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Introduction Classical examples of self-similar decay.

Generalization of self–similarity Abstract description of the general
strategy. Ingredients: Wasserstein Lipschitz–continuity + Estimate of
solution moments + Fixed point theorem.

Nonlinear Diffusion Equations. 1 Intermediate behavior in the general
non-homogeneous case via estimate of the temperature.

Nonlinear Diffusion Equations. 2 Further properties of the intermediate
profile.

Scalar 1–d Conservation Law Via ∞–Wasserstein contraction.

Viscous conservation laws Via splitting method.
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homogeneity. Possible applications to nonlocal transport equations.
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Introduction. A classical example.

As an example of self-similar decay, we consider the Porous Medium
Equation (PME) ∂tu = ∆um, with m > 1, posed on the whole space Rd.
(PME) features the so called L1–L∞ smoothing effect

‖u(t)‖L∞(Rd) ≤ C
(
‖u(0)‖L1(Rd)

)
t−d/λ, λ = d(m− 1) + 2,

for all initial datum u0 ∈ L1
+(Rd) and for all t > 0. In particular, u(t) decays

to zero uniformly for large times. An intermediate state for such a PDE
is a (time–depending) profile which approximates (in a suitable norm) all
the solutions u(t) better than the zero state. In this case, the intermediate
profile is the self–similar Barenblatt (or BZKP) solution

u∞(x, t) = t−d/λ
(
C − k

∣∣∣xt−1/λ
∣∣∣2) 1

m−1

+

, k =
(m− 1)λ

2m
,

with C > 0 depending on the total mass.



Introduction. A classical example

This result goes back to [Kamin, Isr. J. Math. ’73] and [Vazquez, TAMS
’83, ’84] (see also [Vazquez, JEE ’03]). It relies on the classical invariance
of the set of solutions to (PME) under the scaling x→ xε, t→ tελ, and it
can be stated as follows: any solution u(t) to (PME) with L1

+ initial datum
satisfies

lim
t→+∞

t
q−1
λq ‖u(t)− u∞(t)‖Lq(Rd) = 0, for all q ∈ [1,+∞].

The above convergence rate (notice that no rate appears in the L1 norm)
cannot be improved unless one prescribes further assumptions in terms of
the second moment of the initial datum. A well known result due to
[Carrillo, Toscani - Ind. Univ. Math. J. ’00], [Otto - CPDE ’01], [Del Pino,
Dolbeault - J. Math. P. Appl. ’02] states the following: let u0 ∈ L1

+ such
that

∫
|x|2u0(x)2dx < +∞, then

‖u(t)− u∞(t)‖L1(Rd) ≤ Ct
− 2
λmax(2,m). (1)



Introduction. Time dependent scaling.

The main idea behind the latter result is to re-scale the solutions to (PME)
in such a way that u∞(t) turns into a stationary profile. A suitable choice
of the scaling is

u(x, t) = R(t)−
d
λ v(y, τ),

y = xR(t)−
1
λ, τ =

1
λ

logR(t), R(t) = (λt+ 1) . (2)

The new independent variable v(y, τ) solves the nonlinear Fokker–Planck
equation

∂τv = div (yv +∇vm) = div
(
v∇
(
|y|2

2
+

m

m− 1
vm−1

))
. (3)



The stationary solution v∞(y) =
(
C − k|y|2

) 1
m−1

+
corresponds to the

Barenblatt solution via the scaling (2). v∞ is the global minimum of
the Entropy functional

E(v) =
1

m− 1

∫
vm−1 dy +

1
2

∫
|y|2v dy.

A nontrivial study of the evolution in time of the relative entropy E(v(τ))−
E(v∞) and the use of a Csiszár–Kullback inequality provide exponential
convergence to equilibrium in the L1–norm, which yields (1) in the ‘old’
variable u.
This method strongly relies on the homogeneity of the nonlinear function
u 7→ φ(u) = um, which implies the a-priori existence of a self–similar
solution (and, hence, of a candidate intermediate profile) and the existence
of the time dependent scaling (2) which leads to (3).
Main question: How to do in case of a non-homogeneous φ?



Contraction in the 2–Wasserstein distance.

We recall the definition of 2–Wasserstein distance

d2(u, v) := inf
{∫

Rd
|x− T (x)|2 dx : T]u1 = u2

}
between u, v ∈ L1

+(Rd). It is known from [Otto - CPDE ’01], [Carrillo,
McCann, Villani - Rev. Mat. Iber. ’03 and ARMA ’05] and [Ambrosio,
Gigli and Savaré - Birkhauser ’05] that the functional E(v) is 1–convex in
the Wasserstein space of probability measures with finite second moment
(1–displacement convex). Since the Fokker–Planck equation (3) can be
formulated as the gradient flow of E(v) with respect to the 2–Wasserstein
distance, this implies the contraction estimate

d2(v1(τ), v2(τ)) ≤ e−τd2(v1(0), v2(0)),

for all τ ≥ 0 and for two solutions v1, v2 to (3).



Therefore, the solution semigroup Sτ of (3) is strictly contractive for
all times τ > 0 and therefore the unique stationary solution v∞ can be
interpreted as the unique fixed point of the semigroup Sτ . Moreover, the
fixed point is the same for all τ > 0. Once again, this is only possible due
to the homogeneity of φ(u) = um. In case of a general (not necessarily
homogeneous) nonlinear diffusion equation ∂t = ∆φ(u) we cannot proceed
in the same way because

• We don’t have a scaling invariance which allows to write a Fokker–Planck
type equation.

• We have no candidate intermediate profile.

The main scope of the present work is to reproduce an alternative scaling
structure which allows to achieve the intermediate profile (at the re–scaled
level) as a fixed point of a certain time depending map, even in case of a
lack of homogeneity.



Introduction. A fundamental remark

A simple remark by Toscani motivates our strategy: we evaluate the second
moment (‘temperature’ in kinetic language) of the Barenblatt solution

θ2[u∞(t)] :=
∫
|x|2u∞(x, t) dx = t−d/λ

∫
Rd
|x|2

(
C − k

∣∣∣xt−1/λ
∣∣∣2) 1

m−1

+

dx

= t
2
λ

∫
Rd
|y|2(C − k|y|2)

1
m−1
+ dy = O(R(t)

2
λ) as t→ +∞.

This implies that, in the special case u = u∞, the scaling (2) is
asymptotically (as t→ +∞) equivalent to the following one

u∞(x, t) = θ2[u∞(t)]−
d
2 v∞

(
x θ2[u∞(t)]−

1
2,

1
2

log θ2[u∞(t)]
)



Generalization of self similarity

Notations: Let P(Rd) be the space of probability measures on Rd. For a
µ ∈ P(Rd) and for p ∈ [1,∞) we denote the (possibly infinite) moment of
order p of µ by

θp[µ] :=
∫

Rd
|x|pµ(x).

We introduce the space

Pp(Rd) :=
{
µ ∈ P(Rd) : θp[µ] < +∞

}
.

For two given µ1, µ2 ∈ Pp(Rd), we recall the definition of p–Wasserstein
distance between µ1 and µ2

dp(µ1, µ2)p = inf
{∫ ∫

Rd×Rd
|x− y|pdγ(x, y) : γ ∈ Γ(µ1, µ2)

}
,

Γ(µ1, µ2) = {γ ∈ P(Rd × Rd) : πi](γ) = µi}, π1, π2 projections.



In the case p = +∞ we have the following definition

d∞(µ1, µ2) = lim
p→+∞

dp(µ1, µ2) = inf
{

ess supγ|x− y| : γ ∈ Γ(µ1, µ2)
}
.

We also introduce the space Pc(Rd) of compactly supported probability
measures on Rd and the maximal transport moment σ[µ] of µ ∈ Pc(Rd) as
the quantity

σ[µ] := d∞(µ, δ0) = sup{|x|, x ∈ supp(µ)}.

Finally, we introduce the spaces

Mp(Rd) :=
{
µ ∈ Pp(Rd) : θp[µ] = 1

}
M∞(Rd) :=

{
µ ∈ Pc(Rd) : σ[µ] = 1

}
.



Generalization of self similarity. Abstract framework

Let St : Pp(Rd) → Pp(Rd) be a continuous dynamical system on the p–
Wasserstein space for a fixed p ∈ [1,+∞]. Notice that we are not requiring
St to be a semigroup. We prescribe the following basic assumptions on St:

1. St features a (time depending) bound from below of the moment of
order p, i. e. there exists a continuous map [0,∞) 3 t 7→ α(t) > 0 such
that

θp[St[µ]] ≥ α(t)p.

2. St is locally Liptschitz (in time) with respect to the p–Wasserstein
distance, i. e. there exists a continuous map [0,∞) 3 t 7→ β(t) > 0
such that

dp(St[µ],St[ν]) ≤ β(t)dp(µ, ν).

3. limt→+∞
β(t)
α(t)

= 0.



Remarks:

1. We remark that no assumptions are prescribed on the monotonicity of α
and β. In particular, α(t) need not necessarily be diverging as t→ +∞,
which is the case in diffusion equations. The present framework also
applies to those cases where θp[St[µ]] → 0, which means that solutions
are concentrating to a Dirac’s delta. In this case, we are generalizing the
concept of self–similar large time blow up.

2. We emphasize the importance of the condition θp[St[µ]] ≥ α(t)> 0,
which makes the next definition of p–Toscani map well posed. However,
in situations where it is possible to predict the exact time of collapse of
the p–moment (i.e. the time where θp[St[µ]] = 0), this condition could
be removed. This case corresponds to investigate a self–similar finite
time blow up.



Generalization of self similarity. The Toscani map

For a given p ∈ [1,+∞], we introduce the p–Toscani map

Tt :Mp(Rd)→Mp(Rd)

as follows: let µ ∈ Mp(Rd), let us denote µ(t) := St[µ]. For a given test
function ϕ ∈ Cc(Rd) we set∫

Rd
ϕ(x)dTt[µ](x) =

∫
Rd
ϕ(xθp[µ(t)]−

1
p)dµ(t)(x).

In case µ(t) = u(t)dx, the above definition reads

Tt[µ](x) = θp[u(t)]
d
pu
(
θp[u(t)]

1
p x, t

)
.



Generalization of self similarity. The strategy

Let µ1, µ2 ∈ Mp(Rd). We denote µi(t) := St[µi] for i = 1, 2 and we use a
trivial scaling property of the p–Wasserstein distance to obtain

dp(Tt[µ1], Tt[µ2])p = θp(t)−1dp(µ1(t), µ2(t))p, (4)

where θp(t) := min {θp[µ1(t)], θp[µ2(t)]} and µ1(t), µ2(t) are defined as
follows: suppose for simplicity that θp[µ1(t)] ≤ θp[µ2(t)]. Then,

µ1(t) := µ1(t),∫
ϕ(x)dµ2(t)(x) =

∫
ϕ
(

(θp[µ1(t)]/θp[µ2(t)])1/p
x
)
dµ2(t)(x)

for all ϕ ∈ Cc(Rd).



A technical lemma

Lemma 1. Let p ∈ [1,+∞]. Let µ, ν ∈ Pp(Rd) if p < +∞ (resp.
µ, ν ∈ Pc(Rd) if p = +∞), such that θp[µ] = θp[ν] (resp. σ[µ] = σ[ν] if
p = +∞). For α ≥ 1 let να be the probability measure defined by∫

Rd
ϕ(x)dνα(x) :=

∫
Rd
ϕ(αx)dν(x), ϕ ∈ Cc(Rd).

Then,
dp(µ, ν) ≤ 2dp(µ, να).

Proof. A simple computation yields

dpp(µ, να) = inf
{∫ ∫

|x− αy|pdγ(x, y), γ ∈ Γ(µ, ν)
}
,



where Γ(µ, ν) is the set of all transport plans from between µ and ν. For a

fixed γ ∈ Γ(µ, ν) we denote ψγ(α) :=
∫ ∫

|x− αy|pdγ(x, y) and compute

ψγ(1) = α−p‖απ1 − απ2‖pLp(dγ)

≤ α−p2p−1
(
‖π1 − απ2‖pLp(dγ) + ‖π1 − απ1‖pLp(dγ)

)
= α−p2p−1‖π1 − απ2‖pLp(dγ) + α−p2p−1

(
(α− 1)θp[µ]1/p

)p
= α−p2p−1‖π1 − απ2‖pLp(dγ) + α−p2p−1

(
αθp[ν]1/p − θp[µ]1/p

)p
= α−p2p−1‖π1 − απ2‖pLp(dγ) + α−p2p−1

(
‖απ2‖Lp(dγ) − ‖π1‖Lp(dγ)

)p
≤ α−p2p−1‖π1 − απ2‖pLp(dγ) + α−p2p−1(‖π1 − απ2‖pLp(dγ)

= α−p2p‖π1 − απ2‖pLp(dγ) ≤ 2pψγ(α). �



Remark: (the technical lemma for p = 2). In case p = 2, the statement
in the above lemma can be improved to

d2(µ, ν) ≤ d2(µ, να), for all α ≥ 1.

This can be proven by a direct estimate of the first derivative with respect

to α of the quantity ψγ(α) :=
∫ ∫

|x− αy|2dγ(x, y) for a γ ∈ Γo(µ, ν):

d

dα
ψγ(α) = −2

∫ ∫
(x− αy) · ydγ(x, y) = 2α

∫
|y|2dν(y)

− 2
∫ ∫

x · ydγ(x, y) = 2α
∫
|y|2dν(y) +

∫ ∫
|x− y|2dγ(x, y)

−
∫
|x|2dµ(x)−

∫ ∫
|y|2dν(y) = 2(α− 1)

∫
|y|2dν(y) + d2

2(µ, ν),

which shows that the minimum of ψγ(α) is achieved for α = 1− d2
2(µ,ν)

2
∫
|x|2dµ.



We use the previous lemma in the following step:

dp(µ1(t), µ2(t))p ≤ 2dp (µ1(t), µ2(t))p .

Hence, the property 2 of the dynamical system St implies

dp(µ1(t), µ2(t))p ≤ 2β(t)pdp (µ1, µ2)p .

Finally, the above combined with (4) and with the property 1 of St implies

dp(Tt[µ1], Tt[µ2]) ≤ 2
β(t)
α(t)

dp(µ1, µ2).

Property 3 of St implies that 2β(t)
α(t) ≤ c < 1 for all t ≥ t∗ for a t∗ large

enough, therefore the p–Toscani map Tt is a strict contraction on the
complete metric space (Mp(Rd), dp).



Figure 1: A geometric interpretation of the proof



The main theorem

We have proven the following theorem:

Theorem 1. Let St be a dynamical system satisfying the above
assumptions 1, 2 and 3 for a certain fixed p ∈ [1,+∞]. Then there
exist a time t∗ ≥ 0 and a unique one parameter family {ν∞t }t≥t∗ ⊂ Pp(Rd)
such that

dp(Tt[µ(t)], ν∞t )→ 0 as t→ +∞,
where Tt is the p–Toscani map defined above. Moreover, ν∞t is the unique
fixed point of Tt at each time t > t∗.

In the sequel we shall focus on specific cases where the assumptions on
the dynamical system are satisfied and we shall study the fixed point family
more in detail. Since all the models considered are mass preserving, we shall
always assume that solutions have unit mass.



Remarks.
1. The fixed value of the p–moment chosen for the Toscani map, unit in

the above procedure, can be arbitrarily chosen to be θ > 0. Asymptotic
profiles are then obtained for solutions with initial data with that given
value of the p–moment. These asymptotic profiles may depend on the
value of the p moment.

2. In the special case of a dynamical system St with the translation
invariance property (St[f ])(x + h) = (St[f(· + h)](x) (which implies
conservation of the center of mass), one can rephrase the whole procedure
by considering the quantity dp(·, δx0) instead of θp in the assumption
2 on St for an arbitrary x0 ∈ Rd. In this case the asymptotic profile
v∞t will have center of mass x0 and it be the x0 translation of the
previous one. This fact does not contradicts the uniqueness of the
fixed point. Indeed, it proves directly that translated asymptotic profiles
match asymptotically in the dp with a faster rate than the growth rate
of their p–moment.



3. We remark that the whole procedure works even in case the Lipschitz
continuity property of the p–Wasserstein distance

dp(St[µ],St[ν]) ≤ β(t)dp(µ, ν)

holds in a closed subspace C of Pp(Rd). Indeed, the fixed point family
would belong to C and the asymptotic result would hold only in that
class.



Nonlinear diffusion equation

Let us consider the case of a nonlinear diffusion equation

∂tu = ∆φ(u), (5)

posed on x ∈ Rd, with the following assumptions on φ:

1. φ ∈ C[0,+∞) ∩ C1(0,+∞), φ(0) = 0 and φ′(u) > 0 for all u > 0.

2. ∃C > 0 and m > d−2
d such that φ′(u) ≥ Cum−1 for all u > 0.

3.
φ(u)
u1−1/d

is nondecreasing on u ∈ (0,∞).



Assumption 1 implies that the Cauchy problem for (5) is well posed in
L1

+(Rd) (cf. Benilán ’76). Assumption 2 implies the L1-L∞ smoothing
effect (cf. Verón ’79)

‖u(·, t)‖L∞(Rd) ≤ C t
− d
d(m−1)+2‖u0‖L1(Rd). (6)

Notice that assumption 2 is ‘one–sided’, in the sense that it does not require
a power–like behavior of φ at zero. Assumption 3 implies that the entropy
functional associated to equation (5) is displacement convex (cf. [McCann
’97]) and thus, the flow map of (5) is a non-expansive contraction in time
with respect to the Euclidean Wasserstein distance d2 (cf. Otto ’01, Agueh
’2, Carrillo-McCann-Villani ’04, Sturm ’05). In formulas, if u1, u2 solve
(5), then d2(u1(t), u2(t)) ≤ d2(u1(0), u2(0)). Therefore, in order to fit the
abstract framework, we need the temperature of the solution u(t) to diverge
to +∞ for large times.



This is ensured by the L∞ decay of the solution in the following lemma.

Lemma 2. Assume the nonlinearity φ satisfies assumptions 1, 2 and
suppose that the temperature of all solutions u(t) to (5) is finite. Then, all
solutions u(t) with to (5) satisfy

θ2[u(t)] ≥ 1
4
t

2
d(m−1)+2. (7)

Proof. We have, for an arbitrary R(t),

θ2[u(t)] =
∫

Rd

|x|2

2
u(x, t) dx =

∫
|x|≥R(t)

|x|2

2
u(x, t) dx+

∫
|x|≤R(t)

|x|2

2
u(x, t) dx

≥ R(t)2

2

∫
|x|≥R(t)

u(x, t) dx =
R(t)2

2

[
1−

∫
|x|≤R(t)

u(x, t) dx

]

≥ R(t)2

2
[
1− Cd‖u(t)‖L∞R(t)d

]
,



where Cd is the volume of the unit sphere in Rd. Taking into account the
smoothing effect, we have

‖u(t)‖L∞ ≤ C0t
− d
d(m−1)+2, (8)

where the constant C0 depends on the mass of the initial datum, and thus,
by choosing

R(t) =
1

2C0
t

1
d(m−1)+2,

we obtain the desired below estimate (7). �

As a consequence of this lemma and of the non-expansive contraction of
the 2–Wasserstein distance, one obtains the following theorem stated in
[CDT, ARMA ’06]. The fact that the fixed point family here is absolutely
continuous w.r.t. Lebesgue measures depends on a L∞ regularizing effect
occurring for measure valued initial data.



Theorem 2. [Asymptotic profile for general nonlinear diffusions] Given
φ verifying the above hypotheses, there exists t∗ > 0 and a one parameter
curve of probability densities v∞t , with unit temperature defined for t ≥ t∗
such that, for any solution of (5) with initial data (1 + |x|2)u0 ∈ L1

+(Rd) of
unit mass and temperature,

d2

(
θ2[u(t)]d/2u(θ2[u(t)]1/2 · , t), v∞t

)
−→ 0 as t→∞.

Moreover, the asymptotic profile v∞t is characterized as the unique fixed
point of the 2–Toscani map associated to the flow map of (5)

Remarks:
• R. McCann gave a geometric interpretation of this phenomenon for

nonlinear diffusion in 2002 at the Pims thematic programme on aymptotic
geometric analysis.

• Let us remark here that the 2–Toscani map is a projection onto the unit
second moment manifold M2(Rd), as it was proven in [Carlen, Gangbo
- Annals of Math. 2003].



Nonlinear diffusion. The asymptotic profile

In the homogeneous case φ(u) = um, the family v∞t does not depend on
t and coincides with the Barenblatt self-similar profile at the time in which
it has temperature 1. This result is a consequence of the main theorem
in [Toscani ’05] and the uniqueness of the fixed points v∞t . Three natural
question then arise:

1. Can one characterize the set of nonlinearities for which v∞t is constant
in time?

2. In case v∞t is not constant, how does v∞t behave as t → +∞? Does it
converge to a limit point?

3. Is it possible to prove further regularity of v∞t ?

All there issues have been addressed in [Carrillo, Vazquez - JEE 2007].



Nonlinear diffusion. The asymptotic profile

Main results in [Carrillo, Vazquez - JEE 2007]:

1. The asymptotic profile v∞t belongs to L1(Rd) ∩ L∞(Rd) ∩C(Rd) and is
a radially symmetric non increasing function. Moreover, if the nonlinear
diffusion function φ(u) is C∞ for u > 0, the fixed point v∞t is locally
C∞ wherever it is positive.

2. There exists a nonlinearity φ(u) such that the adherence points of its
asymptotic profile v∞t contains more than one element. This example
is constructed by taking a nonlinearity with a behavior at u = 0 which
oscillates between two power–like diffusions (e.g. a linear and a quadratic
one). The asymptotic behavior of v∞t ‘can be made arbitrarily complex’
(chaotic behavior).



3. If the 2–Toscani map Tt for a nonlinear diffusion equation ut = ∆φ(u)
is constant in time for some open time interval I, then the function φ is
a power function on the range of the family of the constant fixed point
v∞. This means that φ(u) = cum for some m and c > 0 and for all
u ∈ [0, A] for some A > 0.

Remark: We expect that the family of fixed points v∞t is asymptotically

stable as t → +∞ in case of φ(u) such that lim
u→0

φ(u)
um

= l for certain

m, l > 0. This fact is suggested by the L1 convergence result in [CDT,
ARMA ’06] and by previous results in [De Pablo, Vazquez - Ann. Math.
Pura Appl. 1991] and [Biler, Dolbeault, Esteban - Appl. Math. Lett.
2006], which show that the behavior of φ(u) near u = 0 determines the
intermediate asymptotic behavior.



A nonlocal equation for the scaled solution.

The scaled variable v(y, τ) defined by the 2–Toscani map via the scaling

u(x, t) = θ2[u(t)]−d/2 v
(
θ2[u(t)]−1/2x,

1
2

log θ2[u(t)]
)

satisfies the following nonlocal/nonlinear Fokker–Planck type equation

∂τv = div(yv) + ∆
(

φ(θ2[u(t)]−d/2v)
d
∫

Rd φ(θ2[u(t)]−d/2v)dy

)
. (9)

Suppose φ is asymptotically homogeneous, i. e.

lim
u↘0

φ(u)
um

= α > 0, for some m > max
{

1− 1
d
,

d

d+ 2

}
. (10)



Then, due to θ2[u(t)] → +∞ as t → +∞, it is reasonable to expect the
large time asymptotics of (9) to be governed by the leading order equation

∂τv = div(yv) + ∆
(

vm

d
∫

Rd v
mdy

)
.

The unique stationary solution v∞ of the above equation is the candidate
limit of the family of fixed points v∞t .
Remark (A possible limit for non asymptotically homogeneous φ’s):

Consider the example φ(u) = −u2 log u + u2

2 + u3, which satisfies all the
above assumptions. The leading term of φ(u) at u→ 0 is −u2 log u, which
is not power–like. However, the equation (9) still suggests a possible limit
for v∞t , since we can still detect a leading order term. The expected limiting
equation would be in this case

∂τv = div(yv) + ∆
(

v2

d
∫

Rd v
2dy

)
.

These issues are part of a work in progress.



Nonlinear scalar conservation laws

We now focus on another classical example of dissipative PDE, namely the
nonlinear scalar 1–d conservation law

∂tu+ ∂xf(u) = 0 (11)

with initial condition u(x, 0) = ū(x). We assume

• f convex, f(0) = f ′(0) = 0 w. l. o. g.

• ū ∈ L∞(R), ū ≥ 0, ū with compact support

• w. l. o. g.

∫
R
ū(x)dx = 1



Unlike the case of nonlinear diffusion equations, here a Liptschitz continuity
result of a p–Wasserstein distance (even in one space dimension) is not
immediate. A previous result by Bolley, Brenier and Loeper (JHDE 2005)
proved dp(ux(t), vx(t)) ≤ dp(ux(0), vx(0)), p ≥ 1, for nondecreasing
solutions u, v whose distributional derivative is a probability measure. In
fact, such result could be also used in order to prove asymptotic stability of
diffusive waves for nondecreasing solutions (see [CDL, JDE ’07]) by a similar
strategy. We shall omit the details of this result in the present context.

As we shall see, the only distance which easily allows for a stability result
of the semigroup associated to (11) is the ∞–Wasserstein distance. The
validity of similar results for other distances (to our knowledge) is still an
open problem.



Representation of the Wasserstein distance in 1d.
In one space dimension, the Wasserstein metrics dp, p ∈ [1,+∞], have a
simple interpretation in terms of the pseudo-inverses of the primitive of the
involved densities (see e. g. the book of Villani, Springer, 2003).

Given u1, u2 ∈ L1
+ with compact support, let us denote

vi(x) =
∫ x

−∞
ui(y)dy, i = 1, 2

and define their pseudo–inverses v−1
i : [0, 1]→ R as follows

v−1
i (ξ) = inf{x : vi(x) > ξ}.

Then, for all p ∈ [1,+∞],

dp(u1, u2) = ‖v−1
1 − v

−1
2 ‖Lp([0,1]).



Contraction result for scalar inviscid conservation laws
We introduce the functional space

Bc=
{
u ∈ L∞(R), u ≥ 0,

supp(u) compact
and connected

,

∫
R
u(x)dx = 1

}
.

It is easily seen that the metric space (Bc, d∞) is not dense in (Pc(R), d∞).
We shall denote the closure of Bc in the d∞ topology by Bc. We remark that
Bc contains the set of compactly supported L∞ probability densities with
finite number of connected components and the set of bounded variation
compactly supported L∞ probability densities.

Theorem 3. [Contraction w. r. t. d∞ for (11)] Let us consider solutions
u and v to (11) with initial data ū, v̄ ∈ Bc and assume the flux f in (11) is
convex. Then, for all t > 0,

d∞(u(t), v(t)) ≤ d∞(ū, v̄).



A representation formula for the pseudo–inverse

The proof of the previous theorem (cf. [CDL ’07]) relies on the following
lemma.

Lemma 3. Let f be a uniformly convex function, let ū ∈ Bc and let u(t)
be the solution to (11) with initial datum ū. Let v̄(x) =

∫ x
−∞ ū(y)dy.

Then, the function v(x, t) =
∫ x
−∞ u(y, t)dy is strictly increasing from 0 to 1

on a connected interval of R. Moreover, for any ξ ∈ (0, 1), v−1(ξ, t) verifies

v−1(ξ, t) = max
0≤w≤ξ

{
tF

(
ξ − w
t

)
+ v̄−1(w)

}
,

where F is the inverse of f∗ restricted to [0,+∞).



Sketch of the proof of Lemma 3

v(x, t) satisfies the Cauchy problem for the Hamilton-Jacobi equation{
vt + f(vx) = 0
v(x, 0) = v̄(x),

with v(t) ∈ Lip(R) for all t > 0. Hence, the Lax–Hopf formula yields

v(x, t) = min
y∈R

{
tf∗
(
x− y
t

)
+ v̄(y)

}
, (12)

where f∗ is the Legendre transform of f . Formula (12) can be inverted to

v−1(ξ, t)= sup
{y∈R: v̄(y)≤ξ}

{
x : tf∗

(
x− y
t

)
+ v̄(y) = ξ

}
.

By computing x in the above formula we obtain the desired assertion.



Sketch of the proof of Theorem 3

Step 1. Assume ū1, ū2 ∈ Bc. Then, we can apply the result in Lemma. In
particular, given v−1

1 and v−1
2 the pseudo–inverses of the primitives of the

solutions u1(t) and u2(t) respectively, we can find w̄1 ∈ (0, 1) such that

v−1
1 (ξ, t)− v−1

2 (ξ, t) ≤ tF
(
ξ − w̄1

t

)
+ v̄−1

1 (w̄1)− tF
(
ξ − w̄1

t

)
+ v̄−1

2 (w̄1)

= v̄−1
1 (w̄1)− v̄−1

2 (w̄1) ≤ sup
0≤w≤ξ

|v̄−1
1 (w)− v̄−1

2 (w)|.

Finally, interchanging the role of v1 and v2 we get

|v−1
1 (ξ, t)− v−1

2 (ξ, t)| ≤ sup
0≤w≤ξ

|v̄−1
1 (w)− v̄−1

2 (w)|,

which reduces to the desired assertion taking the supremum over all ξ.

Step 2. Via approximation procedure.



Estimate of the speed of propagation

As it is well known [Carrillo–Gualdani–Toscani 2003], the estimate proved
in the previous theorem gives also a control of the speed of propagation of
the supports of the two solutions u(t) and v(t):

Corollary 1. Let us consider solutions u and v to (11) with initial data
ū, v̄ ∈ Bc and assume the flux f in (11) is convex. Then

|inf [supp(u(t))]− inf [supp(v(t))]| ≤ d∞(ū, v̄),

|sup [supp(u(t))]− sup [supp(v(t))]| ≤ d∞(ū, v̄).



Asymptotic behavior — previous results

When f(u) = um, it is described by the N–waves

N(x, t) =

{
(f ′)−1

(
x
t

)
0 ≤ x ≤ b(t)

0 otherwise

where

b(t) = t(f∗)−1

(
M

t

)
,

where f∗ is the Legendre transform of f (well defined iff f ′′(u) > 0 for
u > 0). For f(u) = um, m > 1, Liu and Pierre (JDE, 1984) proved

lim
t→+∞

t(r−1)/mr‖u(t)−N(t)‖r = 0.



Asymptotic behavior — previous results

In Dolbeault–Escobedo (Asymptot. Anal. 2005), time dependent scaling

u(x, t) = (1 +mt)−1/mv

(
(1 +mt)−1/mx,

1
m

log(1 +mt)
)
,

yielding the rescaled equation

vτ = (yv − vm)y,

where the rescaled N–wave is a stationary solution, in the spirit (e.g.) of
[Carrillo, Toscani - Indiana Univ. Math. J. 2000] for the PME.



Y. J. Kim (JDE 2003) improved the rate of convergence of Liu–Pierre
(under further assumptions on the initial data) and extended the class of
fluxes to those f ’s satisfying the property

lim
u→0

uf ′(u)
f(u)

= m > 1.

No previous results without any growth condition at the zero state for the
convex flux f .

Remark: The N–waves solutions can be written in the self–similar form
N(x, t) = α(t)U(α(t)x) for a suitably (decaying for large times) function
α(t) only if f is homogeneous.



Intermediate asymptotics for scalar conservation laws

In order to apply the abstract framework developed before, we need to work
in the closed subspace Bc(Rd) ⊂ Pc(R) endowed with the d∞ distance.
Therefore, our reference moment will be the maximal transport moment
σ[u(t)]. Since the d∞ is non expansive, we need to prove that σ[u(t)]
diverges to +∞ for large times for all solutions u(t) with initial data in C.
In order to make sure this happens, we require the additional assumption
on f ∃ α ∈ (0, 1), r 7→ f(r)1−α is convex on (0,+∞). (13)

The above assumption (cf. [Liu–Pierre, JDE ’84]) ensures the L∞ decay

‖u(t)‖L∞(R) ≤ f−1

(
C(α)
t
‖u(0)‖L1(R)

)
, (14)

which implies σ[u(t)] ≥ θ2[u(t)]1/2 → +∞ as in Lemma 2.



Intermediate asymptotics for scalar conservation laws

Then, we have the following theorem (cf. [CDL ’07]):

Theorem 4. Let f : [0,+∞) → [0,+∞) be a C1 convex function such
that f(0) = f ′(0) = 0 and such that (13) is satisfied. Then, there exist a
fixed t∗ > 0 and a one parameter family of functions {v∞t }t≥t∗ ⊂M∞∩Bc
such that, for any u0 ∈M∞ ∩ Bc(Rd) we have

d∞(Tt[u0], v∞t )→ 0, as t→ +∞,

where Tt is the∞–Toscani map for the scalar conservation law (11) and u(t)
is the unique entropy solution to (11) with u0 as initial datum. Moreover,
for any fixed t > t∗, v∞t is characterized as the unique fixed point of the
∞–Toscani map.



Remarks and open problems

• We recall that the fixed point family v∞t is constant in time when
f(u) = um and it coincides with the N–wave Nm(x, t0) at the time t0
when σ[N(t0)] = 1.

• When f(u) = um + h(u) with h(u)u−m → 0 as u → 0, we prove that
v∞t → Nm(t0) as t→ +∞ with respect to the d∞ metric.

• In [CDL ’07] we apply the scaling technique to the case of increasing
solutions, thus characterizing the self–similar rarefaction waves as the
fixed points of the renormalized map.

• Characterization of fluxes f for which the families v∞t are independent
on time in the spirit of [Carrillo, Vazquez ’07] is still open.

• The contraction result is optimal without further assumption on the
initial data (e.g. by comparing a N–wave with a space translation of it).
Can one obtain strict contractivity by fixing some initial parameter?



Results for viscous conservation laws

• Viscous Burgers:
ut +

(
1
2
u2

)
x

= uxx (15)

• Viscous conservation laws with slow diffusion:

ut + f(u)x = g(u)xx, g′(u) ≥ 0, g′(0) = 0 (16)

Summary of results:

• Contraction in d∞: (16) via operator splitting [Evje-Karlsen 1999]; (15)
via direct calculation following [DF, Markowich – Contemp. Math.
2004].

• Intermediate asymptotics for (16): as before, via Toscani map.



Viscous Burgers’ equation

Theorem 5. Let p ∈ [1,+∞]. Let u1 and u2 be solutions to (15) with
compactly supported initial data ū1, ū2 ∈ L1

+(R), both with total masses
equal to one. Then the Wasserstein distance dp(u1(t), u2(t)) satisfies the
estimates

dp(u1(t), u2(t)) ≤ e1/2pdp(ū1, ū2),
for p ∈ [1,+∞),

d∞(u1(t), u2(t)) ≤ d∞(ū1, ū2),
for p = +∞.

Proof:

• Use Hopf – Cole transformation to rewrite (15) as heat equation

• use contraction in d′ps for heat equation



Viscous conservation laws

Theorem 6. Let u1(x, t) and u2(x, t) be the weak entropy solutions to
(16) with nonnegative initial data ū1(x), ū2(x) ∈ Pc ∩ BV (R). Assume
that f and g are locally C2 functions, f is convex and g′(0) = 0. Then

d∞(u1(t), u2(t)) ≤ d∞(ū1, ū2).

Proof. Fix T > 0 and a time step 4t > 0 such that N4t = T and define
approx. solution un by induction:

• n = 0, choose as first term u0 the initial datum ū

• if un(x) is the approximate solution at a time tn = n4t, n = 0, . . . N−1,
we construct the successive term un+1(x) via operator splitting method



Operator splitting

Let S1
t be the semigroup defining the unique weak entropic solution for the

Cauchy problem associated with the nonlinear conservation law
ut + f(u)x = 0.

Define un+1/2(x) = S1
4tu

n(x).
Let S2

t be the semigroup defining the unique weak solution for the Cauchy
problem associated with the nonlinear diffusion equation

ut = g(u)xx.

Define
un+1(x) = S2

4tu
n+1/2(x) = (S2

4t ◦ S1
4t)u

n(x)
Approx. solution:

un(x, t) = un(x),
for any (x, t) ∈ R× (tn, tn+1] and n = 0, . . . N − 1.



Properties of approx. solutions and contractivity

• L∞ stability: ‖un(·, t)‖∞ ≤ ‖ū‖∞

• BV stability: ‖un(·, t)‖BV (R) ≤ ‖ū‖BV (R)

• un(·, t)→ u(·, t) in L1(R) and bounded almost everywhere

• dp(u1,n(t), u2,n(t)) ≤ d∞(u1,n(t), u2,n(t)) ≤ d∞(ū1, ū2) for any pair of
solutions

• Lower semi–continuity of the dp’s:

dp(u1(t), u2(t)) ≤ lim inf
n→+∞

dp(u1,n(t), u2,n(t)) ≤ d∞(ū1, ū2).

• Final result sending p↗ +∞ above



An open problem: nonlocal interaction PDE’s.

A drawback of this method: consider the following nonlocal equation

∂tρ = div(ρ∇I ∗ ρ)

where I : Rd → Rd represents an interaction kernel. Let us take a very

special case I(x) = |x|2
2 (I is an attractive potential). The temperature of

any measure valued solution µ(t) can be evaluated as follows (suppose that
the center of mass of µ(t) is zero):

d

dt

∫
|x|2dµ(t)(x) = −

∫ ∫
|x−y|2dµ(t)(x)dµ(t)(y) = −2

∫
|x|2dµ(t)(x),

which implies
θ2[µ(t)] = e−2tθ2[µ(0)].



Now consider the special class of ‘two particle’ solutions (with zero center
of mass)

µ(t) = αδx(t) + (1− α)δy(t), y(t) = − α

1− α
x(t),

parameterized by α ∈ (0, 1). For this class of solutions, the temperature
reads

θ2[µ(t)] =
α

1− α
|x(t)|2.

The unit temperature initial condition then implies |x(0)|2 = 1−α
α . A

rough computation of the 2–Wasserstein distance between two solutions
in this class µ and ν, parameterized by α and β respectively, shows
that d2(µ(t), ν(t)) = O(e−t). Therefore, the condition 3 of the abstract
framework is not satisfied.



The above example suggests that when the model does not enjoy a little
bit of smoothing effect, the present method does not work. To support
this idea, we observe that a result of self–similar large time blow up for
the friction equation of granular media in 1–d (where I(x) = |x|3/3, cf.
[Benedetto, Caglioti, Pulvirenti - 1997]) holds only if the initial datum is
absolutely continuous with respect to the Lebesgue measure.

Further investigations on this topic are in progress.



Example of nonlocal repulsion where our approach works:

Consider the simple 1–d equation

∂tu = −∂x(u(∂x(log | · | ∗ u))).

Let us evaluate the temperature of a solution u(t) with unit mass:

d

dt

∫
|x|2udx = 2

∫
xu(∂x(log | · | ∗ u))dx

=
∫ ∫

(x− y)
1

(x− y)
u(x)u(y)dxdy = 1,

which implies
θ2[u(t)] = t+ θ2[u(0)].



On the other hand, if we consider the equation for the pseudo–inverse
variable v(z, t), z ∈ [0, 1], we have

∂tv =
∫ 1

0

1
v(z, t)− v(ξ, t)

dξ.

Hence, for two solutions u1 and u2 with corresponding pseudo–inverse
variables v1 and v2, we can compute the evolution of the 2–Wasserstein
distance ad follows:
d

dt
d2

2(u1(t), u2(t)) =
d

dt

∫ 1

0

(v1(z, t)− v2(z, t))2dz

= 2
∫ 1

0

∫ 1

0

(
1

v1(z, t)− v2(ξ, t)
− 1
v2(z, t)− v2(ξ, t)

)
(v1(z, t)− v2(z, t))dξdz.

By choosing the initial center of mass equal to zero, it is easy to check that
the last quantity above is non positive, which implies that the 2–Wasserstein
distance is non expansive. This proves that we are in the situation of the
abstract framework developed above.



Thank you!


