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Motivations from statistical physics or interactive ‘particle’ systems

Rarefied ideal gases-elastic: conservative Boltzmann Transport eq.

Energy dissipative phenomena: Gas of elastic or inelastic interacting systems in the
presence of a thermostat with a fixed background temperature e, or Rapid granular flow
dynamics: (inelastic hard sphere interactions): homogeneous cooling states, randomly
heated states, shear flows, shockwaves past wedges, etc.

(Soft) condensed matter at nano scale: Bose-Einstein condensates models, charge transport
in solids: current/voltage transport modeling semiconductor.

Emerging applications from stochastic dynamics for multi-linear Maxwell type interactions :
Multiplicatively Interactive Stochastic Processes: Pareto tails for wealth distribution, non-
conservative dynamics: opinion dynamic models, particle swarms in population dynamics, etc

Goals:
« Understanding of analytical properties: large energy tails

‘long time asymptotics and characterization of asymptotics states: high energy
tails and singularity formation

A unified approach for Maxwell type interactions and generalizations.



A revision of the Boltzmann Transport Equation (BTE)

A general form for the space-homogenous BTE with external heating sources :

FH(0,t) = Qo alf) (v, t) + G(F) (. 1)

Qs a(f) (v, 1) = a(d, M) B yalul, 353) (J51"f = £ f+)dvado

g T R TE gd—1"

vl = v+ %(|u|f:r —u), v, =v,— %(|u|r:r — ) interaction law;

i = v — Vs (relative velocity)

B_j-!,.r.!d(|u|? a(6)) (collisional kernel)
cosg = Lo ine of scatteri |
= _IET cosine of scattering angle,
_.-"_“3 = %_—E € = restitution coefficient
..-'3 = ¢ = 1 elastic interaction ,,-'3 < 1 dissipative interaction
J.—g = M post-precollision Jacobian
9('v, ve)

s



A revision of the Boltzmann Transport Equation (BTE)

Collisional kernel or transition probability of interactions is calculated using
the intramolecular potential laws: Example for d =3

V=r—F with s (2.2¢)

Bisa(lul,o(8)) = bs4(a(8)) |u|T,

(o)
|l

cosé =

cos of scattering angle,
with ~ = 0 {(Maxwell-Molecule models), ~ = 1 (hard spheres),

We assume the growth condition 0<b, (a(8)) gold) = |

o>d—1 f_ﬁ_l bs(e)de =1 Grad cut-off condition
In 3 dimensions:
s—b5
s—1

2
s—1

-~y —

and b, (o(8)) =6 T3 with v =

e the Grad cut-off assumption is satisfied for variable hard potentials
(s (5,00))

e the a-growth condition on b, . is satisfied for a > 2

d



Dynamically scaled solutions and stability
e Self-similar solution:

set f(v.t) = Vg ™(6) F(5.0), (ex: § = g2y = v(a+ut), () = Lin(*E),
then

o = w(O{QH(F, ) - F(F* 81} —udv(Gf), x>0,

o For Maxwell type models: < Q*(f,f).|v]? > = pO(t) with p the energy
production rate = linear ODE for the energy = ©(t) = ¢

e An example V7 = 0(t) = < f,|[v|* > (i.e. Vo:=thermal speed )

e Homogeneous cooling states: energy dissipation p <0

setting f(v,t) = ©7/2(t) f(gm(t)) = e 2 f(ve %)

ps 2F=Q*F.D - T

e Do they exist in the energy dissipative case?

e Are they attractors Tor solutions of the energy dissipative problem?

e Wwhat are their properties? = | They depend on the collision Trequency




Z(v.t) = L sl (o) f (oas t) = (v ) (v, O] [ul™ b, (55 dvado + 0G(F) (v, 1)

e -1
NESS satisfies : )i foo ()M “dv

3 g G(f) M_ = NESS tail asymptotics
i=1 0<~y<1(VHP) 0 Cexp(—r|v|?)
l<p<1| 0<y<1(VHP) A f C exp(—r|v|F)
<<l v=1(HS) Ayf+7V-(vf) Cexp(—r|v|?)

2<f<1 v=1(HS) -1!23‘51-5 at least C'exp(—r|v|!)

% <F<1l|0<y<1(VHP) —puv-Vf Cexp(—r|v|")
l<p<1| y=0(MM) |6,Q(f,Mp)—pv-Vf Cley + ealvfS)”

for ' =«

{r A8

and r =r, ... AlSO C,c1,c2 and k in the last case depend on 3,8,8,,T.d



Reviewing elastic and inelastic properties

Due to symmetries of the collisional integral one can obtain
ing the variables of integration)

Weak (Maxwell) form for the BTE

(after interchang-

sl fedv=[ Q(f o) dv = %ﬂfﬂfmﬁfﬁ_lfﬁ (¢ + &, — ¢ — @) |u|"b(e) do dv. dv,

Properties: It is easy to see, from the weak formulation:

conservation of mass p and momentum J: set ¢(v) =1 and ¢(v) = v

Using local conservation of momentum on the test function:

5 [ e =w [ QU Ny d =0,

e

holds, both for the Elastic and Inelastic cases

v+, = v+,

i=1,2,3.

Next, set p(v) = |v|? = It conserves energy for « =1 — ELASTIC:

Using local conservation of energy on the test function:

W2 4 a2 = [v]2 + |42

Uy

20(t) = k() [, Q(f, )W) [vPdv =0




Reviewing elastic and inelastic properties

However, it dissipates energy for « < 1 INELASTIC:

Set ¢(v) = |v|2 and using local energy dissipation:

2
0]2 4 Jvs|? = 0|2 — |0s]? = =221 - v - o)

v — vs]?

One obtains and energy dissipation inequality by Jensen’s ineq.

9 1_-.2 n
5#O(t) = —cwi%lﬁ-(t)fm fm.wf frlv — 04 2T duyg do
.2 42
< —en ko) T

For a Maxwell type model: alinear equation for the kinetic energy

For v+ = 0 one has the energy identity

2
O = —cﬂril_%lﬁ(f)@




Reviewing elastic properties

Recall Boltzmann H-Theorem for ELASTIC interactions:

%/flﬂgfdl‘ — !‘E(t)/ _.ﬂa,-'Q(f’ f) IDQ fdi'_.-‘ —

R
H-(t) I gl f’ﬁi Th( ) do dv dv
Tfﬁwfm_wé_w_l (f 1= f'fL)log o ulb(7)do dodv. < 0

#

+
Time irreversibility is expressed in this inequality = stability
In addition:
The Boltzmann Theorem: there are only N+2 collision invariants —

/ Q(f, F)log fdv =0 < log f(.v) = A+ B-v+ Clv[? —
mN

f(-,v) = M4 g o(v) Maxwellian (Gaussian in v-space) parameterized by A, B, C

related the first N 4+ 2 moments of the initial probability state of f(0,v) = fo(v)



Reviewing elastic properties

Time Irreversibility and relation to Thermodynamics
e Stability limy_ || f(t.v) _ﬂ“irA_.B_.C-*HLé — 0 where {4, B,C} «——
{p.u,w}, p= [ fodv, pu= [vfodv and pw = [ |v|?fodv

« Macroscopic balance equations: For the space inhomogeneous problem:
Under the ansatz of a Maxwellian state in v-space

f(t.z,v) =M, pn = a.e_(b|'1’—u|2)

where the dependance of (t.x) is only though the parameters (a,b u):

1
1= — mean velocity and = = W = E;:ru + fe kinetic energy, 2 = internal em
_ 33,-"2 3
choosing a= Pf. , b= —
(47 e)3/2 de

* # * # 4 4 2
plus equilibrinum constitutive relations : P = E,r:-ﬁ pressure.



Reviewing elastic properties

One obtains the Euler equations:

dp 3. 8
—_ N yY=20.
t +i§1 aﬁ(ﬂ u;) _

(P )+Z (ﬂlllllj+p)—0, (G =1,2,3)

L

0 24 ey =3
a2 e
¢ Hydrodynamic limits: for e-perturbations of Maxwellians
plus constitutive relations = {A,B,C}(t,z) the corresponding
macroscopic system satisfy compressible Euler

1 9 p
(= +e4+=))=0.

or e-Navier-Stokes equations with higher order partial deriva-
tives terms proportional to an O(¢) deviations from Gaussian
(Maxwellian) distributions.



Reviewing inelastic properties

Back to inelastic interactions:

INELASTIC Boltzmann collision term: No H-Theorem in the classical
way! If a= constant < 1

_1 £l FA : .
fMQ(f,f) log f dv = Efmd/ﬂ?d Sd_lff* (Iog e 1) lu["6(o) do dv dv

1 —a*
Agty
2cx

IR

f f fx |u|” dv dvus.
d ™ pd

Recall: it dissipates enerqgy Tor « < 1 by Jensen's inequality:

42
2

11— . 1—a?
Fo®) = —en U] _ [ Fhlv— w2 dvocdo < —ey L5 2n()O(2)

= Inelasticity brings loss of micro reversibility

= but keeps time irreversibility !!': That is, there are stationary states and
in some particular cases we can show stability to stationary and self-similar
states (MB}(WEII molecule equations of collisional t}*‘DE}

= However: Existence of NESS: Non Equilibrium Statistical States (stable

stationary states are non-Gaussian pdfs)



Molecular models of Maxwell type |5 = Q*(r. f)(t,v) —

Conblcos(@)) N J(V)

Bobylev, '75-80, for the elastic, energy conservative case— For inelastic interactions: Bobylev,Carrillo, I.M.G. 00
Bobylev, Cercignani,Toscani, 03, Bobylev, Cercignani, I.M.G’06, for general non-conservative problem

For o(t, k) = Fy_i[f(t.v)].  @(t,0) = [ fodv =1, ¥t > 0

ap 1 |

ﬁ: = |5n_1|f {p(t, k-)e(t, ky) — @(t,0)p(t, k)}b( Iﬂl Y do = T () —enip(t, k)
k= AN — g, kp=k-k  p=4

Sl'\ ll e

T1-5) . G(s)=550(1 - 25) (s — 825

-
=

w(0.k) = wolk) = F(fo)(k).

p(t,0) =1, Vie(t,0) =0, O(t) = —504p(t,0) .

For isotropic (xr = J%E) or self similar solutions (r = J%Ee—ﬁ”) the Fourier
transformed collisional form takes the simple form

Ma(p(x)) = ﬂf: {g(-ﬁzs ({1 — 3(2 — 3)s) r)} G(s)ds = Jr: {e((as(s) z)e( (bs(s) x)} G(s)ds

N = %th?(s] ds and 0 < ag(s),bs(s) <1




A important applications:

Existence, asymptotic behavior - self-similar solutions and power like tails: From a unified point of
energy dissipative Maxwell type models: A\ energy dissipation rate (Bobylev, | M. G.JSFP'05,
Bobylev, Cercignani, | .. "06)

% - f ds G(s) {p(als)z) @l(b(s)a] — @) (0)} +6 f ds H(s) {le(s)z] — e(a)} =
=Tapn, () 01010 ;

wolx) =1—xF p <1 Iinitial state

(+(s), His) non-negative, integrable on [0.1]; 0 < a(s),b(s),c(s) < 1, s € [0, 1].
Examples:
B Classical elastic Maxwell gas with infinite initial energy:
a(s)==s5, b(s)=1—s,and |t =I5 p0(e.¢)

B Gas of inelastic Maxwell particles with finite or infinite initial energy, with constant
restitution coefficient 7 = (1 + ) /2 :

a(s) = #%s, b(s)=1—3(2—3)s and | wr = lap., (2, ¢)

B Classical elastic or inelastic Maxwell gas with finite or infinite energy in the presence of
an equilibrium background gas of particles with mass M |, density nq and temperature
11,

a(s) = 3%s;

b(s)=1—3(2—d)sforz < 3 <1; efs) =1—4M/(1 + M)%s < 1;

and | ¢t = lapa, qle @) +01.1 0, (@, eTlf‘:} Energy non-conservative




We will see that

1. For more general systems multiplicatively interactive stochastic processes

the lack of entropy functional does not impairs the understanding and

realization of global existence (in the sense of positive Borel measures), long
time behavior from spectral analysis and self-similar asymptotics.

2. “power tail formation for high energy tails” of self similar states is due to
lack of total energy conservation, independent of the process being

micro-reversible (elastic) or micro-irreversible (inelastic). Self-similar
solutions may be singular at zero.

3- The long time asymptotic dynamics and decay rates are fully described by
the continuum spectrum associated to the linearization about
singular measures (when momentum is conserved).



EXistence, Self-similar asymptotics and Power-like Tails (Bobylev, Cercignani, 1.M.G.;
To appear Comm. Math. Phys. 08)

For p(k,t) = F,_.[f(v,t)], let| T(¢) = Fu_r[QT] |be the Fourier Transform of the

contribution from the gain operator Q"' (f, f) associated to a generalized BTE equation of
Maxwell type.
In the case of isotropic solutions f(|v|*, ) — &(|k|%.¢) = ulx. ).

[ flo,t)]o)?dv = Apd(k.t) |_o=T(t) = uz(0, ) is the Kinetic energy

The initial value problem: _ p<1 infinity energy,
For initial states u(x,0) = uo(x) =1+ O(«”) € U, |luo|| =1, P>O0WIth, & p_1 finite energy

U the unit sphere in (Cg(RY), || - ||oc ), take

i:u—l—u:l—[ul—?““'r | Cn T Ii:{J'I. “‘_"r —1 %n =1, anp =0,
T‘fﬂj(uj = J{Dm daq .. J‘Dx dan An(a) [y ulagr), n=1,...,N,
with An(a) = An(ai,...,an) > 0, have a compact support and fﬂm daA(a) = 1.

where ['(0) =0 and I'(1) = 1 are trivial solutions

Theorem: The I'-operator satisfies three fundamental properties



Theorem: The I'-operator satisfies

|- floc)

B |t has L-Lipschitz condition: there exists a linear bounded operator L from
(Cr(RD), | - ||l=) into itself, such that, for = = £

IT(u1) — D(uz)|(x,) < L(luy —ua|(z,8)),  forluifec < 1;i=1,2.

® Preserves the unit sphere U7 in (C'g(R?),

=1

®» |nvariance under dilations:
eTDT{uj = ]__"II:ETD'E.Lj y D = ;Eﬁ:f . ETD-L[,{;L':'l = 'ELII:;L'ET], T =

® [ -Lipschitz condition on the operator I is a point-wise condition = classical Lipschitz
condition on B.

® T (u)is L-Lipschitz, where L. = L is the linearization of I'(u)(x, t) = Fu_p[Q(|v].1)]
about the state uw = 1 is the linearization of I" about w = 1

B relation to the contractive property of the Wasserstein distance between two

probabilities:

& For Maxwell type of interactions that conserve momentum the 211 Wasserstein distance

from Wa( f(w, t),d )= [ flv, t)|v|? is the kinetic energy.

{w FI(t)

# The eigenvalue of L. for = = x is the energy dissipation rate ;¢(1) s0®" = —u(1)8 =
for bounded initial energy, long time asymptotics and decay rates in Fourier space yield the
same qualitatively properties in 2 metrics, since this metric is equivalent to the usual

weak cConmvergences of measures |:I|LJS- conmvergence of second moments.

Relates to the work of Toscani, Gabetta,Wennberg, Villani,Carlen, Carvalho, Carrillo, and many more (from 95 to date)




Self-similar asymptotics - spectral properties

Spectral Properties of L :
Lu = JAD_ K(a)u(azx)da ; K(a) = E;’zl no, K, (a),
where Kn(a) = [(Fdas... [ dan An(ay,as,..., an) and 5" a, = 1, and satisfies:

® 7 is the ei-function with ei-value A(p) of the linear operator L associated to I’

]

LxrP = A(p)xP, Alp) = / Ki{a)aPda

2 A(l) — 1 is the energy dissipation rate.

» wecall ulp) = i‘%ﬂ the spectral function associatedto 1.

2 p(0+) = 4oc and 0 < po, such that p(po) = ming-o p(p) 15 the unique minima .

= -
Boltzmann Spectrum




e Existence of solutions B = Cg(IRT) (isotropic case) or in B = Cr(RY)
(general case): For finite or infinity initial second moment (kinetic energy)

L]

For = = =, with initial conditions ug = wo(z) = 1+ O(zF), as z — 0, with |lugl| =1,

there exists a unigque solution u(t, =) to

g +u = {u), Uj—g = u,(x) such that w(z.t) =14+ O(xP), O0<p<py for z— 0
in addition, any two solutions to i.v.p. with same type of data satisfies:
1- lug (2, t) — ua(zx, t)| < CeHAPI-LQ(2P), and

2- |uy (re=Ht t) — us(ze=rt t)| < Ce tP-—nPO(2P),

where the minimal constant for which the condition is satisfied

U Oy —u L0 L0) — x, 0
:,Dzsuplul(r ) — ua(r, }|: ui(x,0) —ua(x, )H!

r=0 |z?| xP

S0 It yields

ui(e,t) —ua(z,t)
P

wy(x,0) — uz(x, 0)|
P

< p—t1-A(B)

¥p >0

These estimates are a consequence of the L-Lipschitz condition associated to I
they generalized Bobylev, Cercignani and Toscanl,JSP'03 and later they have been interpeted
as “contractive distances’ (as originally introduced by Toscani, Gabetta, Wennberg, "96)

They imply, jointly with the property of the invariance under dilations for [, self-

similar asymptotics and the existence of non-trivial dynamically stable laws.



_ _ ~ o _ ~ ~ z
¢ Existence of Self-Similar Solutions For z = &

conditionson == p(p)zul = Mu) FO(xP1T9), wus(z) = 14+0(2P) and ||u.|| < 1

and |p = zet!| with initial

if0<p<1<poand pu, = p(p) (= one can take u, = = to fulfill the conditions),

then, there exists a non-trivial selr-similar solution u(t,z) = V() 1o

e = [ (W), with initial state W= = us(x) such that
W(n) =us(n) + OmPT=) =1 -y + O(nP+) forn =0, and

|u(ze i t) — W(x) | < Cetetal -+ O(2PT)  forO<p<p-4+=c< po,

where W, (x) satisfies:

1 E wﬁ.(:ﬂ} :_} E_T 5 ”mz—x wﬁ_(l‘) — D 5

and there exists a generalized non-negative tfunction R, (r), = > 0, s.L.

Wy (z) = J: dr Ry, (7) e ™, f: dr R, (7) = f: dr Ry (m)t=1.




Self-similar solutions - time asymptotics
Theorem The following statements hold:
[i]: There exists a unique (in the class of probability measures) solution f{ |v

L2
F(v],0) = fo(|v]) = 0, [ga fo(|v|)dv = 1 such that, with = = 151
uy = Flfollv|)] =14+ Oz ), — 0,0 < p < 1.

, t) with initial state

[ii]: The solution f{|v|, t) has self-similar asymptotics in the following sense:
Take p = 1,  p(1)aul = D(up) + O ) with (1) 1/ (1) < 0;
Then d a ! non-negative self-similar solution:

[
fas(|v]|, 1) = e_ﬁ"“:l:”:Fl{|-1:|e_%“{m} . (1) - energy dissipation rate, and

£y . A ) ]
£ ([oleTH M ¢) — e SR (u))] < O

fo — Fyi(|v))||, et li—pl4e))
o L 3 / LE

1- For the statement with initial % moments (i.e. in Fourier with order O(xPT); p = 1) replace p(1),

il + =) by pelp), pu(p + =), resp. (see Bobylev, Cercignani and | M.G, Comm Math Phys'08 (arXiv.org 06))
2- This decay rate was computed first in Bobylev, Cercignan and Toscam, JSP03, for the elastic collisions
models converging fo homogeneous cooling states example.

[iii]: However,

1 _d
Fllv]eZ 8) —t—moo €7 2780 (

IE n = 1) and

(8

1
f'il'”|€-§ﬂfvt:' —t—oo U; p(Pmin) < p(l+0) < n < p(l)



Self-similar solutions and Power-like Tails

Theorem: (Bobylev, Cercignani, M.G,06) The self-similar asymptotic function F, ., (|v|)

does NOT have finite moments of all orders if the energy dissipates, i.e.
p(l) < 0.

If0<p<1then, my = |ps E,p) (|o))|v|9dv < oo; 0<qg<p

If p = 1 (finite initial energy) then, mq < oc only for 0 < g < ps, where p. = 1 is the
unicque maximal root of the equation u(p.) = wp(1).

P
i) S pectral Functlion

i1y \-;///

H{Peind T~ 7 7 °




Self - Similar Asvmptotics: Elastic BTE with a thermostat

Example: Description of the Weakly Coupled Binary Mixture Problem (Bobylev, LM.G. JSP 06)
Construction of explicit solutions t0:

M = ] ] B|ul, ) [f (v, t) f(‘w, t) — f(v, ) f(w, t)]dodw
ot weR? J o582

+ /1;;-51&3 /-:;rESE Bf|u|~#][flf’-1.ut]ﬂ;{qq(’w} — f(v, t)Mr (w)]dodw

w2
with My (v) = =< ey

=z Bllulw =0y = ., 3 =10, 6, -depending on the

asymptotics and 7" being the background temperature.

» A system of two different particles with the same mass is considered. One set of

particles is assumed to be at equilibrium r.e., with a Maxwellian distribution with
temperature T'(t).

#® Second set of particles is assumed to collide with themselves (first integral) and the
background particles(Linear Boltzmann Collision Integral).

The collisions are assumed to be locally elastic ie., |[v[? + |[v.|? = [v'|? + |v.|? but the

above form leads to global energy dissipation i.e., [gq [v]2 f (v, t)dv 2 0.

v




Analytical and computational testing of the BTE with Thermostat: singular solutions
(with Bobylev, JSP 06), and computational Spectral-Lagrangian solvers (with S.H. Tarshkahbushanam, Jour.Comp.Phys. 08)

Self - Similar Asvmptotics elastic BTE with thermostat
Taking Fourier Transform on the kinetic equation

-~

fio = QU )+ 06 [ g0 BUEFILf (k)M (ko) = f(k)M(0)]do

: _ : T k|
ke =Lkx|klw).  fO)=1.  Mk) =
Set f(k,t) = f(k, 1) oxp =L
fr=QU )+ 0 [esa bEBD)[f(ky) = f(F))do
which is equivalent to the untransformed equation with T = 0,
® setnr = % and look for similarity scaled solutions in axet't = for
0, = i} [ = —andT T + s%¢ =3¢ : a solution is
1 R
88|, _ 23 [0 1 e—lv|® /21 .
.FLT ( v|) =  Jo [Trs2)2 ’j'“’% s




Self - Similar Asvmptotics elastic BTE with thermostat
® For self similar asymptotics we study t — o so T — T in 35 (v, t)
(i.e. the particle distribution temperature approaches the background

temperature as expected due to the linear coll. op.)

® nteresting NESS behavior can be observed if [' — (): Set

9 —3t

T =527 so f55(|v

) is explicit.

® Then f(|v|e™/3 1) — o € f55(|0]) where
sa ||y _ 4 [Oo© —|v|?/(2%) ‘
}Lﬂ (|IiI }__ 0 IfQTTSEJLI—FEE E'”]h
> f{:‘;‘i‘HpD = ()(ﬁ} as |f| — ~O. | and Power law tails for high energy
{is{ |.g1|) — (_’)(#} as |;| — ) Infinitely many particles for zero energy
.

Examples in soft condensed matter ( Greenblatt and Lebowitz, Physics A. 06)



Evolution of the Particle Density (VN = 32,7 = 0.25¢~*/")

Testing: BTE with Thermostat
Spectral-Lagrangian solvers (with S.H. Tarshkahbushanam, JCP 08)

Diunsity Evolation of a comvex combization of Geecsians with T = 0. 2Jaxp{-2t3)

~omputed Vs. Analytical Distribution: 015

| e _I.-MI i
4 4
{N _ 24: T =10 25} gooo |  Evolution of Moment (m_q(t)) of F(Jv|) for N =26
Cmel i i i
- = B
T | '.I" ~=_ 6000 — —a— q213
' - Maxwell Molecules model B a=145
i ]| === i i . q=1
z R — Rescaling of spectral modes s q=155
| o 0 B ——e—-- - q=17
gw I exponentially by the continuous |5 T asZe
% o gt . £ 4000
" i, spectrum with A(1)=-2/3
.11
ax
L 2000
a1
-+ ; ; F] P
1 : = —a
1" SettingT = e~ 5*(; + 5?)

(N =24,T = 0.125)



Testing: BTE with Thermostat
mq(t) = Jga f(|v|, t)|v|%dv — o for g > 1.5

Moments calculations:

500 =

Evelution af Mosierr (m_glf)of Fiily]) fe™ =13

(N=18)

L B of Memes e g of Wi e =26+

]
o

45 5 K5 @&

1 15 2 25 % 45 4
4

(N = 26)

5000 b=
g=1
= 1.3
S000 4
- g™ 145
q= 15
Lk q=1.55
E':.:u:- q=1.7
gq=20
2000 b=
1000 |-

B0  Ewoletine of Moment (m_gfU)) of Filef) fisr 1= 22

(N = 22)

g-moment of f(v.t)

critical g = 1.5



Proof of ‘power tails’ by means of continuum spectrum and group transform methods

Back to the representation of the self-similar solution:
In addition: for po > 1 and p = 1: the R(7) satisfies (using the Laplace transform)

—ﬁi{lj%? R+ R(T)=Z(R) = L7 (w)] == fractional moment equations

N N -
A * T
for Z(R) :Znnzﬁ{ﬂj \ Za«ﬁ =1, ZnlR)= jdai,....daﬁ n;f::z ﬂﬂn] H R;-(a—kj .
Ll ros TR ¢
n—1 n=1 + k=1

" :
+

I I Rp(v) =Ry + Ra» ...+ Ry, RL*RE=[5€'—IR1{'—I}RE{'__ ) .

k=1 0

In addition, the corresponding self-similar probability distribution admits an
integral representation infinitely divisible distributions My(|v|) with kernels

Ry(t) for p=pu (u.) given by :

Fp(|vD) = e [ 40 W (9™ = [ dr Fy(7) 775 My(|vfr )

where
My(|v]) = {zflr]ﬁ fﬂﬂ dk e~ FIFFH&v s infinitely divisible distribution
Note: Mi(|jv|) Is a classical Maxwellian distribution.

= [ his representation explains the connection of self-similar solutions of gen-
eralized Maxwell models with infinitely divisible distributions and stable laws.



2 - Properties Tor moments equations: —;x{lj%:’h’{?}—l—ft’[?] = L7 (w)]

set | mg= ["dr R(T)t%, s > 0],

with mg = 1 = 1. ms> Ofor all S>1.

Then multiply by 7% and integrate to obtain  (see Bobylev, Cercignani, 1.M.G, CMP’08) for the definition of 1 (s) )

s[u(1l) — p(s)ms =

N o :
anz anln(s) for s = 1|, with u(1)= energy dissipation rate

Mow, one can show that

while [ (1) — () = 0| then

0 < mg*

C'ay

O RT0) I

otherwise, If |p(l) —uls) < O

= the following T heorem holds:

[i] If the equation

p(s) =

then 11l g must be unbounded.

1t(1) | has the only solution s = 1, then |ms < oo for any s = 0|

(] If | p(s) = p(1)

has two solutions s = 1 and s = =5, = 1, then |ms < oo for s < s,

and |m, = oo for s =

5. .

[111] s, < oc only if I,,(s,) = 0 in the above equation, for all n = 2...N.



= The boundedness properties of the moments m; of R, implies the
boundedness of moments for the self-similar solutions constructed by
Fourier or Laplace transform methods: with v >0, 0<p<1:

= i
Fp(lv)) = L dr HP(T)T-EJ'UP(EH‘HT_#) . then

mas(Fp) = mas(Mp)mgp(Rp) (for Fourier Transform),

and

O
Pbp(v) =fg dr Rp(r)r_%f\’p(trf_%) , then

ms(Pp) = ms(Np)my,,(Rp) (for Laplace Transform) .

= the following Theorem:

1- If 0 < p < 1, then mas(Fp) and ms(Py) are finite if and only if 0 < s < p.

2- |For p = 1 the result holds for ms = mas(F1) and for ms; = ms(®d1).

= | F(]Jv|) can not have all (even) moments bounded| = power tails.




Typical Spectral function y(p) for Maxwell type models

Forp,>1 and 0<p< (p+€) < p, :> Self similar asymptotics for:

For any initial state @(x) = 1 — xP + x(P*€) p <
H(p) 1.

Decay rates in Fourier space: (p+€)[ u(p) - u(p +€) ]

For finite (p=1) or infinite (p<1) initial energy.

For p(1) = (s ,s.>p, >1 == Power tails

Kintchine type CLT

H(s.) =u(1)

M(Po) |

*Forp,<1 and p=1 I:> No self-similar asymptotics with finite energy



Thank you very much for your attention!
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