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Problem

-

Given F and G increasing on [0, c0), S.t. F'(0) = G(0) =0
and lim., G = oo, we study

?) et { [ dvde [ pga): [ o) -1

e The motivation is the sharp L' Gagliardo-Nirenberg
inequalities: If 1 < ¢ < s < 1* := -5 then

=

Jull Ry < Fopt IVl ey 1l ey Vot € DM(RT)

where HVUHM(]R") IS the total variation of u, n > 2, and

DY(R™) = {u € LY(R") : ||Vul ny < 00}
- M o



Results
| -

# By elementary arguments (symmetrization,
Polya—Szeg0 inequality, and some change of function),
(P) is equivalent to a 1-D optimization problem.

# Under appropriate conditions on F' and G, the infimum
IS attained and the minimizers are multiple of
characteristic functions of balls.

# This leads to some sharp inequalities involving the total
variation, as well as existence/nonexistence results for

1-Laplacian type PDEs.
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M otivation

e Sharp L' Sobolev inequality:

Jull e jry < (0’ ™) "M I Vull g mey Yu € BV(R™),

The best constant is (ny./")~!, and the extremals are

characteristic functions of balls [Federer-Fleming, 60].
e Interpolation inequality: If 1 <g < s < 1*

Jull ey < el G Tl e ey

where

(1)

(2)



M otivation
e Combining L'-Sobolev and interpolation inequalities, we
obtain the L' Gagliardo-Nirenberg inequality:

—0
ey < () IVl e Il fRe, @

||

e Characteristic functions of balls are extremals in (3) as
they are extremals in both (1) and (2). Then the best

0
constant in (3) is (n%ﬁ/ ”) .

e By a scaling argument, (3) is related to our variational

problem (P) when F(t) =t%/q and G(t) = t°.

e Our goal is to generalize this fact (extremality of

characteristic functions of balls) to more general variational
Lproblems Involving the total variation.



M otivation

-

Proposition 1 Assume 1 <g<s< 1% If

int { B(u) := /]Rnd\Vu\Jré/ ult - Jullz =1}

has a minimizer u,, then the L' Gagliardo-Nirenberg
Inequality holds, and the best constant and extremals are
explicitly given in function of u:

n+s—nq

Ko = [K(n,q,5)/E(uso)] T | where

(j;éﬁg a=n—stn—1), f=n(s—q)
qo a+ a+

Land Ug 2, () = Cuse (0(x — 20)) are extremal functions. J

K(n,q,s) =




Proof of Proposition

-

® U, IS a minimizer:

q
E(uoo) < E( U ) _ HVUHM 4 HUHQ Vu € Dl,Q(IRn)

lulls lulls — qljulls

with equality if v = .

» Scaling: uy(z) =u (%), A > 0:

E(u ) < )\n—l—% HVUHM

|5 Jul]
# Optimization in A:

E(us) < min f(N) = f(Amin)

>0



Main result
-

fTheorem 2 Assume that F' and G are continuous
increasing functions [0, cc) — [0, 00), S.t. F(0) = G(0) = 0,
F,G € C'((0,00)) and limy, G = co. Consider problem (P):

M = inf{Ei(u):/]Rnqu\i/]Rn F(\u\):/}Rn G(\u\):1}

Then

= inf H
e = 8 )

where




Continuation of Theorem 2

-

Moreover, if the infimum of Hi («) is attained, I.e.

=

Vi = {Oz > (), Hi(cv) = mi} =+ 0,
then the unique minimizers of (P) are:
{ua(a;o + .),:E() cR" a¢e Vi} U {—ua(a;o + .),:E() cR" a e V:t}

where
1

/" Gla)t

But if the infimum of H.(«) Is not attained in (0, co), then
(P) has no minimizers.

o -

U = axp, and p, =



Proof of the Man Result

- .

# Step 1: (P) Is equivalent to the minimization of convex
function on a compact convex set.

» Symmetrization: If «* Is the symmetric-decreasing
rearrangement of u, then by Polya-Szeg0o inequality
and equimesurabllity of rearrangements:

u* Is admissible in (P) and Fi(u*) < Ei(u).

Then we can restrict (P) to nonnegative,
radially-symmetric, Isc, and nonincreasing functions
u S.1. f]Rn G(u) = 1.

s For such u, 35 :]0,00) — [0, 00) nonincreasing s.t.
Ay = {u > t} = Bﬁ(t) (4)

L IS the ball in IR"™ centered at O with radius 5(t). J

—n. ]



Proof of the Main Result

Step 1 continues:

» Change of function: Set v := 3",
By the co-area formula and the layer cake
representation:

By (u) = /O " p(A)dt /O T F ) > Yt

" /0 571 (1) dt =+ 7, /0 B (F (1)) dt

~ / sV () dt 4 / F/(t)o(b)dt
0 0
=: Ji(v).



Proof of the Main Result

-

® Step 1 continues:

» Minimization of a concave function: Then (P) is
equivalent to:

(P)yv: me=inf{JL(v):v e K}

where K Is the set of nonincreasing, nonnegative

functions v : IR, — IR,, that satisfy the linear
constraint

/ TG et = -
0

Tn

e Note that v — J(v) Is strictly concave, and K Is
convex and compact in L'(IR, G'(t)dt).



Proof of the Main Result

® Step 2: (P), is attained at some w,, = VX[O’“] , a > 0.

s wy € K and Ji(w,) = Hi(a) Where

1/n Q F(a)
‘= NV, + —=.
H:I:(CV) n-y G(&)(n_l)/n G(CM)
Then
mt < é@% Jr(wa) = (}};fo Hy (). (5)

o Conversely: Any v € K can be written as:

v(t) = /OOO wea (t)dpy, (o) where du,(a) == =y G(a)v (o)

L Is a probability measure on [0, co). J



Proof of the Main Result

- .

# Step 2 continues: (Reduction of (P) to a 1-D problem).
s By Jensen’s inequality:

1) = s [ wadinf))

> /O " T (wa)dpo(o)

= H(ar)dp ()
0

> inf Hy(a) /OOO diy (o) = inf Hy(a)

a>0 a>0

veK a>0

\_ Then my = inf Ji(v) > inf Hy(a) > my. (6)J



Proof of the Main Result

- .

# Step 3: The unique minimizers of (P) are +uq(xg+.) with

_ . . 1
Hi (o) = my, Where u, == axp, , and p, := TG eyt

s If Hi(a) = m4, then the admissible u in (P)
associated with w,, IS u,,, and so:

Fi(ug) = Ji(wy) = He(a) = mo.

s Uniqueness: If w is another minimizer in (P), define
u := u*, and associate v € K. By the concavity of J,

m+ = J4 (/ wozd,uv ) / H:I: d,uv ) =

L — / (H(a) — m4) dpy(a) = 0. J

—n. ]




Proof of the Main Result
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® Step 3 continues:
Then

ty = 0q, H(a) =my = v =1,, H(a) = my

Then @* = u = u, = axp, . And Ei(u) = E4(u) Implies
that:

u| = axa with |A] =|B,,|, P(A) = P(B,,).

By the isoperimetric inequality, A is a ball with
Al =|B,,|, 1.e., |t| = uaq(xo +.) OF & = ug(z, + )

# Step 4: (nonexistence). If Hi(«) is not attained in (0, co),
then Ju,,_ s.t. a,, — 0 (dispersion) or a,, — oo
L (concentration), and then (P) has no minimizers. J

—n. ]



ApplicatiOns: sharp inequalities

- .

® Sharp L! logarithmic Sobolev inequality: If F'(t) = tInt (or
F(t)=t’Int, 0 < g <1)and G(t) =t, then H_(a) is
attained at a, = 1/, and uq_. = xB, /7. We have

/nuln<|e Tl ></ ~d|Vu|, VueBV(R").
R ull R R

It Is sharp and the extremal functions are +u,_ (x, + .)

®» Sharp L! Gagliardo-Nirenberg inequality: Choose
F(t)=tl/qgand G(t) =t*, with 1 < ¢ < s < 1*. Then
H,(a) has a unique minimizer.
® Sharp L' Sobolev inequality: Choose F = 0 and G(t) =t
~ then Hy(a) = ny'/™ has all o > 0 as minimizers. .

—n. ]



Appl IcatioNS. PDEs involving 1-L aplacian

- .

® A Nonexistence Theorem: In addition to the previous

assumptions, if F'is convex and G Is concave on IR,
then for A > 0, the PDE

{ —Aju = \G'(u) — F'(u) -

u>0, [pr G(u) =1

has no solutions in D*4(IR™).

s Formally, Aju = div ( gg ) A precised definition of

solutions to 1-Laplacian PDEs can be found for e.g.
In [Anzellotti, 83], [Demengel, 02].

o -




Appl IcatioNS. PDEs involving 1-L aplacian

- .

® A Nonexistence Theorem (continuation)

s Proof. The convexity/concavity assumption implies
that « solves (9) iff « is a minimizer of

i [Vl [ Q) [ G =13 @

But (8) has no minimizers because the infimum in
Hy(a) Is not attained in (0, co); Iin fact, it is O, for
Hi(0M)=0< Hi(a).

s Fore.g., choosing G(t) =tand F(t) =t%/q (¢ > 1),
and using a scaling argument, we have that the PDE
—Aju=1—u9"! has no solutions in DY4(IR").

o -



Appl IcatioNS. PDEs involving 1-L aplacian

=

® Existence Theorem: If H.(«) has a minimizer in (0, co),
then the PDE (where ) € IR is part of the unknown)

9)

—Aju = \G'(u) + F'(u)
u>0, [rrG(u) =1

has a nontrivial solution.

s Fore.g., choosing F'(t) =t?/q and G(t) = t* with
1*<s<gqgorl<gqg<s< 1% and using a scaling
argument, we have that —Aju = v*~! —u?~ ! has
nontrivial nonnegaive solutions in DY4(IR™).

o Similarly, if s < ¢ <1+ s/n,then —Aju = v 4+ 47!
has nontriivial nonnegative solutions in BV(IR").

-



Optimal Transportation Approach

- .

# Following similar arguments as in
[Cordero-Nazaret-Villani, 04] and [A, Ghoussoub, Kang,
04], we can recover our result in some special cases
(e.g. F(t) =t and G(t) = t* with s < 1%, that Is, the
special case ¢ = 1 of the sharp L' Gagliardo-Nirenberg
Inequalities) — without using the isoperimetric inequality.

# This is not surprising because ¢ = 1 Is the limit case of
g=1+s(p—1)/pasp— 1, where the sharp L?
Gagliardo-Nirenberg inequality are recovered using OT.

# This result as well as previous works in [A, 06] and [A,
08], suggest that the proof of the remaining LP GN (i.e.
¢ & {1+s(p—1)/p, p(s —1)/(p — 1)} ) should be
searched for by other means than OT. Then, possibly,
L use their link with OT to derive new results in OT. J



Optimal Transportation Approach

=

# Duality theorem: If ¢ : [0,00) — IR is s.t. ¢(0) = 0 and
r — x™Y(x~") IS convex and non-increasing, then

sup{—H"(f1) : f € P(B1)}

—inf (R () +

Y (Py(fo)) |+ fo € P(IR™)}

and any function f,, € P(B) satisfying

HV (Pw(foo)) HM(IR”) — n”Pw(foo)HLl(IR”)' (10)

solves both variational problems.

Here HY(f) == [jrr ¥(f) and Py(x) = x¢/(x) — v(x).

-



Optimal Transportation Approach

-

e The duality theorem follows from the displacement
convexity [McCann, 94] of H¥ which leads to [A, 02]:

() < )+ [ Paodv(T)
and the relations: If |T'(x)| < 1, then
[ PofdN(T) < IV (Pulh) laagery = [ 49 (Pullo))

and if fo = f1 € P(B) (i.e. T(z) = x), then

IV (Pulfo)) laagery = | Poldo)divie) = nll Pulfo) s

o B

)

-



Optimal Transportation Approach

o For e.g., if we choose If ) = 25, v = 1/s, with s < 1%, and

fo = u® with ||u||s = 1, then the duality theorem shows that
functions u s.t.

spt(u) C Bu, [[Vull yqqrry = nllully; flulls =1
(IR7)

are minimizers of

inf {( ” —n)/ ]uH—/ d]Vu]:/ ]u]szl}.
ueBV(IR™) L \s — 1 R" R" R"

In particular, u = |g1’|311/s is a minimizer because

IV x5 Ly = P(B1) = n|Byl.

o -
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