On a nonlocal model of biological aggregation

Aspects of Optimal Transport in Geometry and Calculus of Variations

Dejan Slepčev
IPAM

Biological Aggregation

- Large scale collective behavior
- No leader
- Group size \gg interaction length scale
- Sharp boundaries, approximately constant density
- Lagrangian
- Eulerian

Recent references

- Parrish and Keshet (1999) Science
- Mogilner, Keshet, Bent, and Spiros (2003) Math. Bio.
- Okubo and Levin (Editors) (2001) Springer
- Burger, Capasso, and Morale (2007) Nonlin. Anal. Real. World. Appl.
- Topaz, Bertozzi, and Lewis (2006) Bull. Math. Bio.
- Eftimie, de Vries, and Lewis (2007) Proc. Nat. Academ. Sci.
- Lagrangian
- Eulerian

Recent references

- Parrish and Keshet (1999) Science
- Mogilner, Keshet, Bent, and Spiros (2003) Math. Bio.
- Okubo and Levin (Editors) (2001) Springer
- Burger, Capasso, and Morale (2007) Nonlin. Anal. Real. World. Appl.
- Topaz, Bertozzi, and Lewis (2006) Bull. Math. Bio.
- Eftimie, de Vries, and Lewis (2007) Proc. Nat. Academ. Sci.

Continuum model

mechanisms
 - attraction at a distance
 - local dispersal

K "sensing kernel", $K \geq 0$, smooth, $\int K=1, K(x)=K(|x|)$

Continuum model

- mechanisms
- attraction at a distance
- local dispersal

Continuum model

- mechanisms
- attraction at a distance
- local dispersal
- ρ density

Individual's velocity

$$
\begin{gathered}
V=V_{a}+V_{r} \\
V_{a}=\nabla(K * \rho) \quad V_{r}=-\rho \nabla \rho
\end{gathered}
$$

K "sensing kernel", $K \geq 0$, smooth, $\int K=1, K(x)=K(|x|)$

Continuum model

- mechanisms
- attraction at a distance
- local dispersal
- ρ density

Individual's velocity

$$
\begin{gathered}
V=V_{a}+V_{r} \\
V_{a}=\nabla(K * \rho) \quad V_{r}=-\rho \nabla \rho
\end{gathered}
$$

K "sensing kernel", $K \geq 0$, smooth, $\int K=1, K(x)=K(|x|)$

Equation

$$
\rho_{t}=-\nabla\left(\rho \nabla\left(K * \rho-\rho^{2}\right)\right)
$$

Weak Solutions

The problem

$$
\begin{aligned}
\rho_{t}-\nabla \cdot\left(\rho \nabla\left(\frac{3}{4} \rho^{2}-K * \rho\right)\right) & =0 & & \text { on } \Omega \times(0, T)=: \Omega_{T} \\
\nabla\left(\frac{3}{4} \rho^{2}-K * \rho\right) \cdot \nu & =0 & & \text { on } \partial \Omega \times(0, \infty) \\
\rho(\cdot, 0) & =\rho_{0} & & \text { in } \Omega
\end{aligned}
$$

The problem

$$
\begin{aligned}
\rho_{t}-\nabla \cdot\left(\rho \nabla\left(\frac{3}{4} \rho^{2}-K * \rho\right)\right) & =0 & & \text { on } \Omega \times(0, T)=: \Omega_{T} \\
\nabla\left(\frac{3}{4} \rho^{2}-K * \rho\right) \cdot \nu & =0 & & \text { on } \partial \Omega \times(0, \infty) \\
\rho(\cdot, 0) & =\rho_{0} & & \text { in } \Omega
\end{aligned}
$$

Theorem (existence and uniqueness)

Assume that Ω is convex. Let $\rho_{0} \in L^{\infty}(\Omega)$, and $\rho_{0} \geq 0$. There exists a unique weak solution $\rho \in L^{\infty}\left(\Omega_{T}\right)$ with $\rho^{3} \in L^{2}\left(0, T, H^{1}(\Omega)\right)$, $\rho_{t} \in L^{2}\left(0, T, H^{-1}(\Omega)\right)$, and $\rho \in C\left(0, T, L^{p}(\Omega)\right)$ for all $p \in[1, \infty)$.

The problem

$$
\begin{aligned}
\rho_{t}-\nabla \cdot\left(\rho \nabla\left(\frac{3}{4} \rho^{2}-K * \rho\right)\right) & =0 & & \text { on } \Omega \times(0, T)=: \Omega_{T} \\
\nabla\left(\frac{3}{4} \rho^{2}-K * \rho\right) \cdot \nu & =0 & & \text { on } \partial \Omega \times(0, \infty) \\
\rho(\cdot, 0) & =\rho_{0} & & \text { in } \Omega
\end{aligned}
$$

Theorem (existence and uniqueness)

Assume that Ω is convex. Let $\rho_{0} \in L^{\infty}(\Omega)$, and $\rho_{0} \geq 0$. There exists a unique weak solution $\rho \in L^{\infty}\left(\Omega_{T}\right)$ with $\rho^{3} \in L^{2}\left(0, T, H^{1}(\Omega)\right)$, $\rho_{t} \in L^{2}\left(0, T, H^{-1}(\Omega)\right)$, and $\rho \in C\left(0, T, L^{p}(\Omega)\right)$ for all $p \in[1, \infty)$.

- Related results by Burger, Capasso, and Morale and Burger and Di Francesco
- The solutions are nonnegative
- Mass (i.e. L^{1} norm) is preserved
- formally: Center of mass is preserved if $\Omega=\mathbb{R}^{n}$
- Energy is dissipated

Energy

$$
E=\int \frac{1}{4} \rho^{3}-\frac{1}{2} \rho K * \rho d x
$$

Gradient flow structure

Equation

$$
\rho_{t}=\nabla \cdot\left(\rho \nabla\left(\frac{3}{4} \rho^{2}-K * \rho\right)\right)
$$

The equation is a gradient flow of the energy in Wasserstein metric.

Let u_{1}, u_{2} be tangent vectors at ρ, that is zero-mean functions

Gradient flow structure

Equation

$$
\rho_{t}=\nabla \cdot\left(\rho \nabla\left(\frac{3}{4} \rho^{2}-K * \rho\right)\right)
$$

The equation is a gradient flow of the energy in Wasserstein metric.

Metric (inner product)

Let u_{1}, u_{2} be tangent vectors at ρ, that is zero-mean functions

$$
\begin{aligned}
\left\langle u_{1}, u_{2}\right\rangle_{\rho} & =\int \rho \nabla p_{1} \cdot \nabla p_{2} \\
\text { where } \quad-\nabla \cdot\left(\rho \nabla p_{i}\right) & =u_{i} \quad \text { for } i=1,2 .
\end{aligned}
$$

Gradient flow structure

Equation

$$
\rho_{t}=\nabla \cdot\left(\rho \nabla\left(\frac{3}{4} \rho^{2}-K * \rho\right)\right)=\nabla \cdot\left(\rho \nabla\left(\frac{\delta E}{\delta \rho}\right)\right)
$$

The equation is a gradient flow of the energy in Wasserstein metric.

Metric (inner product)

Let u_{1}, u_{2} be tangent vectors at ρ, that is zero-mean functions

$$
\begin{aligned}
\left\langle u_{1}, u_{2}\right\rangle_{\rho} & =\int \rho \nabla p_{1} \cdot \nabla p_{2}=\int p_{1} u_{2} \\
\text { where } \quad-\nabla \cdot\left(\rho \nabla p_{i}\right) & =u_{i} \quad \text { for } i=1,2 .
\end{aligned}
$$

Gradient flow

$$
\left\langle\rho_{t}, u\right\rangle_{\rho}=-\frac{\delta E}{\delta \rho}[u]=\int\left(\frac{3}{4} \rho^{2}-K * \rho\right) u d x
$$

for all tangent vectors u.

Energy

$$
E(\rho)=\frac{1}{4} \iint K(x-y)(\rho(x)-\rho(y))^{2} d x d y+\frac{1}{4} \int \rho(1-\rho)^{2} d x
$$

Local energy

$$
E_{l o c}(\rho)=\frac{1}{2} \int|\nabla \rho|^{2}+\int \rho(1-\rho)^{2} d x
$$

- De Masi, Gobron, Pressuti (1995) K radial, W regular
- Bates, Fife, Ren, and Wang (1997) W regular
- Alberti and Bellettini (1998) W regular
- Fife (1997) W of obstacle type
- De Masi, Gobron, Pressuti (1995) K radial, W regular
- Bates, Fife, Ren, and Wang (1997) W regular
- Alberti and Bellettini (1998) W regular
- Fife (1997) W of obstacle type

Properties

- Speed is zero
- Profile is monotone
- Supported on half-plane

Gamma convergence

Let $K_{\varepsilon}(x):=\frac{1}{\varepsilon^{n}} K\left(\frac{x}{\varepsilon}\right)$. Rescale space $x_{\text {new }}=\varepsilon x$.

Rescaled energy

$$
E_{\varepsilon}(\rho):=\frac{1}{4 \varepsilon} \iint K_{\varepsilon}(x-y)(\rho(x)-\rho(y))^{2} d x d y+\frac{1}{\varepsilon} \int W(\rho) d x
$$

Gamma convergence

Let $K_{\varepsilon}(x):=\frac{1}{\varepsilon^{n}} K\left(\frac{X}{\varepsilon}\right)$. Rescale space $x_{\text {new }}=\varepsilon x$.

Rescaled energy

$$
E_{\varepsilon}(\rho):=\frac{1}{4 \varepsilon} \iint K_{\varepsilon}(x-y)(\rho(x)-\rho(y))^{2} d x d y+\frac{1}{\varepsilon} \int W(\rho) d x
$$

Sharp interface functional

For $\chi \in B V(\Omega,\{0,1\})$

$$
E_{s h}(u):=\int|\nabla \chi|
$$

Gamma convergence

Let $K_{\varepsilon}(x):=\frac{1}{\varepsilon^{n}} K\left(\frac{X}{\varepsilon}\right)$. Rescale space $x_{\text {new }}=\varepsilon x$.

Rescaled energy

$$
E_{\varepsilon}(\rho):=\frac{1}{4 \varepsilon} \iint K_{\varepsilon}(x-y)(\rho(x)-\rho(y))^{2} d x d y+\frac{1}{\varepsilon} \int W(\rho) d x
$$

Sharp interface functional

For $\chi \in B V(\Omega,\{0,1\})$

$$
E_{s h}(u):=\int|\nabla \chi|
$$

Gamma Convergence (Alberti and Bellettini)

$$
E_{\varepsilon} \xrightarrow{\ulcorner } E_{s h} \quad \text { as } \varepsilon \rightarrow 0
$$

Minimizers of E_{ε} converge towards minimizers of $E_{s h}$.

	Local	Nonlocal	Sharp
Energy	$E_{\text {loc }}$	E	$E_{s h}$
L^{2}	Allen-Cahn	nonlocal Allen-Cahn	$v=$ mean curvature
H^{-1}	Cahn-Hilliard	nonlocal Cahn-Hilliard	Mullins-Sekerka
Wass.	thin-film eq.	bio. aggregation	Hele-Shaw

	Local	Nonlocal	Sharp
Energy	$E_{\text {loc }}$	E	$E_{s h}$
L^{2}	Allen-Cahn	nonlocal Allen-Cahn	$v=$ mean curvature
H^{-1}	Cahn-Hilliard	nonlocal Cahn-Hilliard	Mullins-Sekerka
Wass.	thin-film eq.	bio. aggregation	Hele-Shaw

Hele-Shaw problem

$$
\begin{aligned}
\Delta p & =0 & & \text { in } O_{t} \\
p & =\kappa & & \text { on } \partial O_{t} \\
v & =\nabla p \cdot \nu & & \text { normal velocity of } \partial O_{t}
\end{aligned}
$$

- Using matched asymptotic expansion as in Rubinstein, Sternberg, and Keller, Pego, and Giacomin and Lebowitz one can demonstrate that Hele-Shaw problem is the sharp interface limit of the bio-aggregation equation.
- Using matched asymptotic expansion as in Rubinstein, Sternberg, and Keller, Pego, and Giacomin and Lebowitz one can demonstrate that Hele-Shaw problem is the sharp interface limit of the bio-aggregation equation.

Hele-Shaw dynamics computed by Glasner (2002)

Coarsening behavior in interfacial systems

(a)

(b)

Coarsening in CahnHilliard equation, computed by Zhu, Chen, Shen, and Tikare (1999)

Interfacial evolutions

	Local	Nonlocal	Sharp
Energy	$E_{\text {loc }}$	E	$E_{\text {sh }}$
L^{2}	Allen-Cahn	nonlocal Allen-Cahn	$v=$ mean curvature
H^{-1}	Cahn-Hilliard	nonlocal Cahn-Hilliard	Mullins-Sekerka
Wass.	thin-film eq.	bio. aggregation	Hele-Shaw

Kohn-Otto Framework

- $\bar{E}=E /|\Omega|$ - energy density

Upper bound on coarsening rate
For T large and $\sigma \in\left(1,1+\frac{2}{\alpha}\right)$

$$
\frac{1}{T} \int_{0}^{T} \bar{E}(t)^{\sigma} d t>C \frac{1}{T} \int_{0}^{T}\left(t^{-\frac{\alpha}{\alpha+2}}\right)^{\sigma} d t
$$

Kohn-Otto Framework

- $\bar{E}=E /|\Omega|$ - energy density
- L - an order parameter

Interpolation inequality
If \bar{E} small

$$
\bar{E} L^{\alpha} \geq C>0
$$

Dissipation relation
For example

$$
(\dot{L})^{2} \leq C(-\dot{\bar{E}})
$$

Upper bound on coarsening rate
For T large and $\sigma \in\left(1,1+\frac{2}{\alpha}\right)$

$$
\frac{1}{T} \int_{0}^{T} \bar{E}(t)^{\sigma} d t>C \frac{1}{T} \int_{0}^{T}\left(t^{-\frac{\alpha}{\alpha+2}}\right)^{\sigma} d t
$$

Coarsening rate: related results

- Kohn and Otto Upper bounds of coarsening rates in Cahn-Hiliard equations 2002.
- Kohn and Yan, Epitaxial growth
- Kohn and Yan, Multicomponent phase separation
- Conti, Niethammer, and Otto Mullins-Sekerka
- Dai and Pego Mean-field models of phase transitions
- Dai and Pego Mushy zones in a phase-field model
- Otto, Rump, and S. Droplet model
- Esedoglu and Greer, Esedoglu and S. ill-posed diffusions

Coarsening rate: related results

- Kohn and Otto Upper bounds of coarsening rates in Cahn-Hiliard equations 2002.
- Kohn and Yan, Epitaxial growth
- Kohn and Yan, Multicomponent phase separation
- Conti, Niethammer, and Otto Mullins-Sekerka
- Dai and Pego Mean-field models of phase transitions
- Dai and Pego Mushy zones in a phase-field model
- Otto, Rump, and S. Droplet model
- Esedoglu and Greer, Esedoglu and S. ill-posed diffusions
- Li and Liu Epitaxial growth

Dissipation Inequality

We choose L to be the (appropriately averaged) Wasserstein distance to $\bar{\rho}$, the average of ρ :

$$
L=\frac{1}{|\Omega|^{1 / 2}} d_{W}(\rho, \bar{\rho})
$$

Dissipation Inequality

We choose L to be the (appropriately averaged) Wasserstein distance to $\bar{\rho}$, the average of ρ :

$$
L=\frac{1}{|\Omega|^{1 / 2}} d_{W}(\rho, \bar{\rho})
$$

Dissipation relation follows from gradient-flow structure:

$$
\left(\frac{d L}{d t}\right)^{2}=\frac{1}{|\Omega|}\left(\frac{d}{d t} d_{w}(\rho, \bar{\rho})\right)^{2}
$$

Dissipation Inequality

We choose L to be the (appropriately averaged) Wasserstein distance to $\bar{\rho}$, the average of ρ :

$$
L=\frac{1}{|\Omega|^{1 / 2}} d_{W}(\rho, \bar{\rho})
$$

Dissipation relation follows from gradient-flow structure:

$$
\begin{aligned}
\left(\frac{d L}{d t}\right)^{2} & =\frac{1}{|\Omega|}\left(\frac{d}{d t} d_{w}(\rho, \bar{\rho})\right)^{2} \\
& \leq \frac{1}{|\Omega|}\left\langle\rho_{t}, \rho_{t}\right\rangle_{\rho}
\end{aligned}
$$

Dissipation Inequality

We choose L to be the (appropriately averaged) Wasserstein distance to $\bar{\rho}$, the average of ρ :

$$
L=\frac{1}{|\Omega|^{1 / 2}} d_{W}(\rho, \bar{\rho})
$$

Dissipation relation follows from gradient-flow structure:

$$
\begin{aligned}
\left(\frac{d L}{d t}\right)^{2} & =\frac{1}{|\Omega|}\left(\frac{d}{d t} d_{w}(\rho, \bar{\rho})\right)^{2} \\
& \leq \frac{1}{|\Omega|}\left\langle\rho_{t}, \rho_{t}\right\rangle_{\rho} \\
& =-\frac{1}{|\Omega|} \frac{\delta E}{\delta \rho}\left[\rho_{t}\right]
\end{aligned}
$$

Dissipation Inequality

We choose L to be the (appropriately averaged) Wasserstein distance to $\bar{\rho}$, the average of ρ :

$$
L=\frac{1}{|\Omega|^{1 / 2}} d_{w}(\rho, \bar{\rho})
$$

Dissipation relation follows from gradient-flow structure:

$$
\begin{aligned}
\left(\frac{d L}{d t}\right)^{2} & =\frac{1}{|\Omega|}\left(\frac{d}{d t} d_{w}(\rho, \bar{\rho})\right)^{2} \\
& \leq \frac{1}{|\Omega|}\left\langle\rho_{t}, \rho_{t}\right\rangle_{\rho} \\
& =-\frac{1}{|\Omega|} \frac{\delta E}{\delta \rho}\left[\rho_{t}\right] \\
& =-\frac{1}{|\Omega|} \frac{d E}{d t}=-\frac{d \bar{E}}{d t}
\end{aligned}
$$

Interpolation Inequality

$E=\int W(\rho) d x+\iint(\rho(x)-\rho(y))^{2} K(x-y) d x d y$.
Need to show

$$
\bar{E} L \gtrsim 1 \text { if } \bar{E} \ll 1
$$

Interpolation Inequality

$E=\int W(\rho) d x+\iint(\rho(x)-\rho(y))^{2} K(x-y) d x d y$.
Need to show

$$
\bar{E} L \gtrsim 1 \quad \text { if } \bar{E} \ll 1
$$

- Consider the case $\bar{\rho}=\frac{1}{2}$.

Interpolation Inequality

$E=\int W(\rho) d x+\iint(\rho(x)-\rho(y))^{2} K(x-y) d x d y$.

Need to show

$$
\bar{E} L \gtrsim 1 \text { if } \bar{E} \ll 1
$$

- Consider the case $\bar{\rho}=\frac{1}{2}$.
- We can assume $K=\frac{1}{\omega_{n}} \chi_{B(0,1)}$.

Interpolation Inequality

$E=\int W(\rho) d x+\iint(\rho(x)-\rho(y))^{2} K(x-y) d x d y$.

Need to show

$$
\bar{E} L \gtrsim 1 \text { if } \bar{E} \ll 1
$$

- Consider the case $\bar{\rho}=\frac{1}{2}$.
- We can assume $K=\frac{1}{\omega_{n}} \chi_{B(0,1)}$.
- When $\bar{E} \ll 1$ then ρ is interfacial (close to either 0 or 1 on most of Ω)

Interpolation Inequality

$E=\int W(\rho) d x+\iint(\rho(x)-\rho(y))^{2} K(x-y) d x d y$.

Need to show

$$
\bar{E} L \gtrsim 1 \text { if } \bar{E} \ll 1
$$

- Consider the case $\bar{\rho}=\frac{1}{2}$.
- We can assume $K=\frac{1}{\omega_{n}} \chi_{B(0,1)}$.
- When $\bar{E} \ll 1$ then ρ is interfacial (close to either 0 or 1 on most of $\Omega)$
- Let $K_{r}(x):=\frac{1}{r^{n}} K\left(\frac{X}{r}\right)$.
- To show $L \gtrsim /$ it suffices to show $\rho * K_{/}$is interfacial

Interpolation Inequality

$E=\int W(\rho) d x+\iint(\rho(x)-\rho(y))^{2} K(x-y) d x d y$.

Need to show

$$
\bar{E} L \gtrsim 1 \text { if } \bar{E} \ll 1
$$

- Consider the case $\bar{\rho}=\frac{1}{2}$.
- We can assume $K=\frac{1}{\omega_{n}} \chi_{B(0,1)}$.
- When $\bar{E} \ll 1$ then ρ is interfacial (close to either 0 or 1 on most of $\Omega)$
- Let $K_{r}(x):=\frac{1}{r^{n}} K\left(\frac{X}{r}\right)$.
- To show $L \gtrsim /$ it suffices to show $\rho * K_{\text {l }}$ is interfacial
- It suffices to show that $f\left|\rho-\rho * K_{l}\right|$ is small (say $<1 / 64$)

Interpolation Inequality (cont.)

Recall $K_{r}(x):=\frac{1}{r^{n}} K\left(\frac{X}{r}\right)$. Let $\tilde{\rho}=\chi_{\{\rho>7 / 8\}}$.
Good measure of the perimeter

$$
\phi(r):=\frac{1}{|\Omega|} \int\left|\tilde{\rho}-K_{r} * \tilde{\rho}\right|
$$

Energy bounds the perimeter

$$
\begin{gathered}
\phi(1) \lesssim \bar{E} \\
\int|\tilde{\rho}-K * \tilde{\rho}| \lesssim \int W(\rho)+\iint(\rho(x)-\rho(y))^{2} K(x-y) d x d y
\end{gathered}
$$

Subadditivity

We have

$$
\phi(1)=\frac{1}{|\Omega|} \int|\tilde{\rho}-K * \tilde{\rho}| \lesssim \bar{E}
$$

We want

$$
\begin{equation*}
\phi(I)=\frac{1}{|\Omega|} \int\left|\tilde{\rho}-K_{l} * \tilde{\rho}\right| \leq \frac{1}{64} \tag{2}
\end{equation*}
$$

and therefore $\phi(I) \lesssim I \phi(1)$

Subadditivity

We have

$$
\phi(1)=\frac{1}{|\Omega|} \int|\tilde{\rho}-K * \tilde{\rho}| \lesssim \bar{E}
$$

We want

$$
\begin{equation*}
\phi(I)=\frac{1}{|\Omega|} \int\left|\tilde{\rho}-K_{l} * \tilde{\rho}\right| \leq \frac{1}{64} \tag{2}
\end{equation*}
$$

Subadditivity

ϕ is subadditive: $\phi\left(r_{1}+r_{2}\right) \leq \phi\left(r_{1}\right)+\phi\left(r_{2}\right)$

Thus (2) holds for $I \sim 1 / \bar{E}$. So $L \gtrsim I \gtrsim 1 / \bar{E}$.

We have

$$
\phi(1)=\frac{1}{|\Omega|} \int|\tilde{\rho}-K * \tilde{\rho}| \lesssim \bar{E}
$$

We want

$$
\begin{equation*}
\phi(I)=\frac{1}{|\Omega|} \int\left|\tilde{\rho}-K_{l} * \tilde{\rho}\right| \leq \frac{1}{64} \tag{2}
\end{equation*}
$$

Subadditivity

ϕ is subadditive: $\phi\left(r_{1}+r_{2}\right) \leq \phi\left(r_{1}\right)+\phi\left(r_{2}\right)$
and therefore $\phi(I) \lesssim I \phi(1)$
Thus (2) holds for $I \sim 1 / \bar{E}$. So $L \gtrsim I \gtrsim 1 / \bar{E}$.

Nonlocal Cahn-Hiliard equation

Equation:

$$
\rho_{t}=\nabla \cdot\left(\mu(\rho) \nabla\left(\rho-K * \rho+W^{\prime}(\rho)\right)\right)=\nabla \cdot\left(\mu(\rho) \nabla\left(\frac{\delta E}{\delta \rho}\right)\right)
$$

with $\mu>0$.

Nonlocal Cahn-Hiliard equation

Equation:

$$
\rho_{t}=\nabla \cdot\left(\mu(\rho) \nabla\left(\rho-K * \rho+W^{\prime}(\rho)\right)\right)=\nabla \cdot\left(\mu(\rho) \nabla\left(\frac{\delta E}{\delta \rho}\right)\right)
$$

with $\mu>0$.

Metric (inner product)

Let u_{1}, u_{2} be tangent vectors at ρ, that is zero-mean functions

$$
\begin{aligned}
\left\langle u_{1}, u_{2}\right\rangle_{\rho} & =\int \mu(\rho) \nabla p_{1} \cdot \nabla p_{2} \\
\text { where } \quad-\nabla \cdot\left(\mu(\rho) \nabla p_{i}\right) & =u_{i} \quad \text { for } i=1,2 .
\end{aligned}
$$

Nonlocal Cahn-Hiliard equation

Equation:

$$
\rho_{t}=\nabla \cdot\left(\mu(\rho) \nabla\left(\rho-K * \rho+W^{\prime}(\rho)\right)\right)=\nabla \cdot\left(\mu(\rho) \nabla\left(\frac{\delta E}{\delta \rho}\right)\right)
$$

with $\mu>0$.

Metric (inner product)

Let u_{1}, u_{2} be tangent vectors at ρ, that is zero-mean functions

$$
\left\langle u_{1}, u_{2}\right\rangle_{\rho}=\int \mu(\rho) \nabla p_{1} \cdot \nabla p_{2}=\int p_{1} u_{2}
$$

where

$$
-\nabla \cdot\left(\mu(\rho) \nabla p_{i}\right)=u_{i} \quad \text { for } i=1,2 .
$$

Gradient flow

$$
\left\langle\rho_{t}, u\right\rangle_{\rho}=-\frac{\delta E}{\delta \rho}[u]=\int\left(\rho-K * \rho+W^{\prime}(\rho)\right) u d x
$$

for all tangent vectors u.

Length L

Admissible paths between ρ_{0} and ρ_{1} :

$$
\begin{aligned}
\mathcal{A}\left(\rho_{0}, \rho_{1}\right):=\{(\rho, J): & \rho:[0,1] \rightarrow L^{1}(\Omega), J \in L^{1}\left(\Omega \times[0,1], \mathbb{R}^{N}\right) \\
& \rho_{t}+\nabla \cdot J=0 \text { on } \Omega \times[0,1] \text { weakly, } \\
& \rho \in C^{\text {weak }}\left([0,1], L^{1}(\Omega)\right) \\
& \left.\int_{0}^{1} \int_{\Omega} \frac{1}{\mu(\rho(x, t))}|J(x, t)|^{2} d x d t<\infty\right\} .
\end{aligned}
$$

Distance

$$
d^{2}\left(\rho_{0}, \rho_{1}\right):=\inf _{(u, J) \in \mathcal{A}} \int_{0}^{1} \int_{\Omega} \frac{1}{\mu(\rho(x, t))}|J(x, t)|^{2} d x d t .
$$

Length L

$$
\begin{equation*}
L(t):=d(\rho(t), \bar{\rho}) \quad \bar{L}(t):=\frac{1}{\sqrt{|\Omega|}} d(\bar{\rho}(t), a) . \tag{1}
\end{equation*}
$$

Energy bounds the perimeter

$$
\begin{gathered}
\phi(1) \lesssim \bar{E} \\
\int|\tilde{\rho}-K * \tilde{\rho}| \lesssim \int W(\rho)+|\nabla \rho|^{2} d x
\end{gathered}
$$

