal Navigation without Localization and Mapping
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Tovar, Guilamo, Murrieta, LaValle, 2003-2006.

� Bounded contractible planar region with piecewise-analytic boundary

� Robot can only sense depth discontinuities

� Environment representation is not given

� No distance or angular measurements

� No odometry, GPS, or compass

� Motion primitive: Chase a gap



Some Work with Similar Motivation
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� Sensing only what is needed

[Erdmann, Mason, 88; Donald, Jennings, 91; Rimon, Canny, 94]

� Minimal representations for manipulation

[Goldberg, 93]

� Bug algorithms

[Lumelsky, Stepanov, 87; Kamon, Rivlin, Rimon, 96; Kamon, Rivlin, 97]

� Shortest paths without maps

[Papadimitriou, Yannakakis, 89]

� Landmark-based navigation

[Hait, Simeon, Taix, 97; Taylor, Kriegman, 98]

� Efficient updates to the visibility polygon

[Aronov, Guibas, Teichmann, Zhang, 98]

� On-line target tracking

[Gonzalez-Banos, Lee, Latombe, 02]
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Tasks:

� Optimal planning and navigation to any prescribed location

� Retrieve and deliver static objects optimally

Assumptions:

� Drop the robot into unknown, bounded, simply-connected,

piecewise-smooth, planar region.

� Minimal sensing model: gap sensor
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qG

qI

Note that geodesics follow bitangents.



Recall the Minimal Sensing Model
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� A ’gap’ is a discontinuity in depth information.

� A ’gap-sensor’ is able to track the gaps at all time.

� Only gap angular order is preserved. Not exact angular position.
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A Visibility Tree from a Fixed Location
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� Choosing a source point, compute the shortest path to any other

location.

� Paths of the visibility tree belong to the bitangent graph.



Visibility Tree (cont’d)
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� Knowing the visibility tree of the current location, the robot can reach

any other location optimally.

� Only useful if perfect localization is assumed.

� Is it possible to obtain the same paths with only online-sensor

measurements?



Properties of the Visibility Tree
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� A robot traveling in a visibility tree sees bifurcations and dead-ends.

� These happen when the robot crosses inflections and bitangents

complements.
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A bitangent is a closed line segment whose supporting line is tangent at

two points of the environment boundary.

bitangent

bitangent
complement

gap

gaps

Note: The boundary does not have to be polygonal.
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An inflection line is found by extending a ray outward from an inflection

point of the environment boundary.

(generalized)
inflection

gap

The boundary does not have to be polygonal.



Critical Gap Events
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Appearances — Disappearances
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Critical Gap Events
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Splits — Merges
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A Tree is Maintained Relative to the Robot
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� The tree root moves with the robot.

� Every node in the tree represents a gap.

� Every child of the root represents a gap currently visible.



Disappearances
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Add or remove a leaf of the root, preserving the angular order
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The two gaps (nodes) merging become the child of a new node.
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If the splitting node have children, these become children of the root.

Otherwise, the node is replaced with the two nodes representing the new

gaps.
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Appearances: Primitive Nodes
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Appearances have a special meaning. They generate primitive nodes, to

indicate already seen.
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The Control Model
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gap h disappeared

To chase gap h, chase a that will split, and then follow d, and so on, until

h disappears.

Keep encoding all of the critical events.

Robust gap chasing: Minguez, Montano, IEEE TRA Feb 2004



Strategy for Constructing Full Tree
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Chase every non-primitive leaf:

a

c

a b

b a

a
b

b

c

a

a

d

c b

d

c b c
a

a
b

b

c

d
e

a

a
e

d

Eventually, all leaves become primitive.
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Red means the hidden portion is to the right.

Yellow means to the left.



Retrieving Objects
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� There are no “coordinates”; goals are specified by gaps.

� Indicate from where the object becomes visible.

� Associate objects with gaps.

� A gap “merges” with an object in the association.

� To retrieve an object optimally, follow the path to the associated gap



Retrieving Objects (Cont’d)
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 object is visible

To retrieve the blue object, chase the associated gap.

The object is “hidden” behind the gap. The gap encodes the last time it

was visible.



A Computed Example of Delivering Objects
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Model Validation on a Real Robot
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Pioneer P2-DX, differential drive, two SICK lasers, on-board computations.



Model Validation on a Real Robot (Cont’d)
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Gap disappearing



Model Validation on a Real Robot (Cont’d)
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Gap disappearing



Model Validation on a Real Robot (Cont’d)
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Let e be the environment, described as piecewise-analytic, closed curve in

R
2.

Let q be the configuration in the environment, q ∈ SE(2).

The state is (e, q).

Nondeterministic I-states:

{(e, q) | e and q are consistent with gap sensor and action histories}

We are solving tasks without ever knowing the true state.



Distance-Optimal Navigation Without Measuring Distances
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(a) (b) (c)

(d) (e) (f)

Each nondeterministic I-state includes numerous environments and

configurations within those environment.

The robot does not have to distinguish!



Extensions and Applications of GNTs
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Multiply-Connected Environments:

� The trees can be extended.

� Problem of distinguishing holes

� Problem of knowing when a hole is completely traversed.

� Paths are locally optimal (within homotopy class).

Visibility-Based Pursuit-Evasion:

� Search for evaders using tree-based navigation.

� Maintain binary labels on gaps.



Learning Point Arrangements
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Might need sources from Benjamin; or make new stuff



Landmark-Based Navigation Without Distances
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Tovar, Freda, LaValle, 2007.

1

8

6

2
3

5

7

4

Sensor reading: (1, 5, 9, 7, 3, 2, 8, 4, 6)

9

� There are n labeled landmarks in R
2.

� Coordinates are unknown, always.

� Motion command: “Go to landmark i”

� Sensor gives only cyclic permutation



Landmark-Based Navigation Without Distances
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We showed that:

� For any subset L′ ⊂ L of landmarks, the robot can determine which

others in L lie in the convex hull of L′.

� Equivalently, the robot can discover the dual arrangement.

� The robot can navigation to any goal specified as a cyclic permutation.

Variations: limited range, manipulation, sensor networks



Walking Along a Circle
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Walking along a circle.



The Dual Line Arrangement
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The dual line arrangement.
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The history I-state actually maps into a braid group.



Other Problems
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Shadow Information Spaces: Maintaining Team Movements
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with Jingjin Yu (UIUC PhD Student)



Searching in a Building or Campus of Buildings
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Following People With Helicopters
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Common Situation
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� Robots or people move around carrying sensors

� The sensor field-of-view changes topologically

� Numerous targets or agents pass in and out of view

� Sensors cannot precisely localize or distinguish targets

Inference tasks: Counting, tracking, pursuit-evasion, monitoring team

movement, surveillance.



Example: The Shadow Region
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V (q)

S(q)



Example: Moving Agents and Moving Sensor
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Clocks, Chronometers, Horology
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“Until the mid 1750s, navigation at sea was an unsolved problem due to

the difficulty in calculating longitudinal position. To find their longitude, they

needed a portable time standard that would work aboard a ship.”

Why study time sensing uncertainty?

� Clocks are cheap and accurate, but sometimes time error is a serious

issue:

For GPS, 1ns of time error = 30cm of position error
� Understanding information requirements leads to better strategies:

Avoid time coordinates, minimal time dependency, distributed



Reconsidering Time in Control Theory
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with Magnus Egerstedt

“closed-loop” control: γ : X → U

“open-loop” control: γ : T → U

� Time is not special; it is like any other state variable.

� Rename “open-loop” to perfect time-feedback control.

� Introduced notion of strongly open-loop control: γ : P → U .

� Defined policies in terms of I-spaces over Z = X × T .

� Raises many open questions in reducing time dependencies in control.
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General Conclusions
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� Information spaces seem to pop up everywhere

� Important to understand minimal information requirements

� Inference problems lead to greater unification

� Try to simplify the I-space and “live” in it.

� Try to understand information requirements of tasks.

� Formulate deciability, complexity, and the power of machines in terms

of robotic primitives and information spaces.
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