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This talk is based on a joint work with J. Shao and K.Th. Sturm, preprint: December
2007, see

http://math.u-bourgogne.fr/IMB/IMB2-publication.html

Our work is directly motivated by

- a book by L. Ambrosio, N. Gigli and G. Savaré: Gradient flows in metric spaces and
in the space of probability measures;
or the Lect. Notes by L. Ambrosio and G. Savaré: Gradient flow of probability measures.

- a paper by Feyel and Üstünel: Monge-Kantorovitch measure transportation on the
Wiener space.
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Overview

1) The classical Bochner-Weitzenböck formula on a Riemannian manifold

dd∗ + d∗d = ∆ + Ric#

gives a deep link between the Geometry, Analysis and Probability.

2) Bakry-Emery’s Γ2 theory gives an abstraction of the above classical case and is applied
to other “regular cases”. To explain it, we consider the linear operator L = ∆ +∇ϕ on
a Riemannian manifold, where ϕ ∈ C2. Assume that L admits an invariant probability
measure µ = eϕ dx. Consider

Γ(f, g) =
1

2

(
fLg + gLf − L(fg)

)
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Γ2(f, g) =
1

2

(
Γ(f, Lg) + Γ(Lf, g)− LΓ(f, g)

)

= (Ric∇f,∇g)− Hess(ϕ)(∇f,∇g).

Bakry-Emery’s condition

Γ2(f, f) ≥ c Γ(f, f) or Ric− Hess(ϕ) ≥ c > 0

implies that

||Ptf − µ(f)||L2 ≤ e−ct/2 ||f − µ(f)||L2 , µ(f) =

∫
fdµ,

where Ptf solves the heat equation

dPtf

dt
= LPtf, P0f = f.
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In fact, the stronger result

c

∫
f 2 log

|f |
||f ||L2

dµ ≤
∫

Γ(f, f) dµ.

3) Consider the non linear equation on Rd

dρt

dt
= ∆(ρm

t ), m > 1,

with a positive initial function ρ0 ∈ Lm+1(Rd) satisfying

∫
ρ0 dx = 1

∫
|x|2ρ0 dx < +∞.
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Let Pa
2 (Rd) be the space of probability measures on Rd admitting density and finite second

moment. By scaling the time and the space

ρ̂(t, x) = edαtρ(et, eαtx),

where α = 1
d(m−1)+2

, Otto showed that ρ̂(t, ·) is a “gradient flow” associated to a “α-convex

functional” on Pa
2 (Rd):

dρ̂t

dt
= −∇F (ρ̂t),

where F : Pa
2 (Rd) → R is defined by: F (ρ) = 1

m−1

∫
ρmdx + α

∫ |x|2ρ dx.

4) In the book by L. Ambrosio, N. Gigli and G. Savaré: Gradient flows in metric spaces
and in the space of probability measures, Lect. in Math. ETH Zürich, Birkhäuser Verlag,
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Basel, 2005, the differential structure of Pa
2 (Rd) was rigourously introduced and a general

theory for gradient flows of convex functionals was established.

5) For a measured metric space (X, d, m), the notion of Ricci has been introduced by
Lott, Sturm and Villani through the entropy functional:

Entm(γt) ≤ (1− t) Entm(γ0) + t Entm(γ1)− c
t(1− t)

2
Wd(γ0, γ1).

The framework of our talk is the Wiener space (X, H, µ). For example:

X = C0([0, 1],R), H =
{
h;

∫ 1

0
|ḣ(s)|2 ds < +∞}

and µ = the Wiener measure.
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Elements on the Wiener space

Let (X, H, µ) be a Wiener space, that is, X is a separable Banach space, H a separable
Hilbert space densely and continuously embedded in X such that

∫

X

e
√−1`(x) dµ(x) = e−|i

∗(`)|2H/2, ` ∈ X∗(dual space),

where i∗ : X∗ → H. This means that x → `(x) is a Gaussian Random variable of variance
|`|2H defined on the probability space (X,µ). For h ∈ X, we denote by τh(x) = x + h the
translation by h. The Wiener measure µ is quasi-invariant under τh if and only if h ∈ H.
Here is a brief explanation. The space X can be seen as R∞ via Wiener representation
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theorem

x(t) = G0 t +
∞∑

k=1

Gk

√
2
sin kπt

kπ
,

here {Gk; k ≥ 0} is a sequence of independent of normal Random variables. On the space
Rn, we consider γn(dx) = e−|x|

2/2 dx
(
√

2π)n and we have

∫

Rn

f(x + a) dγn(x) =

∫

Rn

f(x)e<x,a>Rn−(1/2)|a|2Rn dγn(x).

The problem is what happens as n → +∞? For a = (a0, a1, · · · ) ∈ `2, the term |a|2Rn →∑∞
k=0 a2

k, the term < x, a >Rn=
∑n−1

k=0 akxk does not converge for each fixed x ∈ R∞;
however under the probability measure γ∞, it converges almost surely to a Gaussian
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Random variable. So the Cameron-Martin theorem reads as:∫

X

f(x + h) dµ(x) =

∫

X

f(x)eYh(x)−(1/2)|h|2H dµ(x).

Replacing h by εh, and taking the derivative at ε = 0, we get
∫

X

Dhf dµ =

∫

X

f Yh dµ.

The space H is called Cameron-Martin space, which can be seen as the tangent space
of X. If we consider Z : X → H defined by Z(x) = h. The term divµ(Z) := Yh is the
divergence of h with respect to µ. Let Ut(x) = x + th and

K(x) = exp
(∫ 1

0

divµ(Z)(U−s) ds
)
.
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We see that K is justly the density in Cameron-Martin theorem. A natural geometric
distance on X is induced by H:

dH(x, y) = |x− y|H if x− y ∈ H; dH(x, y) = +∞ otherwise.

Two basic differences comparing to Rd:

i) {||x||X ≤ R} is not compact, {|x|H ≤ R} is compact in X, but of measure µ zero.
ii) The notion of moments is not suitable.

With respect to dH , the Wasserstein distance between two probability measures ν1 and
ν2 on X is defined by

W 2
2 (ν1, ν2) = inf

{∫

X×X

|x− y|2Hπ(dx, dy); π ∈ C(ν1, ν2)
}
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W2 could take +∞, but Talagrand inequality holds:

(1) W 2
2 (ρµ, µ) ≤ 2 Ent(ρ).

The results by Brenier, MaCann on optimal transport maps were extended on the Wiener
space by Feyel and Üstünel (PTRF 2005):

Theorem 0.1 Let ν1 = ρ1 µ and ν2 = ρ2 µ be such that W2(ν1, ν2) < +∞. Then there
is a unique π0 ∈ C(ν1, ν2) which realizes the distance; moreover π0 = (I, I + ξ)∗ν1, where
ξ : X → H and the map T := I + ξ is invertible.

The suitable class of probability measures is

P∗(X) =
{
ν = ρ µ; Ent(ρ) =

∫

X

ρ log ρ dµ < +∞}
.
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For ν1, ν2 ∈ P∗(X), by Talagrand inequality, W2(ν1, ν2) < +∞ and the theorem yields

(2) W 2
2 (ν1, ν2) =

∫

X

|ξ(x)|2H dν1(x).

A compactness result

Theorem 0.2 Let R > 0. The set KR =
{
ν ∈ P∗; Ent(ν) ≤ R

}
is compact in P∗(x) for

the narrow topology.

Proof. Pick a compact K ⊂ X such that µ(Kc) ≤ ε. Let BH(r) =
{|x|H ≤ R

}
, which is

compact in X. For ν ∈ KR, Using the theorem 0.1,

ν((K + BH(r))c) =

∫

X

1(K+BH(r))c(x + ξ(x)) dµ(x).
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Splitting the integral into two parts, the above quantity is dominated by

µ(Kc) +

∫

K

1(K+BH(r))c(x + ξ(x)) dµ(x).

The second term is majorized by

µ(|ξ(x)|H > r) ≤ 1

r2

∫

X

|ξ|2H dµ =
1

r2
W 2

2 (ν, µ) ≤ 2

r2
Ent(ν) ≤ 2R

r2
.

A result of convexity

Let ν0, ν1 ∈ P∗(X). Consider νt = (I + tξ)∗ν0. Then

(3) Ent(νt) ≤ (1− t)Ent(ν0) + tEnt(ν1)− t(1− t)

2
W2(ν0, ν1).
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In particular, νt ∈ P∗(X) and the subset KR is convex. The space (X, dH , µ) admits the
Ricci bound 1.

Tangent spaces to P∗(X)

For a smooth curve t → c(t) on a Riemannian manifold M , the derivative c′(t) ∈ Tc(t)M .
The convenient substitute of smooth curves on P∗(X) is the class of absolutely continuous
curves. We say that a curve t → νt ∈ P∗(X) is absolutely continuous if

W2(νt1 , νt2) ≤
∫ t2

t1

m(s) ds, m ∈ L2([0, 1]).
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Before going further, let’s introduce some notions. We say that F ∈ Cylin(X) if

F (x) = f(e1(x), · · · , em(x)), e1, · · · , em ∈ X∗, f ∈ C∞
c (Rm).

For F ∈ Cylin(X), we define its gradient by

(4) ∇F (x) =
m∑

i=1

∂f

∂ξi

(e1(x), · · · , em(x)) ei.

A function Z : X → H is said cylindrical vector field on X if

(5) Z =
N∑

j=1

Fj hj, Fj ∈ Cylin(X), hj ∈ X∗.
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For such a vector field Z, there is a flow of continuous map Ut : X → X such that

(6) Ut(x) = x +

∫ t

0

Z(Us(x)) ds.

The flow Ut leaves the Wiener measure quasi-invariant: (Ut)∗µ = Kt µ.

Theorem 0.3 Let (νt)t∈[0,1] be an absolutely continuous curve on P∗(X). Then there
exists a unique

Zt ∈ TνtP∗ =
{ ∑

i,finite

∇Fi; Fi ∈ Cylin(X)
}L2(νt)

,

such that

(7)
dνt

dt
+∇ · (Ztνt) = 0
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in the sense that
∫

[0,1]

∫

X

(
α′(t)F (x) +

〈
Zt(x),∇F (x)

〉
H

α(t)
)

dνt(x)dt = 0, α ∈ C∞
c (]0, 1[, F ∈ Cylin(X).

Definition 0.4 We say that Zt := doνt

dt
is the derivative process of t → νt, in Otto-

Ambrosio-Savaré’s sense.

Using the notation doνt

dt
, we get the following interpretation for Benamou-Brenier’s for-

mula:

(8) W 2
2 (ν0, ν1) = inf

{∫ 1

0

∥∥∥doνt

dt

∥∥∥
2

TνtP∗
dt; νt A.C. connecting ν0, ν1

}
.

Let ξ : X → H be given by Theorem 0.1. Define Tt = I + tξ and νt = (Tt)∗ν0 and
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Vt = ξ(T−1
t ). Then for a.e. t ∈]0, 1[,

doνt

dt
= Vt, W 2

2 (ν0, ν1) =

∫ 1

0

∥∥∥doνt

dt

∥∥∥
2

TνtP∗
dt.

Now we shall compute the “gradient” of the entropy functional Ent : P∗(X) → R. Let
Ut be the flow associated to ∇F . For ν0 ∈ P∗(X), we define νt = (Ut)∗ν0. Then

(9)
d

dt
|t=0Ent(νt) =

∫

X

LF dν0,

where LF = divµ(∇F ) admits the expression:

LF = −
m∑

i,j=1

(∂j∂if)
〈
ei, ej

〉
H

+
m∑

i=1

(∂if) ei(x).
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Proof. We have (Ut)∗µ = Kt µ with Kt(x) = exp
(∫ t

0
divµ(∇F )(U−s(x)) ds

)
, here divµ is

the divergence with respect to µ:
∫

X

Fdivµ(Z) dµ =

∫

X

〈∇F,Z
〉

H
dµ.

For the cylindrical vector field given in (5), we have

divµ(Z) =
N∑

j=1

(
Fj hj(x)− 〈∇Fj, hj

〉
H

)
.

If we denote by νt = (Ut)∗ν0 = ρtµ, we have ρt = ρ0(U−t)Kt and

Ent(ρt) = Ent(ρ0) +

∫

X

log Kt(Ut) ρ0dµ.
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Taking the derivative under the integral is guaranteed by

||Kt||pLp ≤
∫

X

exp
( p2

p− 1
|divµ(∇F )|

)
dµ.

If ν0 = ρ0 µ with good ρ0 ∈ Cylin(X), then

(∂∇F Ent)(ν0) :=
d

dt
|t=0Ent(νt) =

∫

X

〈∇F,∇ log ρ0

〉
H

dν0.

We say that the gradient ∇Ent exists at ν0; more general, we say that the gradient ∇Ent
exists at ν ∈ P∗(X) if there exists v ∈ TνP∗ such that

(10)
〈
v,∇F

〉
TνP∗ = (∂∇F Ent)(ν) for all F ∈ Cylin(X).
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Theorem 0.5 Fix ν0 ∈ P∗(X). Then for any η > 0, there exists a unique ν̂ ∈ P∗ such
that

1

2
W 2

2 (ν0, ν̂) + η Ent(ν̂) = inf
{1

2
W 2

2 (ν0, ν) + η Ent(ν); ν ∈ P∗
}

.

Moreover the gradient ∇Ent exists at ν̂.

Proof. Using the compactness result and the semi-lower continuity of

ν → 1

2
W 2

2 (ν0, ν) + η Ent(ν),

such a ν̂ exists. Let (Ut)t∈R be the flow associated to Z = ∇F . Let π ∈ C(ν0, ν̂) be the
optimal plan. We define πt ∈ C(ν0, (Ut)∗ν̂) by πt = (I × Ut)∗π:

∫

X×X

ψ(x, y)πt(dx, dy) =

∫

X×X

ψ(x, Ut(y))π(dx, dy).
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Then we have

W 2
2 (ν0, (Ut)∗ν̂)−W 2

2 (ν0, ν̂) ≤
∫

X×X

{
|x− Ut(y)|2H − |x− y|2H

}
π(dx, dy).

Since |x−Ut(y)|2H = |x− y + y−Ut(y)|2H = |x− y|2H + |y−Ut(y)|+ 2
〈
x− y, y−Ut(y)

〉
H

,
it follows that

lim
t↓0

1

2t

[
W 2

2 (ν0, (Ut)∗ν̂)−W 2
2 (ν0, ν̂)

]
≤ −

∫

X×X

〈
Z(y), x− y

〉
H

π(dx, dy).

By construction of ν̂, for t > 0,

η

t

[
Ent((Ut)∗ν̂)− Ent(ν̂)

]
+

1

2t

[
W 2

2 (ν0, (Ut)∗ν̂)−W 2
2 (ν0, ν̂)

]
≥ 0.

23



Letting t ↓ 0 gives

η (∂∇F Ent)(ν̂)−
∫

X×X

〈
Z(y), x− y

〉
H

π(dx, dy) ≥ 0.

Changing F into −F , we get the equality:

(∂∇F Ent)(ν̂) =
1

η

∫

X×X

〈
Z(y), x− y

〉
H

π(dx, dy).

Let ξ be given in Theorem 0.1; then T1 = I + ξ pushes ν0 forward to ν̂. We have

(∂∇F Ent)(ν̂) =
1

η

∫

X

〈
Z(T1),−ξ

〉
H

dν0 = −
∫

X

〈∇F, ξ(T−1
1 )/η

〉
H

dν̂.
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Note that
∫

X
|ξ(T−1)|2H dν̂ =

∫
X
|ξ|2H dν0 = W 2

2 (ν0, ν̂) < +∞. So the gradient

(∇Ent)(ν̂) ∈ Tν̂P∗

exists. ¤
We denote ν̂ by ν(1). Using this result step by step, we get a sequence of ν(n) ∈ P∗.
According to Jordan, Kinderlehrer and Otto’s approach, we consider

νη(t, dx) =
N+1∑

k=1

ν(k)(dx)1](k−1)η,kη](t), where Nη ≤ 1.

We see that νη(t, ·) ∈ Dom(∇Ent) for t > 0. Again by compactness result,

νη(t, dx)dt converges weakly to νt(dx)dt = ρ(x, t)dµ(x)dt.
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Theorem 0.6 The curve t → νt ∈ P∗(X) is absolutely continuous and νt ∈ Dom(∇Ent)
such that

doνt

dt
= −(∇Ent)(νt).

THANK YOU!
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