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1 Introduction

This talk concerns some ideas concerning contrained gradient flows in the

Wasserstein metric developed by myself and Wilfrid Gango, but applied

to some problems concerning the two dimensional Navier–Stokes equation

that have recently been introduced investigated by Cagliotti, Pulvirenti

and Rousset.
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1.1 About 2-d Navier–Stokes and Euler

The 2-d Navier–Stokes equation in the vorticity formulation is(
∂

∂t
+ u · ∇

)
ω = ν∆ω ,

where ν > 0 and

u(x, t) = ∇⊥ψ(x, t) and ψ(x, t) =

∫
R2

G(x− y)ω(y)dy

with

G(x) = − 1

2π
ln(|x|) ,

the Green’s function for the plane. (So that ψ = (−∆)−1ω.)

The Euler equation is the case ν = 0:(
∂

∂t
+ u · ∇

)
ω = 0 .

Setting ν = 0 changes the character of the equation quite substantially:

It becomes a Hamiltonian flow with many conserved quantities.
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1.2 The Hamiltonian structure of the Euler flow

The energy E(ω) defined by

E(ω) =
1

2

∫
R2

ω(x)G(x− y)ω(d)dxdy =
1

2
〈ω, (−∆)−1ω〉L2

is conserved for the Euler flow, and in fact is a Hamiltonian for it:

The Euler equation can be written as

∂

∂t
ω = −div

(
ω∇⊥δE

δω

)
:= JW (∇WE(ω)) .

If we suppose ω to be a probability measure, this is a Hamiltonian flow

in Wasserstein space, as discussed by Ambrosio and Gangbo.
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1.3 Conserved quantities for the Euler flow

In addition to the energy,

M(ω) =

∫
R2

xω(x)dx and I(ω) =
1

2

∫
R2

|x−M(ω)|2ω(x)dx

are conserved, as are the functionals

Fφ(ω) =

∫
R2

φ(ω(x)(dx .

For the Navier Stokes flow, from among these, only M(ω) is conserved.

We have

d

dt
I(ω) = 2ν and

d

dt
E(ω) = −ν

∫
R2

ω2dx ,

while
d

dt
Fφ(ω) = −ν

∫
R2

φ′′(ω)|∇ω|2dx .

Notice that if φ is convex, Fφ is dissipated at a rate involving the deriva-

tives of ω, in contrast to the dissipation of E and −I.
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1.4 The intermediate asymptotics proposal of CPR

Cagliotti, Pulvirenti and Rousset have made an interesting intermediate

asymptotics proposal based on the observation that it is possible for∫
R2

φ′′(ω)|∇ω|2dx

to be quite large compared with the rates of change of I(ω) and E(ω),

and that for such initial data there might be an interesting intermediate

asymptotic regime that one can make emerge as a final asymptotic regime

by constraining the Navier Stokes flow to conserve E and I.

There are many ways one might do this. Their proposal is to use

Otto’s differential geometric framework for gradient flows in the Wasser-

stein metric. Specifically, introducung the entropy

S(ω) =

∫
R2

ω lnωdx ,

they observe that the Navier-Stokes flow can be written in the form

∂

∂t
ω = −div

(
ω∇⊥δE

δω

)
+ νdiv

(
ω∇δS

δω

)
.
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Let M denote the set of probability densities on R2 for which E, I,

and S are finite, and M(ω) = 0. For a smooth path t → ρ(·, t) in M
through ρ0 at t = 0 with

∂

∂t
ρ+ div(∇φρ) ,

Otto’s metric is〈
∂

∂t
ρ,
∂

∂t
ρ

〉
W2

=
1

2

∫
R2

|∇φ(x)|2ρ0(x)dx .

For positive numbers E and I, let ME,I be define by

ME,I = { ω ∈M : E(ω) = E , I(ω) = I } .

This is the “constraint manifold” to which we wish to restrict the Navier–

Stokes flow.
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1.5 The constraint prescription for the flow

The prescription for doing this in the work of Caglioti, Pulvirenti and

Rousset is to use the orthogonal projection P in the tangent space to ω

onto the orthogonal complement of the span of the gradients of I(ω) and

E(ω). These gradients are

∇W I(ω) = −div (ωx) and ∇EI(ω) = −div

(
ω∇δE

δω

)
= −div (ω∇ψ) .

Since

−∇WS(ω) = div(ω∇ lnω) = ∆ω ,

P [−∇WS(ω)] = ∆ω − adiv (ωx)− bdiv (ω∇ψ)

where a and b are chosen to make the right hand side orthogonal to

div (ωx) and div (ω∇ψ) in Otto’s inner product.



CCC April 4, 2008 9

Since ∫
R2

ωx · ∇ψ = − 1

4π
,

one easily finds

a = −4π
8π
∫
ω|∇ψ|2 −

∫
ω2

1− 32π2I(ω)
∫
ω|∇ψ|2

and

b = 4π
8πI(ω)

∫
ω2 − 2

1− 32π2I(ω)
∫
ω|∇ψ|2

.

This leads to the evolution equation(
∂

∂t
+ u · ∇

)
ω = νdiv (∇ω − bω∇ψ − aωx) .
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1.6 Entropy dissipation

The entropy is still dissipated for the constrained flow, only at a lower

rate due to the projection:

d

dt
S(ω) = −〈∇WS, νP∇WS + JW∇WE〉W

= −〈P∇WS, νP∇WS〉W

= −
∫

R2

ω|∇ω − bω∇ψ − aωx|2dx .

(1)

This suggests that the eventual steady state of the constrained evolu-

tion will be the vorticity density ωE,I given by

ωE,I = argmin {S(ω) : ω ∈ME,I } .

This variational problem had been studied in previous work of Caglioti,

Lions, Marchioro and Pulvirienti, who proved the existence of a unique

minimizer.
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In their recent work, CPR raise the question as to whether solutions

of (
∂

∂t
+ u · ∇

)
ω = νdiv (∇ω − bω∇ψ − aωx)

tend towards the corresponding optimizers ωE,I , and if so, at what rate.

This question is largely open, especially concerning the rate, though

they have proved a number of very interesting results on global solutions

for data already close to equilibrium.

The first problem that one encounters in studying this equation is that

the equations defining a and b can degenerate: The denominator in a and

b will vanish whenever div (ωx) and div (ω∇ψ) are proportional. This

happens for a vorticity patch in which ω is a multiple of the characteristic

function of a centered disc.

To avoid this problem, CPR work with a modified problem in which

only a linear combination of E and I is constrained, or with the original

problem in a small neighborhood of ωE,I where the degeneracy does not

occur.
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1.7 Continuity of the constraints

Of the two constraints,

E(ω) = E and I(ω) = I ,

the second one poses greater challenges. Indeed, while ω 7→ E(ω) is not

weakly continuous on L1
+(R2), it is on subsets with bounded entropy. This

is an easy consequence of the inequality

st ≤ es−1 + t ln t .

However, the abscence of control on higher moments means that if

ωn → ω weakly in ME,I one in general has

I(ω) < lim inf
n→∞

I(ωn) .

This is one of the main obstacles in the proof by Caglioti, Lions, Marchioro

and Pulvirienti of the existence and uniqueness of ωE,I . It was also one of

the main difficulties in problem on constrained gradient flow considered

by myself and Gangbo.
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2 Gradient flow for the entropy with the first and second

moments constrained

In this section we recall results by myself and Gangbo on a closely related

constrained gradient flow.

Let PM,I denote the set of probabilty densities ρ on Rd with I(ρ) = I

and M(ρ) = M . Given a number h > 0, and a density ρ0 ∈ PM,I , consider

the functional

ρ 7→
[
W 2

2 (ρ, ρ0) + hS(ρ)
]

on PM,I .

If one ignores the constraint, the prescription

ρn = argmin
{
W 2

2 (ρ, ρn−1) + hS(ρ)
}

is the well known Jordan-Kinderlehrer-Otto discrete scheme for solving

the heat equation; is is a discrete version of

∂

∂t
u = −∇WS(ρ) = div(ρ∇ ln ρ) = ∆ρ .
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2.1 Formal incorporation of the constraint

Formally, we can incorporate the constraint by projecting out the com-

ponents of ∇WS(ρ) along ∇W I(ρ) and ∇WM(ρ). Since

∇WMi(ρ) = −div(ρêi) ,

each component of ∇WM is orthogonal to ∇WS(ρ), so we can ignore this

in the projection. Then since

∇W I(ρ) = −div(ρ(x−M(ρ)) ,

we deduce that

a = − 1

dI(ρ)
.

Since I(ρ) = I and M(ρ) = M , the equation os the Ornstien—Uhlenbeck

equation
∂

∂t
u = div

(
∇ ln ρ+

1

dI
(x−M)

)
.
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In this case, there is no problem with determining the asymptotic be-

havior: The solution tends exponentially fast towards

ρM,I(x) = argmin {S(ρ) : ρ ∈ PM,I} = (2πI)−d/2e−|x−M |
2/2I .

The exponential convergence comes from the fact that the equation

∂

∂t
u = div

(
∇ ln ρ+

1

dI
(x−M)

)
is gradient flow on the whole, unconstrained manifold for the free energy

functional

F (ρ) = S(ρ) +
1

2dI
I(ρ) .

The second term on the right is strictly displacement convex, and this

leads to the exponential decay by Otto’s method. Notice that the con-

straint effectively renders the entropy strictly convex.
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2.2 The kinetic Fokker–Planck equation

The motivation for considering the Fokker–Planck equation in terms of

constrained flow was to study the kinetic Fokker–Planck equation

∂

∂t
f(x, v, t) +∇x · (vf(x, v, t)) = Lff(x, v, t)

where the operator L is given by

Lfφ = θ∇v ·
(
Mf∇v

(
φ

Mf

))
= θ∇v ·

(
φ∇v ln

(
φ

Mf

))
and

Mu,θ(v) = (2πθ)−d/2 e−|v−u|
2/2θ

is the Maxwellian denisity having the same mean u and variance θ as

f(x, v)/ρ(x).
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2.3 Rigorous results on the constrained variational problem

Let us return to the consideration of determining

inf
{
W 2

2 (ρ, ρ0) + hS(ρ) : ρ ∈ PM,I

}
,

and the description of the minimizers, if any.

We fix ρ0 and h and define the functional

K(ρ) = W 2
2 (ρ, ρ0) + hS(ρ) ,

and will solve the problem of minimizing K(ρ) over PM,I by introducing

a dual problem. First, we determine the Euler-Lagrange equation.



CCC April 4, 2008 18

2.4 The Euler–Lagrange equation

Theorem (C., Cangbo) Suppose that ρ1 is a minimizer of the functional

K(ρ) subject to the constraint that ρ1 ∈ PM,I. Let ϕ be the convex function

on Rd such that

∇ϕ#ρ1 = ρ0 .

Then ∫
Rd

|∇ ln ρ1|2ρ1(x)dx <∞

and

∇ϕ(x) = x+ h∇
(

ln
ρ1

ρM,I

)
+ (M − x)

[
W 2

2 (ρ1, ρ0)
]
.

The last term is formal O(h2). Otherwise, this is what we deduced by

formal projection.
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2.5 Existence of the minimizer

Our goal is to introduce a dual variational problem of computing

sup{J(a, b, φ, ϕ) : (a, b, φ, ϕ) ∈ U}

for some J and U such that the sup is a max, and such that

inf{K(ρ) : ρ ∈ PM,I} = max{J(a, b, φ, ϕ) : (a, b, φ, ϕ) ∈ U} ,

and such that for the maximizing (a, b, φ, ϕ),

ρ1 := ∇ϕ#ρ0

is the optimizer for the original problem.
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In what follows, we suppose for simplicity that I = 1 and M = 0. The

starting point is the fact that

1−W 2
2 (ρ0, ρ)

is given by

inf

{∫
Rd

φ(v)ρ0(v)dv +

∫
Rd

ϕ(w)ρ(w)dw

∣∣∣∣ φ(v) + ϕ(w) ≥ v · w a.e.

}
.

Furthermore, the minimizing pair, which exists, consists of a dual pair of

convex functions. That is, we may assume that φ and ϕ are Legendre

transforms of one another. The gradients of the minimizing pair provide

the optimal transport plans; i.e., ∇φ#ρ0 = ρ and ∇ϕ#ρ = ρ0.

Then for any dual convex pair of functions φ and ϕ,

K(ρ) ≥ hS(ρ) + 1−
(∫

Rd

φ(x)ρ0(x)dx+

∫
Rd

ϕ(y)ρ(y)dy

)
.
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Temporary strong assumptions on ρ0: We suppose that ρ0 is supported

in BR, the centered ball of radius R, and that on BR it is bounded below

by some strictly positive number α. Then for any other density ρ in P ,

these hypotheses impose some regularity on the optimal map ∇ϕ#ρ = ρ0.

In particular,

|∇ϕ(x)| ≤ R

for all x.

Now define η(t) by

η(t) = t ln t for t > 0 ,+∞ otherwise ,

so that

S(ρ) =

∫
Rd

η(ρ)dx.
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The Legendre transform η∗(s) of η(t) is η∗(s) = es−1. By Young’s

inequality, η(t) + η∗(s) ≥ st, and so for any a ∈ Rd and any b ∈ R,

η(ρ) + η∗
(
a · w + b|w|2/2 + ϕ(w)

h

)
≥ a · w + b|w|2/2 + ϕ(w)

h
ρ .

Integrating yields

hS(ρ)−
∫

Rd

ϕ(y)ρ(y)dy ≥ b− h
∫

Rd

η∗
(
a · y + b|y|2/2 + ϕ(y)

h

)
dy .
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Therefore, introduce the functional

J(a, b, φ, ϕ) = 1−
∫

Rd

φ(v)ρ0(x)dx+b−h
∫

Rd

η∗
(
a · y + b|y|2/2 + ϕ(y)

h

)
dy .

Note that φ is bounded below and η∗ is positive, and hence J(a, b, φ, ϕ)

is well–defined. It then follows that or any dual convex pair of functions

φ and ϕ, a ∈ Rd and any b ∈ R,

K(ρ) ≥ J(a, b, φ, ϕ) .

We let U denote the set of all quadruplets (a, b, φ, ϕ) where a ∈ Rd,

b ∈ R, and φ and ϕ are a pair of dual convex functions with

φ(x) =∞ for |x| > R .
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Theorem (C., Cangbo) There exists (a0, b0, φ0, ϕ0) ∈ U such that

J(a0, b0, φ0, ϕ0) ≥ J(a, b, φ, ϕ)

for all (a, b, φ, ϕ) ∈ U . Furthermore, if we define

ρ1(y) = (η∗)′
(
a0 · y + b0|y|2/2 + ϕ0(y)

h

)
then ρ1 ∈ P0,1,

∇ϕ0#ρ1 = ρ0

and

∇ϕ0(y) = y + h∇ ln(ρ1) + hy −W 2
2 (ρ0, ρ1) .
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Note that this gives us a solution of the Euler–Lagrange equation for

the minimum of K(ρ) that we derived in the last section. And indeed,

since η(t) + η∗(s) = st with

t = ρ1 and s =
a0 · y + b0|y|2/2 + ϕ0(y)

h

with ρ = ρ1, ϕ = ϕ0, there is equality in the integrated form of Young’s

inequality. From this one can conclude that K(ρ1) = J(a0, b0, φ0, ϕ0), and

this proves that ρ1 minimizes K on P0,1.

The advantage of the J functional lies in the compactness properties

of the dual convex pairs.
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2.6 Why the constraints are satisified

First, suppose that the maximizer (a0, b0, φ0, ϕ0) does exist. Observe that

for any real number λ, (a0, b0, φ0 + λ, ϕ0 − λ) ∈ U . Then

d

dλ
J(a0, b0, φ0 + λ, ϕ0 − λ)

∣∣∣∣
λ=0

= 0

and this clearly leads to

1 =

∫
Rd

(η∗)′
(
a0 · y + b0|y|2/2 + ϕ0(y)

h

)
dy .

Hence we see that

ρ1(y) = (η∗)′
(
a0 · y + b0|y|2/2 + ϕ0(y)

h

)
does define a probability density.
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Next, for some ε > 0, ∫
Rd

eε|y|
2

ρ1(y)dy <∞ .

This implies that

(a, b) 7→
∫

Rd

(η∗)′
(
a · y + b|y|2/2 + ϕ0(y)

h

)
dy

is a differentiable function of a and b in some neighborhood of (a0, b0).

Assuming this for the moment, d
dbJ(a0, b, φ0, ϕ0)

∣∣
b=b0

= 0, and from this

we have that

1 =

∫
Rd

|y|2

2
(η∗)′

(
a0 · w + b0|y|2/2 + ϕ0(y)

h

)
dy

which means that ρ1 does indeed satisfy the variance constraint. In the

same way, differentiating in a shows that ρ1 does satisfy the mean con-

straint. Thus, ρ1 ∈ P0,1.
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3 Application to the constrained Navier–Stokes flow

The method used to prove the previous theorem appears to extend to

prove the existence of an optimizer for

ω1 = argmin
{
hS(ω) +W 2

2 (ω, ω0) : ω ∈ME,I

}
.

The extension is non–trivial, and I say “appears” as this has extension

has not yet stood the tests of time and scrutiny.

Granted the correctness of this assertion, the result provides the ba-

sis for the construction of a JKO type scheme for the solution of the

contrained Navier–Stokes evolution proposed by CPR.

There is an alternative route, but at present this seems problematic to

extend, though interesting.
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3.1 A free energy alternative

An alternate approach to the constrained variational problem considered

by myself and Gangbo would be to consider instead the unconstrained

problem

ρ
(a)
1 = argmin

{
[hS(ρ)− aI(ρ)] +W 2

2 (ρ, ρ0) : ρ ∈ P
}
,

and then vary a so as to achieve the constraint.

It is clear that increasing a will decrease I(ρ
(a)
1 ). Thus as long as one

can show that

I(ρ0) < I(ρ
(0)
1 ) ,

one can expect to find a negative a such that I(ρ
(a)
1 ) = I(ρ0) = I. This

much can be easily justified.

The negativity is important, because then

ρ 7→ S(ρ)− aI(ρ)

is convex, and the minimization problem is tractable.
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3.2 And indeed, a should be negative

Since

ρ
(0)
1 = argmin

{
hS(ρ) +W 2

2 (ρ, ρ0) : ρ ∈ P
}

is what one gets form the first step of the JKO scheme for solving the heat

equation, and since I steadily increases under the heat flow, one might

expect that

I(ρ
(0)
1 ) ≈ I(ρ0) + dh > I(ρ0) .

This raises the following question:
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3.3 Monotonicity in discrete and continuous time

Suppose that for some continuous time gradient flow evolution, a certain

functional G(ρ) is monotone increasing or decreasing. Is this still the case

for each step of the corresponding JKO scheme?

The answer depends on the properties of the functional G(ρ). It is

very easy to see that if ρ 7→ G(ρ) is displacement convex, and G(ρ) is

decreasing along the continuous flow, then it also is decreasing along the

discrete flow. Likewise, if ρ 7→ G(ρ) is displacement concave, and G(ρ) is

increasing along the continuous flow, then it also is increasing along the

discrete flow.



CCC April 4, 2008 32

However, in the case of I(ρ) and the heat flow, I(ρ) is strictly displace-

ment convex, and is increasing along the flow, so things are not so easy.

Gangbo and I conjectured that this was the case, but did not succeed in

proving it. A relatively simple proof was then devised by Adrian Tudo-

rascu, but fortunately only after we developed the duality approach just

described: Fortunately, for otherwise we would not have developed the

duality approach, which seems to have some advantages in situations like

the one described here.
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3.4 Free energy approach for the constrained Navier Stokes flow

Suppose one tries to solve the unconsstrained free energy problem

ω1 = argmin
{
h[S(ω)− aI(ω)− bE(ω)] +W 2

2 (ω, ω0) : ω ∈M
}
,

and then adjust a and b to achieve ω1 ∈ME,I .

Recall that under the heat flow (coming from the unconstrained op-

timization), I(ω) is increasing, and E(ω) is decreasing. Thus we shall

require a negative value for a to penalize increase in I(ω), and a posative

value of b to penalize decrease in E(ω). Thus the functional

ω 7→ [S(ω)− aI(ω)− bE(ω)]

will not be convex in the cases of interest, and the optimization problem

becomes problematic. In fact, even the simpler problem of determining

inf {S(ω)− aI(ω)− bE(ω) : ω ∈M }

becomes problematic for b > 0.
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In fact, if b ≥ 8π, a minimizer will not exist. To see this, write

S(ω)− aI(ω)− bE(ω) =

(
1− b

8π

)
[S(ω) + |a|I(ω)]

+
b

8π
[S(ω)− 8πE(ω)]

(2)

The last term on the right is positive by the sharp Logarithmic HLS in-

equality (C. and Loss, Beckner). It is also scale invariant. As b approaches

8π from below, there is less and less of a penalty against “bunching up”

from the first term, and so the optimizer degenerates to point mass as b

approaches 8π, and does not exist for larger values of b, as was shown by

CLMP.


