Wasserstein space over the Wiener space
Shizan Fang

Université de Bourgogne, Dijon,France

IPAM, April 3



This talk is based on a joint work with J. Shao and K.Th. Sturm, preprint: December
2007, see

http://math.u-bourgogne.fr/IMB/IMB2-publication.html

Our work is directly motivated by

- a book by L. Ambrosio, N. Gigli and G. Savaré: Gradient flows in metric spaces and
in the space of probability measures;

or the Lect. Notes by L. Ambrosio and G. Savaré: Gradient flow of probability measures.

- a paper by Feyel and Ustiinel: Monge-Kantorovitch measure transportation on the
Waiener space.



Overview
1) The classical Bochner-Weitzenbock formula on a Riemannian manifold
dd* + d*d = A + Ric”

gives a deep link between the Geometry, Analysis and Probability.

2) Bakry-Emery’s I's theory gives an abstraction of the above classical case and is applied
to other “regular cases”. To explain it, we consider the linear operator L = A + V¢ on
a Riemannian manifold, where ¢ € C?. Assume that L admits an invariant probability
measure j = e¥ dr. Consider

I'(f.9) ==(fLg+gLf— L(fg))
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Lo(f.9) = 5 (T(f, Lg) + T(Lf, ) ~ LT(f.9))
= (RicV f,Vg) — Hess(¢)(Vf, Vg).

Bakry-Emery’s condition
Lo(f, f) = ¢D(f, f) or Ric — Hess(¢) > ¢ >0

implies that

HBf—MﬂMzSKWﬂM—uUWm,uﬁ%=/ﬁm,

where P, f solves the heat equation

db. f
dt
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In fact, the stronger result

I
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3) Consider the non linear equation on R?

dpt
Lt — Ay

[t nan

m > 1,

with a positive initial function py € L™ (R?) satisfying

/,00 dr =1 /|x|2p0 dx < +00.
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Let P¢(R?) be the space of probability measures on R? admitting density and finite second
moment. By scaling the time and the space

ﬁ(t,x) — 6dat,0(€t, eatx)’

where oo = m, Otto showed that p(¢, -) is a “gradient flow” associated to a “a-convex

functional” on P¢(R?):
i
dt
where F : P$(RY) — R is defined by: F(p) = ﬁ [ pmdz + o [ |z|*pdz.

4) In the book by L. Ambrosio, N. Gigli and G. Savaré: Gradient flows in metric spaces
and in the space of probability measures, Lect. in Math. ETH Ziirich, Birkhauser Verlag,

= =VF(p),



Basel, 2005, the differential structure of P$(R?) was rigourously introduced and a general
theory for gradient flows of convex functionals was established.

5) For a measured metric space (X, d, m), the notion of Ricci has been introduced by

Lott, Sturm and Villani through the entropy functional:

t(1—1t)
2

Ent,,(v) < (1 —t) Ent,, (7o) + t Ent,, (1) — ¢ Wa(v0,71)-

The framework of our talk is the Wiener space (X, H, ut). For example:

X = Co([0,1],R), H = {h; fol |h(s)|?ds < +oo} and p = the Wiener measure.



Elements on the Wiener space

Let (X, H, 1) be a Wiener space, that is, X is a separable Banach space, H a separable
Hilbert space densely and continuously embedded in X such that

/ V@) () = e lE O/ ¢ e X*(dual space),
X

where i* : X* — H. This means that x — ¢(x) is a Gaussian Random variable of variance
|2, defined on the probability space (X, ). For h € X, we denote by 7,(z) = x + h the
translation by h. The Wiener measure p is quasi-invariant under 7, if and only if h € H.
Here is a brief explanation. The space X can be seen as R* via Wiener representation



theorem
sin k7t

kr

w(t) = Got + > GrV2
k=1

here {Gy; k > 0} is a sequence of independent of normal Random variables. On the space

R™, we consider v, (dx) = e“””'Q/z(\/%)n and we have

f(x+a)dy(x) = [ flx)esmeze =020k gy, (7).
R™ R™

The problem is what happens as n — +o00? For a = (ag, a1, ) € £, the term |al2, —
> oreoar, the term < x,a >gn= ZZ;S arxy does not converge for each fixed x € R;
however under the probability measure 7., it converges almost surely to a Gaussian



Random variable. So the Cameron-Martin theorem reads as:
[ @ myduta) = [ f@peami o)
X X
Replacing h by h, and taking the derivative at € = 0, we get

/Xthduz/Xthdu.

The space H is called Cameron-Martin space, which can be seen as the tangent space
of X. If we consider Z : X — H defined by Z(z) = h. The term div,(Z) := Y}, is the
divergence of h with respect to p. Let Uy(x) = x + th and

K(x) = exp(/o1 div,(Z)(U_s) ds).
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We see that K is justly the density in Cameron-Martin theorem. A natural geometric
distance on X is induced by H:

dy(z,y)=|r—ylg ifz —y € H; dy(x,y) = +oo otherwise.

Two basic differences comparing to R%:

i) {||z||x < R} is not compact, {|z|y < R} is compact in X, but of measure u zero.
ii) The notion of moments is not suitable.

With respect to dy, the Wasserstein distance between two probability measures 1y and
vy on X is defined by

Wi (v, vs) = inf{/ |z — y|5m(d, dy); © € C(v, VQ)}
XxX
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W5 could take +o00, but Talagrand inequality holds:

(1) W5 (pp, p1) < 2Ent(p).

The results by Brenier, MaCann on optimal transport maps were extended on the Wiener
space by Feyel and Ustiinel (PTRF 2005):

Theorem 0.1 Let vy = py p and vy = pa i be such that Wa(vy, 1) < 4+00. Then there
is a unique o € C(1v1,v2) which realizes the distance; moreover mg = (I, I + £),v1, where
¢: X — H and the map T := I + £ is invertible.

The suitable class of probability measures is
PA(X) = {v=pu; Ent(p) = / plog pdp < oo},
X
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For vy, vy € P*(X), by Talagrand inequality, Ws(vq,15) < 400 and the theorem yields

2) w@whw»—lga@@dmwy

A compactness result

Theorem 0.2 Let R > 0. The set Kr = {v € P*; Ent(v) < R} is compact in P*(z) for
the narrow topology.

Proof. Pick a compact K C X such that (K°) < e. Let By(r) = {|z|y < R}, which is
compact in X. For v € g, Using the theorem 0.1,

WM*BMMﬂZAhm&WMHf@MMM
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Splitting the integral into two parts, the above quantity is dominated by

() + [ Lcrmyoye (o + €0) dua).

The second term is majorized by

1 1 2 2R
p(&@)n > 1) < — / 6By du = W2 m) < 2Ent(v) < 22
e Jx T r r

A result of convexity

Let v, v € P*(X). Consider v; = (I + t£).vp. Then
t(1—1t)

(3) Ent(1) < (1 — t)Ent(vg) + tEnt(v;) — Wa(vo, 11).
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In particular, 1, € P*(X) and the subset K is convex. The space (X, dg, 1) admits the
Ricci bound 1.

Tangent spaces to P*(X)

For a smooth curve ¢t — ¢(t) on a Riemannian manifold M, the derivative ¢'(t) € T, M.

The convenient substitute of smooth curves on P*(X) is the class of absolutely continuous
curves. We say that a curve t — v, € P*(X) is absolutely continuous if

Wo (v, vsy) §/2m(s)ds, m € L*([0,1]).

t1
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Before going further, let’s introduce some notions. We say that F' € Cylin(X) if
F(a) = f(er(@) - en(@)), enorem€ X*, f € CRERM).

For F' € Cylin(X), we define its gradient by

(4) VE(x) =) 86(61(96),--- s em(2)) €.
i=1
A function Z : X — H is said cylindrical vector field on X if
N
(5) Z =Y F;hj, F;€Cylin(X), hj€ X",
j=1
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For such a vector field Z, there is a flow of continuous map U; : X — X such that

t
(6) U(z) =z —1—/ Z(Ug(z)) ds.
0
The flow U; leaves the Wiener measure quasi-invariant: (U;).pu = Ky p.

Theorem 0.3 Let (v4)icpoa] be an absolutely continuous curve on P*(X). Then there
exists a unique

L2 ()
Z, €T, P* = { Y VE; Fe Cynn(X)} ,
i, finite
such that
dv
(7) d—t'f +V-(Zy) =0
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in the sense that
/M /X (/O F (@) + (Z2), VF(x)) o)) dvi(w)dt = 0, o € CZ(0,1], F € Cylin(X).

d°vy

Definition 0.4 We say that Z; := “3* is the derivative process of t — vy, in Otto-
Ambrosio-Savaré’s sense.

Using the notation d;ft, we get the following interpretation for Benamou-Brenier’s for-

mula:

(8) W2(vp, 1) = mf{/ol

Let £ : X — H be given by Theorem 0.1. Define 7; = I + t£ and v, = (T3).1p and

dOVt 2

dt

dt; v; A.C. connecting vy, 1/1}.

T, P*
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V, = &(T7 ). Then for a.e. t €]0, 1],

d° Vg dol/t

1
dt :‘/ta W22(y071/1):/0‘ dt

Now we shall compute the “gradient” of the entropy functional Ent : P*(X) — R. Let
U, be the flow associated to VF. For vy € P*(X), we define vy = (Uy).1p. Then

2

T, P*

d
(9) £|t:0EHt(Vt) :/ LFCZVO’
X

where LF = div,(VF) admits the expression:

m

LF = — Z (8381f) <€i; 6j>H + Z(@lf) €Z($)

4,j=1 =

19



Proof. We have (U;),.u = Ky u with Ky(x) = exp (f(f div,(VF)(U_s(x)) ds), here div,, is
the divergence with respect to u:

/XFdivu(Z) du:/X<VF, Z) . dp.

For the cylindrical vector field given in (5), we have
N
leH(Z) = Z(FJ hj(l‘> - <VF]‘, h]>H> .
j=1

If we denote by v, = (U;)«o = pipt, we have p, = po(U_;) K and

Ent(p:) = Ent(po) +/ log K:(Uz) podp.
b
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Taking the derivative under the integral is guaranteed by

. P
15l < [ exp(E1div,(VP)) du

If vy = po o with good py € Cylin(X), then

d
(8VFEHt)(V0) = £|t:0Ent(Vt) = / <VF, VIOg p0>H dV().
X

We say that the gradient VEnt exists at vy; more general, we say that the gradient VEnt
exists at v € P*(X) if there exists v € T,P* such that

(10) (v, VF>TV7>* = (OyrEnt)(v) for all F € Cylin(X).
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Theorem 0.5 Fizx vy € P*(X). Then for any n > 0, there exists a unique v € P* such
that

1 1
§W22(1/0, V) +nEnt(v) = inf{ﬁwg(uo, v)+nEnt(v); ve 73*}.
Moreover the gradient VEnt ezists at v.

Proof. Using the compactness result and the semi-lower continuity of
1
v — §W22(V0, v) + nEnt(v),

such a v exists. Let (U;)ier be the flow associated to Z = VF. Let m € C(vp, V) be the
optimal plan. We define m € C(vy, (Up).0) by m = (I X Uy).:

Y(z, y)m(de, dy) = Y(x, U(y))m(dz, dy).

XxX XxX
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Then we have

W2 (o, (U).0) — Wi(r0,9) < /

X

{lz = Uw)ls — o =yl } n(do,dy).
xX

Since |z — Uy(y)|} = e —y+y—UW)E = le =yl + |y — U)| +2{x —y,y — U:())
it follows that

T (W30, (U00) = Wi, 2)] < = [ (200, = u)y e, d)

By construction of o, for t > 0,

n

D [B0t((U).5) — But(0)] + o [WE 00, (U.9) = W (w0,9)] > 0
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Letting ¢ | 0 gives
n (OvrEnt) (D) — / (Z(y),z — y>H7r(da:, dy) > 0.
XxX
Changing F' into —F', we get the equality:

(OyrpEnt)(v) = %/XXX<Z(y),:17 - y>H 7(dz, dy).

Let & be given in Theorem 0.1; then T} = I + ¢ pushes 1 forward to . We have

(OurEn)(9) = 1 [ (2(T0).~€), o = [ (TFET0), 0.
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Note that [, |E(T™ )5 dv = [y €3 dvo = W3 (v, 0) < +00. So the gradient
(VEnt)(v) € T, P*

exists. [
We denote 7 by v, Using this result step by step, we get a sequence of v € P*.
According to Jordan, Kinderlehrer and Otto’s approach, we consider

N+1
(L, dx) ZV’“) (dx) Ly(e—1)yn) (t), where Nnp < 1.

We see that v,(t,-) € Dom(VEnt) for ¢ > 0. Again by compactness result,

vp(t, dx)dt converges weakly to v,(dx)dt = p(x,t)du(zx)dt.

25



Theorem 0.6 The curve t — v, € P*(X) is absolutely continuous and v, € Dom(VEnt)
such that
dOVt

dt

= —(VEnt) ().

THANK YOU!
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