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We want to study shape optimization prob-
lems of the form

min
{
F (Σ) : Σ ∈ A

}
where F is a suitable shape functional and A
is a class of admissible choices. In particular,
we are interested in cases where Σ represents
the Dirichlet region of an auxiliary variational
problem that we write in the form

min
{
G(u) : u = 0 on Σ

}
(1)

whose solution will be indicated by uΣ. The
shape optimization problem will then be

min
{
F (Σ, uΣ) : Σ ∈ A, uΣ solves (1)

}
.
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In this way the shape optimization problem
can be seen as an optimal control problem
where Σ is the control variable, u the state
variable, and (1) is the state equation writ-
ten in variational form.

We shall consider two main cases:

• the case when the auxiliary problem comes
from the mass transportation theory;

• the case when the functional F is the elas-
tic compliance and the state equation gives
the equilibrium of an elastic structure.
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The case of mass transportation problems

We consider a given compact set Ω of Rd

(an urban region) and a probability measure
f on Ω (the population distribution). We
want to find Σ in some admissible class and
the goal is to transport f on Σ in an optimal
way.

To do that we consider all the probabilities
g on Σ and the related Monge-Kantorovich
cost (Wasserstein distance)

W (f, g) = inf
∫
Ω×Ω

|x− y| dγ
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where the infimum is taken over all trans-
port plans γ, i.e. probabilities on Ω×Ω with
marginals f and g respectively.

The cost functional F (Σ) is given by

F (Σ) = inf
{
W (f, g) : spt g ⊂ Σ

}
and this turns out to coincide with

F (Σ) =
∫
Ω

dist(x,Σ) df(x)

whose state variable is the Kantorovich po-
tential which solves the dual problem

sup
{ ∫

u df : u ∈ Lip1, u = 0 on Σ
}
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or equivalently the Monge-Kantorovich PDE
−div(µDu) = f in Ω \Σ
u = 0 on Σ
u ∈ Lip1, |Du| = 1 on sptµ
µ(Σ) = 0.

Concerning the class of admissible controls
we consider the following cases:

• A =
{
Σ : #Σ ≤ n

}
called location prob-

lem;

• A =
{
Σ : Σ connected, H1(Σ) ≤ L

}
called irrigation problem.
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The location problem

We call optimal location problem the mini-
mization problem

Ln = min
{
F (Σ) : Σ ⊂ Ω, #Σ ≤ n

}
.

It has been extensively studied, see for in-
stance

Suzuki, Asami, Okabe: Math. Program. 1991
Suzuki, Drezner: Location Science 1996
Buttazzo, Oudet, Stepanov: Birkhäuser 2002
Bouchitté, Jimenez, Rajesh: CRAS 2002
Morgan, Bolton: Amer. Math. Monthly 2002
. . . . . . . . .
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Optimal locations of 5 and 6 points in a disk for f = 1
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We recall here the main known facts.

• Ln ≈ n−1/d as n → +∞;

• n1/dFn → Cd

∫
Ω

µ−1/df(x) dx as n → +∞, in

the sense of Γ-convergence, where the limit
functional is defined on probability measures;

• µopt = Kdf
d/(1+d) hence the optimal con-

figurations Σn are asymptotically distributed
in Ω as fd/(1+d) and not as f (for instance
as f2/3 in dimension two).

• in dimension two the optimal configuration
approaches the one given by the centers of
regular exagons.
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• In dimension one we have C1 = 1/4.

• In dimension two we have

C2 =
∫
E
|x| dx =

3 log3 + 4

6
√

233/4
≈ 0.377

where E is the regular hexagon of unit area

centered at the origin.

• If d ≥ 3 the value of Cd is not known.

• If d ≥ 3 the optimal asymptotical configu-

ration of the points is not known.

• The numerical computation of optimal con-

figurations is very heavy.
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• If the choice of location points is made ran-

domly, surprisingly the loss in average with

respect to the optimum is not big and a sim-

ilar estimate holds, i.e. there exists a con-

stant Rd such that

E
(
F (ΣN

)
≈ RdN

−1/dω
−1/d
d

( ∫
Ω

fd/(1+d)
)(1+d)/d

while

F (Σopt
N ) ≈ CdN

−1/dω
−1/d
d

( ∫
Ω

fd/(1+d)
)(1+d)/d
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We have Rd = Γ(1 + 1/d) so that
C1 = 0.5 while R1 = 1
C2 ' 0.669 while R2 ' 0.886

d
1+d ≤ Cd ≤ Γ(1 + 1/d) = Rd for d ≥ 3
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The irrigation problem

Taking again the cost functional

F (Σ) :=
∫
Ω

dist(x,Σ) f(x) dx.

we consider the minimization problem

min
{
F (Σ) : Σ connected, H1(Σ) ≤ `

}
Connected onedimensional subsets Σ of Ω
are called networks.

Theorem For every ` > 0 there exists an op-
timal network Σ` for the optimization prob-
lem above.
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Some necessary conditions of optimality on

Σ` have been derived:

Buttazzo-Oudet-Stepanov 2002,
Buttazzo-Stepanov 2003,
Santambrogio-Tilli 2005
Mosconi-Tilli 2005
.........

For instance the following facts have been

proved:
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• no closed loops;

• at most triple point junctions;

• 120◦ at triple junctions;

• no triple junctions for small `;

• asymptotic behavior of Σ` as ` → +∞
(Mosconi-Tilli JCA 2005);

• regularity of Σ` is an open problem.
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Optimal sets of length 0.5 and 1 in a unit square with f = 1.
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Optimal sets of length 1.5 and 2.5 in a unit square with f = 1.
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Optimal sets of length 3 and 4 in a unit square with f = 1.
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Optimal sets of length 1 and 2 in the unit ball of R3.
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Optimal sets of length 3 and 4 in the unit ball of R3.
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Analogously to what done for the location

problem (with points) we can study the asymp-

totics as ` → +∞ for the irrigation problem.

This has been made by S.Mosconi and P.Tilli

who proved the following facts.

• L` ≈ `1/(1−d) as ` → +∞;

• `1/(d−1)F` → Cd

∫
Ω

µ1/(1−d)f(x) dx as ` →
+∞, in the sense of Γ-convergence, where

the limit functional is defined on probability

measures;
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• µopt = Kdf
(d−1)/d hence the optimal con-

figurations Σn are asymptotically distributed

in Ω as f(d−1)/d and not as f (for instance

as f1/2 in dimension two).

• in dimension two the optimal configuration

approaches the one given by many parallel

segments (at the same distance) connected

by one segment.
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Asymptotic optimal irrigation network in dimension two.
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The case of elastic compliance

The goal is to study the configurations that
provide the minimal compliance of a struc-
ture. We want to find the optimal region
where to clamp a structure in order to ob-
tain the highest rigidity.

The class of admissible choices may be, as
in the case of mass transportation, a set of
points or a one-dimensional connected set.

Think for instance to the problem of locat-
ing in an optimal way (for the elastic com-
pliance) the six legs of a table, as below.
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An admissible configuration for the six legs.

Another admissible configuration.
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The precise definition of the cost functional

can be given by introducing the elastic com-

pliance

C(Σ) =
∫
Ω

f(x)uΣ(x) dx

where Ω is the entire elastic membrane, Σ

the region (we are looking for) where the

membrane is fixed to zero, f is the exterior

load, and uΣ is the vertical displacement that

solves the PDE{
−∆u = f in Ω \Σ
u = 0 in Σ ∪ ∂Ω
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The optimization problem is then

min
{
C(Σ) : Σ admissible

}
where again the set of admissible configura-

tions is given by any array of a fixed number

n of balls with total volume V prescribed.

As before, the goal is to study the optimal

configurations and to make an asymptotic

analysis of the density of optimal locations.
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Theorem. For every V > 0 there exists a
convex function gV such that the sequence of
functional (Fn)n above Γ-converges, for the
weak* topology on P(Ω), to the functional

F (µ) =
∫
Ω

f2(x) gV (µa) dx

where µa denotes the absolutely continuous
part of µ.

The Euler-Lagrange equation of the limit
functional F is very simple: µ is absolutely
continuous and for a suitable constant c

g′V (µ) =
c

f2(x)
.
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Open problems

• Exagonal tiling for f = 1?

• Non-circular regions Σ, where also the ori-

entation should appear in the limit.

• Computation of the limit function gV .

• Quasistatic evolution, when the points are

added one by one, without modifying the

ones that are already located.
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Optimal compliance networks

We consider the problem of finding the best
location of a Dirichlet region Σ for a two-
dimensional membrane Ω subjected to a given
vertical force f . The admissible Σ belong to
the class of all closed connected subsets of
Ω with H1(Σ) ≤ L.

The existence of an optimal configuration
ΣL for the optimization problem described
above is well known; for instance it can be
seen as a consequence of the Sverák com-
pactness result.
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An admissible compliance network.
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As in the previous situations we are inter-

ested in the asymptotic behaviour of ΣL as

L → +∞; more precisely our goal is to obtain

the limit distribution (density of lenght per

unit area) of ΣL as a limit probability mea-

sure that minimize the Γ-limit functional of

the suitably rescaled compliances.

To do this it is convenient to associate to

every Σ the probability measure

µΣ =
H1xΣ

H1(Σ)
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and to define the rescaled compliance func-

tional FL : P(Ω) → [0,+∞]

FL(µ) =

L2
∫
Ω

fuΣ dx if µ = µΣ, H1(Σ) ≤ L

+∞ otherwise

where uΣ is the solution of the state equa-

tion with Dirichlet condition on Σ. The scal-

ing factor L2 is the right one in order to avoid

the functionals to degenerate to the trivial

limit functional which vanishes everywhere.
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Theorem. The family of functionals (FL)
above Γ-converges, as L → +∞ with respect
to the weak* topology on P(Ω), to the func-
tional

F (µ) = C
∫
Ω

f2

µ2
a

dx

where C is a constant.

In particular, the optimal compliance net-
works ΣL are such that µΣL

converge weakly*
to the minimizer of the limit functional, given
by

µ = cf2/3 dx.
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Computing the constant C is a delicate issue.
If Y = (0,1)2, taking f = 1, it comes from
the formula

C = inf
{

lim inf
L→+∞

L2
∫
Y

uΣL
dx : ΣL admissible

}
.

A grid is less performant than a comb structure,

that we conjecture to be the optimal one.
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Open problems

• Optimal periodic network for f = 1? This
would give the value of the constant C.

• Numerical computation of the optimal net-
works ΣL.

• Quasistatic evolution, when the length in-
creases with the time and ΣL also increases
with respect to the inclusion (irreversibility).

• Same analysis with −∆p, and limit be-
haviour as p → +∞, to see if the geometric
problem of average distance can be recov-
ered.
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