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Biological Aggregation

‘ " 2
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@ Large scale collective behavior

@ No leader

@ Group size > interaction length scale

@ Sharp boundaries, approximately constant density
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@ Lagrangian
@ Eulerian
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@ Lagrangian
@ Eulerian
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Continuum model
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Continuum model

@ mechanisms

e attraction at a distance
@ local dispersal
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Continuum model

@ mechanisms

e attraction at a distance
@ local dispersal

@ p density

Individual’s velocity

V: Va+ Vr

Va= V(K % p) Vi, =—pVp
K ”sensing kernel”, K > 0, smooth, [ K =1, K(x) = K(|x|)
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Continuum model

@ mechanisms

e attraction at a distance
@ local dispersal

@ p density

Individual’s velocity

V: Va+ Vr

Va= V(K % p) Vi, =—pVp
K ”sensing kernel”, K > 0, smooth, [ K =1, K(x) = K(|x|)

Equation

pt ==V (pV(K % p— p?)) J
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Weak Solutions

The problem

3
pt—v-(pv(z,ﬁ—mp)):o on Q2 x (0,T) = Qr
V(gpz—K*p>-U:O on 9Q x (0, )
p(-,0)=p inQ

(April 2, 2008.) 5/23



Weak Solutions

The problem

3
pt—v-(pv(z,ﬁ—mp)):o on Q2 x (0,T) = Qr
3
V(sz—K*p>-1/:0 on 99 x (0, )
p(-,0)=p inQ

Theorem (existence and uniqueness)

Assume that Q is convex. Let pg € L>(R2), and pp > 0. There exists a
unique weak solution p € L>=(Q71) with p° € L2(0, T, H'(Q)),

pt € L2(0, T,H=(Q)), and p € C(0, T, LP(Q)) for all p € [1, c0).
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Weak Solutions

The problem

3
pt—v-(pv(z,ﬁ—mp)):o on Q2 x (0,T) = Qr
3
V(sz—K*p>-1/:0 on 99 x (0, )
p(-,0)=p inQ

Theorem (existence and uniqueness)

Assume that Q is convex. Let pg € L>(R2), and pp > 0. There exists a
unique weak solution p € L>=(Q71) with p° € L2(0, T, H'(Q)),

pt € L2(0, T,H=(Q)), and p € C(0, T, LP(Q)) for all p € [1, c0).

@ Related results by Burger, Capasso, and Morale and Burger and
Di Francesco
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Properties of Solutions

@ The solutions are nonnegative

@ Mass (i.e. L' norm) is preserved

@ formally: Center of mass is preserved if Q = R"
@ Energy is dissipated

Energy

15 1
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Gradient flow structure

Equation

3
pt=V- (PV(sz — Kxp))
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Gradient flow structure

Equation

3
pr =V (pV(30° = K*p))

The equation is a gradient flow of the energy in Wasserstein metric.

Metric (inner product)
Let uq, u> be tangent vectors at p, that is zero-mean functions

(Ur, U2), = /PVP1 VP2
where — V- (pVpj) = yj fori=1,2.
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Gradient flow structure

Equation

=V (VG K2 p) =7 (p9(5)

The equation is a gradient flow of the energy in Wasserstein metric.

Metric (inner product)
Let uq, u> be tangent vectors at p, that is zero-mean functions

(Uy, U), = /PVP1 -Vp2 =/P1 Up
where —V-(pVpi) =y fori=1,2.

Gradient flow
3
(pt, U), = ——[ | = /( 2 — K x p)udx

for all tangent vectors wu.
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Modified energy

Energy

E(p) = / K(x = )(o(x) — ply)Pxaly + / p(1 — p)2alx

Local energy

Sl / Vol + / (1 p)2dx
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Traveling waves

@ De Masi, Gobron, Pressuti (1995) K radial, W regular
@ Bates, Fife, Ren, and Wang (1997) W regular

@ Alberti and Bellettini (1998) W regular

@ Fife (1997) W of obstacle type

(April 2, 2008.) 9/23



Traveling waves

@ De Masi, Gobron, Pressuti (1995) K radial, W regular
@ Bates, Fife, Ren, and Wang (1997) W regular

@ Alberti and Bellettini (1998) W regular

@ Fife (1997) W of obstacle type

Properties
@ Speed is zero
@ Profile is monotone
@ Supported on half-plane
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Gamma convergence

Let K-(x) := 5 K(%). Rescale space Xpew = ¢ X.

Rescaled energy
E(p) = o [ K= y)(600) — s(y)Paeay + - [ Wip)ax J
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Gamma convergence

Let K-(x) := 5 K(%). Rescale space Xpew = ¢ X.

Rescaled energy

i) — / K.(x — ) (o) — ply) oy + | We)ox

Sharp interface functional
For x € BV(Q,{0,1})

W)= [ 1vx]
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Gamma convergence

Let K-(x) := 5 K(%). Rescale space Xpew = ¢ X.

Rescaled energy

E(p) = o [ K= y)(600) — s(y)Paeay + - [ Wip)ax

Sharp interface functional
For x € BV(Q,{0,1})

W)= [ 1vx]

Gamma Convergence (Alberti and Bellettini)

r
E.—Es, ase—0

Minimizers of E. converge towards minimizers of Egp,.
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Sharp interface evolution

Local Nonlocal Sharp
Energy Eioc E Egn
L2 Allen—Cahn nonlocal Allen—Cahn | v =mean curvature
H-T Cahn-Hilliard | nonlocal Cahn—Hilliard Mullins—Sekerka
Wass. | thin-film eq. bio. aggregation Hele—Shaw
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Sharp interface evolution

Local Nonlocal Sharp
Energy Eioc E Egn
L2 Allen—Cahn nonlocal Allen—Cahn | v =mean curvature
H-T Cahn-Hilliard | nonlocal Cahn—Hilliard Mullins—Sekerka
Wass. | thin-film eq. bio. aggregation Hele—Shaw

Hele—Shaw problem

Ap=0 in O
p=kK on 90
v =Vp-v normal velocity of 90O;
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@ Using matched asymptotic expansion as in Rubinstein, Sternberg,
and Keller, Pego, and Giacomin and Lebowitz one can
demonstrate that Hele-Shaw problem is the sharp interface limit of
the bio-aggregation equation.
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@ Using matched asymptotic expansion as in Rubinstein, Sternberg,
and Keller, Pego, and Giacomin and Lebowitz one can
demonstrate that Hele-Shaw problem is the sharp interface limit of
the bio-aggregation equation.

f
119000000000000
Hele—Shaw dynamics

QO computed by Glasner
0@ (2002)

| 00
IJ000000000000000
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Coarsening behavior in interfacial systems

Coarsening in Cahn-
Hilliard equation,
computed by Zhu,
Chen, Shen, and
Tikare (1999)

13/23
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Interfacial evolutions

Local Nonlocal Sharp
Energy Eioc E Esn
K& Allen—Cahn nonlocal Allen—Cahn v =mean curvature
H-T Cahn—Hilliard | nonlocal Cahn—Hilliard Mullins—Sekerka
Wass. | thin-film eq. bio. aggregation Hele—Shaw

(April 2, 2008.) 14/23



Kohn-Otto Framework

@ E = E/|QQ] — energy density

Upper bound on coarsening rate
For T large and o € (1,1 + 2)

1 r_ & 1 U __a \©?
?/0 E(H)°dt > 07/0 (t a+2) dt
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Kohn-Otto Framework

@ E = E/|Q| — energy density
@ L — an order parameter

Interpolation inequality

If E small B

EL*>C>0 |
Dissipation relation
For example .

(L)? < C(-E)

Upper bound on coarsening rate
For T large and o € (1,1 + 2)

1 U - 1 T __a \©?
T/o E(H)°dt > CT/o (t a+2) dt )
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Coarsening rate: related results

@ Kohn and Otto Upper bounds of coarsening rates in Cahn—Hiliard
equations 2002.

Kohn and Yan, Epitaxial growth

Kohn and Yan, Multicomponent phase separation

Conti, Niethammer, and Otto Mullins—Sekerka

Dai and Pego Mean-field models of phase transitions

Dai and Pego Mushy zones in a phase-field model

Otto, Rump, and S. Droplet model

Esedoglu and Greer, Esedoglu and S. ill-posed diffusions
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Coarsening rate: related results

@ Kohn and Otto Upper bounds of coarsening rates in Cahn—Hiliard
equations 2002.

@ Kohn and Yan, Epitaxial growth

@ Kohn and Yan, Multicomponent phase separation

@ Conti, Niethammer, and Otto Mullins—Sekerka

@ Dai and Pego Mean-field models of phase transitions

@ Dai and Pego Mushy zones in a phase-field model

@ Otto, Rump, and S. Droplet model

@ Esedoglu and Greer, Esedoglu and S. ill-posed diffusions

@ Liand Liu Epitaxial growth



Dissipation Inequality

We choose L to be the (appropriately averaged) Wasserstein distance
to p, the average of p:

1
L:|Q|—1/2dW(p’ﬁ) J
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Dissipation Inequality

We choose L to be the (appropriately averaged) Wasserstein distance
to p, the average of p:

1
L:|Q|—1/2dW(p’ﬁ) J

Dissipation relation follows from gradient-flow structure:

(%)~ (o)

(April 2, 2008.) 17/23



Dissipation Inequality

We choose L to be the (appropriately averaged) Wasserstein distance
to p, the average of p:

1
L:|Q|—1/2dW(p’ﬁ) J

Dissipation relation follows from gradient-flow structure:

(&)~ b (oaen)

1
< 7<pt7pt>
€] .

(April 2, 2008.) 17/23



Dissipation Inequality

We choose L to be the (appropriately averaged) Wasserstein distance
to p, the average of p:

1
= |Q|—1/2dw(/)aﬁ) J

Dissipation relation follows from gradient-flow structure:

(CZD a (Gowte ’”)2

1
< 7<pt7pt>
€] .

1 5E
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Dissipation Inequality

We choose L to be the (appropriately averaged) Wasserstein distance
to p, the average of p:

1
= |Q|—1/2dw(/)aﬁ) J

Dissipation relation follows from gradient-flow structure:

(CZD a (Gowte ’”)2

1

§@<ptapt>p

1 0E
= ~1ql o — o]
1 dE_ dE
T oQdt  dt
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Interpolation Inequality

E = [ W(p)dx + [[(p(x) — p(¥))?K(x — y)dxdy.

Need to show
EL>1 fE<x1 }
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Interpolation Inequality

E = [ W(p)dx + [[(p(x) — p(¥))?K(x — y)dxdy.

Need to show
EL>1 ifE<1 }

@ Consider the case p = 3.
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Interpolation Inequality

E = [ W(p)dx + [[(p(x) — p(¥))*K(x — y)dxdy.

Need to show
EL>1 ifE<1 J

@ Consider the case p = 3
@ We can assume K = -xg(0,1)-
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Interpolation Inequality

E = [ W(p)dx + [(p(x) — p(y))2K(x — y)axdy.

Need to show
EL>1 ifE<1 J

@ Consider the case p = 3.
@ We can assume K = -xg(0,1)-

@ When E < 1 then p is interfacial (close to either 0 or 1 on most of
Q)
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Interpolation Inequality

E = [ W(p)dx+ [ (p(x) — p(y)2K(x — y)dxdy.

Need to show
EL>1 ifE<1 J

@ Consider the case p = 3.
@ We can assume K = -xg(0,1)-

@ When E < 1 then p is interfacial (close to either 0 or 1 on most of
Q)

o Let K/(x) :== HK(%).

@ To show L 2> [ it suffices to show p x K; is interfacial
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Interpolation Inequality

E = [ W(p)dx + [(p(x) — p(y))2K(x — y)axdy.

Need to show
EL>1 ifE<1 J

@ Consider the case p = 3.
@ We can assume K = -xg(0,1)-

@ When E < 1 then p is interfacial (close to either 0 or 1 on most of
Q)

o Let K/(x) :== HK(%).

@ To show L = /it suffices to show p x K| is interfacial

@ It suffices to show that  |p — p x Kj| is small (say < 1/64)
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Interpolation Inequality (cont.)

Recall K/(x) := LK (¥). Let p = x{,57/8}-

Good measure of the perimeter

1 - -
¢(r):=|m/|p—f<r*p|

Energy bounds the perimeter

p(1) <E

J15-Ka15 [ Wi+ [[ 600 - sk - yyaay
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Subadditivity

We have
p—Kx+p|<E
rm/‘

o) = |Q,/|p Kl < g @

We want
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Subadditivity

We have

We want

Subadditivity
¢ is subadditive: ¢(ry + r2) < ¢(r1) + B(r2)
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Subadditivity

We have
p—Kx+p|<E
= /17
We want
o(l) = |Q,/|p Kl < g @
Subadditivity

¢ is subadditive: ¢(r1 + r2) < ¢é(r1) + ¢(r2)

and therefore ¢(/) < Ip(1)

Thus (2) holds for / ~1/E. So L > 1> 1/E.
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Nonlocal Cahn-Hiliard equation

Equation:
=V - (u(p)V(p— K p+ W(p) =V (u(p)V(%))
with 12 > 0.
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Nonlocal Cahn-Hiliard equation

Equation:
=Y (u(p)V(p— K p+ W(p) =V (u(p)w‘f;'j))
with > 0. |

Metric (inner product)
Let uq, u> be tangent vectors at p, that is zero-mean functions

(ur,u2), = /M(P)VM -Vp2
where — V- (ulp) Vpi) = u; fori=1,2.
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Nonlocal Cahn-Hiliard equation

Equation:
=Y (u(p)V(p— K p+ W(p) =V (u(p)V(‘f§>)
with > 0. |

Metric (inner product)
Let uq, u> be tangent vectors at p, that is zero-mean functions

(U, U2), = /N(P)VM -Vp2 = /P1 Uz
where — V- (ulp) Vpi) = u; fori=1,2.

Gradient flow

(pt, U), = —(;i[u] — /(p — Kxp+ W(p))udx

for all tangent vectors u.
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Length L

Admissible paths between pg and p1:
Alpo, p1) = {(p,J) :p:[0,1] — L'(Q),J € L'(Q x [0,1], RV)
pt+V-J=0 onQ x][0,1] weakly,
p e C"3([0,1],L'(Q))

| 1 J 2 dxat
/o/Qlu(p(x,t))| (x, t)|“dx <oo}.

Distance

f t)[2dxat.
(00, p1) oun)eA//M ey 1 DI

Length L

L(t):==d(p(t),p)  L(t):= d(p(t), a). (1)

1
ViRl
v




Remark on local energy

Energy bounds the perimeter
¢(1) SE

/ P K*pl < / W(p) + |Volax
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