A class of total variation minimization problems on the whole space
 M. Agueh

University of Victoria, Canada
(joint work with G. Carlier)

Problem

Given F and G increasing on $[0, \infty)$, s.t. $F(0)=G(0)=0$ and $\lim _{\infty} G=\infty$, we study
$(\mathcal{P}) \quad m_{ \pm}:=\inf \left\{\int_{\mathbb{R}^{n}} \mathrm{~d}|\nabla u| \pm \int_{\mathbb{R}^{n}} F(|u|): \int_{\mathbb{R}^{n}} G(|u|)=1\right\}$

- The motivation is the sharp L^{1} Gagliardo-Nirenberg inequalities: If $1 \leq q<s<1^{*}:=\frac{n}{n-1}$ then

$$
\|u\|_{L^{s}\left(\mathbb{R}^{n}\right)} \leq K_{o p t}\|\nabla u\|_{\mathcal{M}\left(\mathbb{R}^{n}\right)}^{\theta}\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{1-\theta}, \quad \forall u \in D^{1, q}\left(\mathbb{R}^{n}\right)
$$

where $\|\nabla u\|_{\mathcal{M}\left(\mathbb{R}^{n}\right)}$ is the total variation of $u, n \geq 2$, and

$$
D^{1, q}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{q}\left(\mathbb{R}^{n}\right):\|\nabla u\|_{\mathcal{M}\left(\mathbb{R}^{n}\right)}<\infty\right\} .
$$

Results

- By elementary arguments (symmetrization, Pòlya-Szegö inequality, and some change of function), (\mathcal{P}) is equivalent to a 1-D optimization problem.
- Under appropriate conditions on F and G, the infimum is attained and the minimizers are multiple of characteristic functions of balls.
- This leads to some sharp inequalities involving the total variation, as well as existence/nonexistence results for 1-Laplacian type PDEs.

Outline

- Motivation
- The Main Result, variants and extensions
- Applications
- Sharp inequalities involving the total variation
- Existence/nonexistence results for 1-Laplacian PDEs
- Optimal Transportation Approach (in particular cases).

Motivation

- Sharp L^{1} Sobolev inequality:

$$
\begin{equation*}
\|u\|_{L^{1^{*}}\left(\mathbb{R}^{n}\right)} \leq\left(n \gamma_{n}^{1 / n}\right)^{-1}\|\nabla u\|_{\mathcal{M}\left(\mathbb{R}^{n}\right)} \quad \forall u \in \operatorname{BV}\left(\mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

The best constant is $\left(n \gamma_{n}^{1 / n}\right)^{-1}$, and the extremals are characteristic functions of balls [Federer-Fleming, 60].

- Interpolation inequality: If $1 \leq q<s<1^{*}$

$$
\begin{equation*}
\|u\|_{L^{s}\left(\mathbb{R}^{n}\right)} \leq\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{1-\theta}\|u\|_{L^{1^{*}}\left(\mathbb{R}^{n}\right)}^{\theta} \tag{2}
\end{equation*}
$$

where

$$
\frac{1}{s}=\frac{(1-\theta)}{q}+\frac{\theta}{1^{*}} \text { i.e. } \theta=\frac{n(s-q)}{s(n-q(n-1))} .
$$

Motivation

- Combining L^{1}-Sobolev and interpolation inequalities, we obtain the L^{1} Gagliardo-Nirenberg inequality:

$$
\begin{equation*}
\|u\|_{L^{s}\left(\mathbb{R}^{n}\right)} \leq\left(n \gamma_{n}^{1 / n}\right)^{-\theta}\|\nabla u\|_{\mathcal{M}\left(\mathbb{R}^{n}\right)}^{\theta}\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{1-\theta} \tag{3}
\end{equation*}
$$

- Characteristic functions of balls are extremals in (3) as they are extremals in both (1) and (2). Then the best constant in (3) is $\left(n \gamma_{n}^{1 / n}\right)^{-\theta}$.
- By a scaling argument, (3) is related to our variational problem (\mathcal{P}) when $F(t)=t^{q} / q$ and $G(t)=t^{s}$.
- Our goal is to generalize this fact (extremality of characteristic functions of balls) to more general variational problems involving the total variation.

Motivation

Proposition 1 Assume $1 \leq q<s<1^{*}$. If

$$
\inf \left\{E(u):=\int_{\mathbb{R}^{n}} d|\nabla u|+\frac{1}{q} \int_{\mathbb{R}^{n}}|u|^{q}:\|u\|_{L^{s}}=1\right\}
$$

has a minimizer u_{∞}, then the L^{1} Gagliardo-Nirenberg inequality holds, and the best constant and extremals are explicitly given in function of u_{∞} :

$$
\begin{gathered}
K_{\text {opt }}=\left[K(n, q, s) / E\left(u_{\infty}\right)\right]^{\frac{n+s-n q}{s(n-q(n-1))}}, \text { where } \\
K(n, q, s)=\frac{\alpha+\beta}{(q \alpha)^{\frac{\alpha}{\alpha+\beta}} \beta^{\frac{\beta}{\alpha+\beta}}}, \quad \alpha=n-s(n-1), \beta=n(s-q),
\end{gathered}
$$

and $u_{\sigma, x_{0}}(x)=C u_{\infty}\left(\sigma\left(x-x_{0}\right)\right)$ are extremal functions.

Proof of Proposition

- u_{∞} is a minimizer:

$$
E\left(u_{\infty}\right) \leq E\left(\frac{u}{\|u\|_{s}}\right)=\frac{\|\nabla u\|_{\mathcal{M}}}{\|u\|_{s}}+\frac{\|u\|_{q}^{q}}{q\|u\|_{s}^{q}} \quad \forall u \in D^{1, q}\left(\mathbb{R}^{n}\right)
$$

with equality if $u=u_{\infty}$.

- Scaling: $u_{\lambda}(x)=u\left(\frac{x}{\lambda}\right), \lambda>0$:

$$
E\left(u_{\infty}\right) \leq \lambda^{n-1-\frac{n}{s}} \frac{\|\nabla u\|_{\mathcal{M}}}{\|u\|_{s}}+\lambda^{n\left(1-\frac{q}{s}\right)} \frac{\|u\|_{q}^{q}}{\|u\|_{s}^{q}}:=f(\lambda)
$$

- Optimization in λ :

$$
E\left(u_{\infty}\right) \leq \min _{\lambda>0} f(\lambda)=f\left(\lambda_{\min }\right)
$$

Main result

Theorem 2 Assume that F and G are continuous increasing functions $[0, \infty) \rightarrow[0, \infty)$, s.t. $F(0)=G(0)=0$, $F, G \in C^{1}((0, \infty))$ and $\lim _{\infty} G=\infty$. Consider problem ($\left.\mathcal{P}\right)$:
$m_{ \pm}:=\inf \left\{E_{ \pm}(u)=\int_{\mathbb{R}^{n}} d|\nabla u| \pm \int_{\mathbb{R}^{n}} F(|u|): \int_{\mathbb{R}^{n}} G(|u|)=1\right\}$
Then

$$
m_{ \pm}=\inf _{\alpha>0} H_{ \pm}(\alpha)
$$

where

$$
H_{ \pm}(\alpha):=n \gamma_{n}^{1 / n} \frac{\alpha}{G(\alpha)^{(n-1) / n}} \pm \frac{F(\alpha)}{G(\alpha)} .
$$

Continuation of Theorem 2

Moreover, if the infimum of $H_{ \pm}(\alpha)$ is attained, i.e.

$$
V_{ \pm}:=\left\{\alpha>0, H_{ \pm}(\alpha)=m_{ \pm}\right\} \neq \emptyset,
$$

then the unique minimizers of (\mathcal{P}) are:
$\left\{u_{\alpha}\left(x_{0}+.\right), x_{0} \in \mathbb{R}^{n}, \alpha \in V_{ \pm}\right\} \cup\left\{-u_{\alpha}\left(x_{0}+.\right), x_{0} \in \mathbb{R}^{n}, \alpha \in V_{ \pm}\right\}$
where

$$
u_{\alpha}:=\alpha \chi_{B_{\rho_{\alpha}}} \text { and } \rho_{\alpha}:=\frac{1}{\gamma_{n}^{1 / n} G(\alpha)^{1 / n}} .
$$

But if the infimum of $H_{ \pm}(\alpha)$ is not attained in $(0, \infty)$, then (\mathcal{P}) has no minimizers.

Proof of the Main Result

- Step 1: (\mathcal{P}) is equivalent to the minimization of convex function on a compact convex set.
- Symmetrization: If u^{*} is the symmetric-decreasing rearrangement of u, then by Pòlya-Szegö inequality and equimesurability of rearrangements: u^{*} is admissible in (\mathcal{P}) and $E_{ \pm}\left(u^{\star}\right) \leq E_{ \pm}(u)$. Then we can restrict (\mathcal{P}) to nonnegative, radially-symmetric, Isc, and nonincreasing functions u s.t. $\int_{\mathbb{R}^{n}} G(u)=1$.
- For such $u, \exists \beta:[0, \infty) \rightarrow[0, \infty)$ nonincreasing s.t.

$$
\begin{equation*}
A_{t}:=\{u>t\}=B_{\beta(t)} \tag{4}
\end{equation*}
$$

is the ball in \mathbb{R}^{n} centered at 0 with radius $\beta(t)$.

Proof of the Main Result

- Step 1 continues:
- Change of function: Set $v:=\beta^{n}$. By the co-area formula and the layer cake representation:

$$
\begin{aligned}
E_{ \pm}(u) & =\int_{0}^{\infty} P\left(A_{t}\right) d t \pm \int_{0}^{\infty}|\{F(u)>t\}| d t \\
& =n \gamma_{n} \int_{0}^{\infty} \beta^{n-1}(t) d t \pm \gamma_{n} \int_{0}^{F(\infty)} \beta^{n}\left(F^{-1}(t)\right) d t \\
& =n \gamma_{n} \int_{0}^{\infty} v^{(n-1) / n}(t) d t \pm \gamma_{n} \int_{0}^{\infty} F^{\prime}(t) v(t) d t \\
& =: J_{ \pm}(v)
\end{aligned}
$$

Proof of the Main Result

- Step 1 continues:
- Minimization of a concave function: Then (\mathcal{P}) is equivalent to:

$$
(\mathcal{P})_{\mathbf{v}}: \quad m_{ \pm}=\inf \left\{J_{ \pm}(v): v \in K\right\}
$$

where K is the set of nonincreasing, nonnegative functions $v: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, that satisfy the linear constraint

$$
\int_{0}^{\infty} G^{\prime}(t) v(t) d t=\frac{1}{\gamma_{n}} .
$$

- Note that $v \mapsto J_{ \pm}(v)$ is strictly concave, and K is convex and compact in $L^{1}\left(\mathbb{R}, G^{\prime}(t) d t\right)$.

Proof of the Main Result

- Step 2: $(\mathcal{P})_{v}$ is attained at some $w_{\alpha}:=\frac{\chi_{[0, \alpha]}}{\gamma_{n} G(\alpha)}, \alpha>0$.
- $w_{\alpha} \in K$ and $J_{ \pm}\left(w_{\alpha}\right)=H_{ \pm}(\alpha)$ where

$$
H_{ \pm}(\alpha):=n \gamma_{n}^{1 / n} \frac{\alpha}{G(\alpha)^{(n-1) / n}} \pm \frac{F(\alpha)}{G(\alpha)}
$$

Then

$$
\begin{equation*}
m_{ \pm} \leq \inf _{\alpha>0} J_{ \pm}\left(w_{\alpha}\right)=\inf _{\alpha>0} H_{ \pm}(\alpha) \tag{5}
\end{equation*}
$$

- Conversely: Any $v \in K$ can be written as:
$v(t)=\int_{0}^{\infty} w_{\alpha}(t) d \mu_{v}(\alpha)$ where $d \mu_{v}(\alpha):=-\gamma_{n} G(\alpha) v^{\prime}(\alpha)$
is a probability measure on $[0, \infty)$.

Proof of the Main Result

- Step 2 continues: (Reduction of (\mathcal{P}) to a 1-D problem).
- By Jensen's inequality:

$$
\begin{aligned}
J_{ \pm}(v) & =J_{ \pm}\left(\int_{0}^{\infty} w_{\alpha} d \mu_{v}(\alpha)\right) \\
& \geq \int_{0}^{\infty} J_{ \pm}\left(w_{\alpha}\right) d \mu_{v}(\alpha) \\
& =\int_{0}^{\infty} H_{ \pm}(\alpha) d \mu_{v}(\alpha) \\
& \geq \inf _{\alpha>0} H_{ \pm}(\alpha) \int_{0}^{\infty} d \mu_{v}(\alpha)=\inf _{\alpha>0} H_{ \pm}(\alpha)
\end{aligned}
$$

Then $\quad m_{ \pm}=\inf _{v \in K} J_{ \pm}(v) \geq \inf _{\alpha>0} H_{ \pm}(\alpha) \geq m_{ \pm}$.

Proof of the Main Result

- Step 3: The unique minimizers of (\mathcal{P}) are $\pm u_{\alpha}\left(x_{0}+.\right)$ with $H_{ \pm}(\alpha)=m_{ \pm}$, where $u_{\alpha}:=\alpha \chi_{B_{\rho_{\alpha}}}$, and $\rho_{\alpha}:=\frac{1}{\gamma_{n}^{1 / n} G(\alpha)^{1 / n}}$
- If $H_{ \pm}(\alpha)=m_{ \pm}$, then the admissible u in (\mathcal{P}) associated with w_{α} is u_{α}, and so:

$$
E_{ \pm}\left(u_{\alpha}\right)=J_{ \pm}\left(w_{\alpha}\right)=H_{ \pm}(\alpha)=m_{ \pm} .
$$

- Uniqueness: If \bar{u} is another minimizer in (\mathcal{P}), define $u:=\bar{u}^{*}$, and associate $v \in K$. By the concavity of $J_{ \pm}$,

$$
\begin{aligned}
m_{ \pm}=J_{ \pm} & \left(\int_{0}^{\infty} w_{\alpha} d \mu_{v}(\alpha)\right) \geq \int_{0}^{\infty} H_{ \pm}(\alpha) d \mu_{v}(\alpha) \geq m_{ \pm} \\
& \Longrightarrow \int_{0}^{\infty}\left(H_{ \pm}(\alpha)-m_{ \pm}\right) d \mu_{v}(\alpha)=0
\end{aligned}
$$

Proof of the Main Result

- Step 3 continues:

Then

$$
\mu_{v}=\delta_{\alpha}, H(\alpha)=m_{ \pm} \Longrightarrow v=v_{\alpha}, H(\alpha)=m_{ \pm}
$$

Then $\bar{u}^{*}=u=u_{\alpha}=\alpha \chi_{B_{\rho_{\alpha}}}$. And $E_{ \pm}(u)=E_{ \pm}(\bar{u})$ implies that:

$$
|\bar{u}|=\alpha \chi_{A} \text { with }|A|=\left|B_{\rho_{\alpha}}\right|, P(A)=P\left(B_{\rho_{\alpha}}\right) .
$$

By the isoperimetric inequality, A is a ball with $|A|=\left|B_{\rho_{\alpha}}\right|$, i.e., $|\bar{u}|=u_{\alpha}\left(x_{0}+\right.$.) or $\bar{u}= \pm u_{\alpha}\left(x_{o}+.\right)$

- Step 4: (nonexistence). If $H_{ \pm}(\alpha)$ is not attained in $(0, \infty)$, then $\exists u_{\alpha_{n}}$ s.t. $\alpha_{n} \rightarrow 0$ (dispersion) or $\alpha_{n} \rightarrow \infty$ (concentration), and then (\mathcal{P}) has no minimizers.

Applications: sharp inequalities

- Sharp L^{1} logarithmic Sobolev inequality: If $F(t)=t \ln t$ (or $\left.F(t)=t^{\beta} \ln t, 0<\beta \leq 1\right)$ and $G(t)=t$, then $H_{-}(\alpha)$ is attained at $\alpha_{\infty}=1 / \gamma_{n}$, and $u_{\alpha_{\infty}}=\chi_{B_{1}} / \gamma_{n}$. We have

$$
\int_{\mathbb{R}^{n}}|u| \ln \left(\frac{e^{n} \gamma_{n}|u|}{\|u\|_{L^{1}\left(\mathbb{R}^{n}\right)}}\right) \leq \int_{\mathbb{R}^{n}} d|\nabla u|, \quad \forall u \in \mathrm{BV}\left(\mathbb{R}^{n}\right) .
$$

It is sharp and the extremal functions are $\pm u_{\alpha_{\infty}}\left(x_{o}+\right.$.)

- Sharp L^{1} Gagliardo-Nirenberg inequality: Choose $F(t)=t^{q} / q$ and $G(t)=t^{s}$, with $1<q<s<1^{*}$. Then $H_{+}(\alpha)$ has a unique minimizer.
- Sharp L^{1} Sobolev inequality: Choose $F=0$ and $G(t)=t^{1^{*}}$, then $H_{+}(\alpha)=n \gamma^{1 / n}$ has all $\alpha>0$ as minimizers.

Applications: pdes involving 1-Laplacian

- A Nonexistence Theorem: In addition to the previous assumptions, if F is convex and G is concave on \mathbb{R}_{+}, then for $\lambda \geq 0$, the PDE

$$
\left\{\begin{array}{l}
-\Delta_{1} u=\lambda G^{\prime}(u)-F^{\prime}(u) \tag{7}\\
u \geq 0, \int_{\mathbb{R}^{n}} G(u)=1
\end{array}\right.
$$

has no solutions in $D^{1, q}\left(\mathbb{R}^{n}\right)$.

- Formally, $\Delta_{1} u=\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$. A precised definition of solutions to 1-Laplacian PDEs can be found for e.g. in [Anzellotti, 83], [Demengel, 02].

Applications: pdes involving 1-Laplacian

- A Nonexistence Theorem (continuation)
- Proof: The convexity/concavity assumption implies that u solves (9) iff u is a minimizer of

$$
\begin{equation*}
\inf \left\{\int_{\mathbb{R}^{n}} d|\nabla u|+\int_{\mathbb{R}^{n}} F(|u|): \int_{\mathbb{R}^{n}} G(|u|)=1\right\} . \tag{8}
\end{equation*}
$$

But (8) has no minimizers because the infimum in $H_{+}(\alpha)$ is not attained in $(0, \infty)$; in fact, it is 0 , for $H_{+}\left(0^{+}\right)=0<H_{+}(\alpha)$.

- For e.g., choosing $G(t)=t$ and $F(t)=t^{q} / q(q>1)$, and using a scaling argument, we have that the PDE $-\Delta_{1} u=1-u^{q-1}$ has no solutions in $D^{1, q}\left(\mathbb{R}^{n}\right)$.

Applications: pdes involving 1-Laplacian

- Existence Theorem: If $H_{ \pm}(\alpha)$ has a minimizer in $(0, \infty)$, then the PDE (where $\lambda \in \mathbb{R}$ is part of the unknown)

$$
\left\{\begin{array}{l}
-\Delta_{1} u=\lambda G^{\prime}(u) \pm F^{\prime}(u) \tag{9}\\
u \geq 0, \int_{\mathbb{R}^{n}} G(u)=1
\end{array}\right.
$$

has a nontrivial solution.

- For e.g., choosing $F(t)=t^{q} / q$ and $G(t)=t^{s}$ with $1^{*}<s<q$ or $1<q<s<1^{*}$, and using a scaling argument, we have that $-\Delta_{1} u=u^{s-1}-u^{q-1}$ has nontrivial nonnegaive solutions in $D^{1, q}\left(\mathbb{R}^{n}\right)$.
- Similarly, if $s<q<1+s / n$, then $-\Delta_{1} u=u^{s-1}+u^{q-1}$ has nontriivial nonnegative solutions in $\operatorname{BV}\left(\mathbb{R}^{n}\right)$.

Optimal Transportation Approach

- Following similar arguments as in [Cordero-Nazaret-Villani, 04] and [A, Ghoussoub, Kang, 04], we can recover our result in some special cases (e.g. $F(t)=t$ and $G(t)=t^{s}$ with $s<1^{*}$, that is, the special case $q=1$ of the sharp L^{1} Gagliardo-Nirenberg inequalities) - without using the isoperimetric inequality.
- This is not surprising because $q=1$ is the limit case of $q=1+s(p-1) / p$ as $p \rightarrow 1$, where the sharp L^{p} Gagliardo-Nirenberg inequality are recovered using OT.
- This result as well as previous works in [A, 06] and [A, 08], suggest that the proof of the remaining $L^{p} \mathrm{GN}$ (i.e. $q \notin\{1+s(p-1) / p, p(s-1) /(p-1)\})$ should be searched for by other means than OT. Then, possibly, use their link with OT to derive new results in OT.

Optimal Transportation Approach

- Duality theorem: If $\psi:[0, \infty) \rightarrow \mathbb{R}$ is s.t. $\psi(0)=0$ and $x \mapsto x^{n} \psi\left(x^{-n}\right)$ is convex and non-increasing, then
$\sup \left\{-H^{\psi}\left(f_{1}\right): f \in \mathcal{P}\left(B_{1}\right)\right\}$

$$
=\inf \left\{-H^{\psi+n P_{\psi}}\left(f_{0}\right)+\int_{\mathbb{R}^{n}} d\left|\nabla\left(P_{\psi}\left(f_{0}\right)\right)\right|: f_{0} \in \mathcal{P}\left(\mathbb{R}^{n}\right)\right\}
$$

and any function $f_{\infty} \in \mathcal{P}\left(B_{1}\right)$ satisfying

$$
\begin{equation*}
\left\|\nabla\left(P_{\psi}\left(f_{\infty}\right)\right)\right\|_{\mathcal{M}\left(\mathbb{R}^{n}\right)}=n\left\|P_{\psi}\left(f_{\infty}\right)\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \tag{10}
\end{equation*}
$$

solves both variational problems.
Here $H^{\psi}(f):=\int_{\mathbb{R}^{n}} \psi(f)$ and $P_{\psi}(x):=x \psi^{\prime}(x)-\psi(x)$.

Optimal Transportation Approach

- The duality theorem follows from the displacement convexity [McCann, 94] of H^{ψ} which leads to [A, 02]:

$$
-H^{\psi}\left(f_{1}\right) \leq-H^{\psi+n P_{\psi}}\left(f_{0}\right)+\int_{\mathbb{R}^{n}} P_{\psi}\left(f_{0}\right) \operatorname{div}(T)
$$

and the relations: If $|T(x)| \leq 1$, then
$\int_{\mathbb{R}^{n}} P_{\psi}\left(f_{0}\right) \operatorname{div}(T) \leq\left\|\nabla\left(P_{\psi}\left(f_{0}\right)\right)\right\|_{\mathcal{M}\left(\mathbb{R}^{n}\right)}=\int_{\mathbb{R}^{n}} d\left|\nabla\left(P_{\psi}\left(f_{0}\right)\right)\right|$, and if $f_{0}=f_{1} \in \mathcal{P}(B)$ (i.e. $T(x)=x$), then

$$
\left\|\nabla\left(P_{\psi}\left(f_{0}\right)\right)\right\|_{\mathcal{M}\left(\mathbb{R}^{n}\right)}=\int_{B_{1}} P_{\psi}\left(f_{0}\right) \operatorname{div}(x)=n\left\|P_{\psi}\left(f_{0}\right)\right\|_{1}
$$

Optimal Transportation Approach

- For e.g., if we choose If $\psi=\frac{x^{\gamma}}{\gamma-1}, \gamma=1 / s$, with $s<1^{*}$, and $f_{0}=u^{s}$ with $\|u\|_{s}=1$, then the duality theorem shows that functions u s.t.

$$
\operatorname{spt}(u) \subset B_{1},\|\nabla u\|_{\mathcal{M}\left(\mathbb{R}^{n}\right)}=n\|u\|_{1},\|u\|_{s}=1
$$

are minimizers of
$\inf _{u \in B V\left(\mathbb{R}^{n}\right)}\left\{\left(\frac{s}{s-1}-n\right) \int_{\mathbb{R}^{n}}|u|+\int_{\mathbb{R}^{n}} \mathrm{~d}|\nabla u|: \int_{\mathbb{R}^{n}}|u|^{s}=1\right\}$.
In particular, $u=\frac{\chi_{B_{1}}}{\left|B_{1}\right|^{1 / s}}$ is a minimizer because
$\left\|\nabla \chi_{B_{1}}\right\|_{\mathcal{M}\left(\mathbb{R}^{n}\right)}=P\left(B_{1}\right)=n\left|B_{1}\right|$.

