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Problem

Given F and G increasing on [0,∞), s.t. F (0) = G(0) = 0
and lim∞G = ∞, we study

(P) m± := inf

{
∫

IRn
d|∇u| ±

∫

IRn
F (|u|) :

∫

IRn
G(|u|) = 1

}

• The motivation is the sharp L1 Gagliardo-Nirenberg
inequalities: If 1 ≤ q < s < 1∗ := n

n−1 then

‖u‖Ls(IRn
) ≤ Kopt‖∇u‖

θ
M(IRn

)
‖u‖1−θ

Lq(IRn
)
, ∀u ∈ D1,q(IRn)

where ‖∇u‖M(IRn
) is the total variation of u, n ≥ 2, and

D1,q(IRn) := {u ∈ Lq(IRn) : ‖∇u‖M(IRn
) <∞}.
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Results

By elementary arguments (symmetrization,
Pòlya–Szegö inequality, and some change of function),
(P) is equivalent to a 1-D optimization problem.

Under appropriate conditions on F and G, the infimum
is attained and the minimizers are multiple of
characteristic functions of balls.

This leads to some sharp inequalities involving the total
variation, as well as existence/nonexistence results for
1-Laplacian type PDEs.

– p.



Outline

Motivation

The Main Result, variants and extensions

Applications
Sharp inequalities involving the total variation
Existence/nonexistence results for 1-Laplacian PDEs

Optimal Transportation Approach (in particular cases).

– p.



Motivation

• Sharp L1 Sobolev inequality:

‖u‖L1∗(IRn
) ≤ (nγ

1/n
n )−1‖∇u‖M(IRn

) ∀u ∈ BV(IRn). (1)

The best constant is (nγ
1/n
n )−1, and the extremals are

characteristic functions of balls [Federer-Fleming, 60].
• Interpolation inequality: If 1 ≤ q < s < 1∗

‖u‖Ls(IRn
) ≤ ‖u‖1−θ

Lq(IRn
)
‖u‖θ

L1∗ (IRn
)
, (2)

where

1

s
=

(1 − θ)

q
+

θ

1∗
i.e. θ =

n(s− q)

s(n− q(n− 1))
.
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Motivation

• Combining L1-Sobolev and interpolation inequalities, we
obtain the L1 Gagliardo-Nirenberg inequality:

‖u‖Ls(IRn
) ≤

(

nγ
1/n
n

)−θ
‖∇u‖θ

M(IRn
)
‖u‖1−θ

Lq(IRn
)

(3)

• Characteristic functions of balls are extremals in (3) as
they are extremals in both (1) and (2). Then the best

constant in (3) is
(

nγ
1/n
n

)−θ
.

• By a scaling argument, (3) is related to our variational
problem (P) when F (t) = tq/q and G(t) = ts.
• Our goal is to generalize this fact (extremality of
characteristic functions of balls) to more general variational
problems involving the total variation.
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Motivation

Proposition 1 Assume 1 ≤ q < s < 1∗. If

inf
{

E(u) :=

∫

IRn
d|∇u| +

1

q

∫

IRn
|u|q : ‖u‖Ls = 1

}

has a minimizer u∞, then the L1 Gagliardo-Nirenberg
inequality holds, and the best constant and extremals are
explicitly given in function of u∞:

Kopt = [K(n, q, s)/E(u∞)]
n+s−nq

s[n−q(n−1)) , where

K(n, q, s) =
α + β

(qα)
α

α+ββ
β

α+β

, α = n− s(n− 1), β = n(s− q),

and uσ,x0(x) = Cu∞ (σ(x− x0)) are extremal functions.
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Proof of Proposition

u∞ is a minimizer:

E(u∞) ≤ E

(

u

‖u‖s

)

=
‖∇u‖M
‖u‖s

+
‖u‖qq
q‖u‖qs

∀u ∈ D1,q(IRn)

with equality if u = u∞.

Scaling: uλ(x) = u
(

x
λ

)

, λ > 0:

E(u∞) ≤ λn−1−n
s
‖∇u‖M
‖u‖s

+ λn(1− q
s
) ‖u‖

q
q

‖u‖qs
:= f(λ)

Optimization in λ:

E(u∞) ≤ min
λ>0

f(λ) = f(λmin)
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Main result

Theorem 2 Assume that F and G are continuous
increasing functions [0,∞) → [0,∞), s.t. F (0) = G(0) = 0,
F,G ∈ C1 ((0,∞)) and lim∞G = ∞. Consider problem (P):

m± := inf

{

E±(u) =

∫

IRn
d|∇u| ±

∫

IRn
F (|u|) :

∫

IRn
G(|u|) = 1

}

Then
m± = inf

α>0
H±(α)

where

H±(α) := nγ
1/n
n

α

G(α)(n−1)/n
±
F (α)

G(α)
.
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Continuation of Theorem 2

Moreover, if the infimum of H±(α) is attained, i.e.

V± := {α > 0, H±(α) = m±} 6= ∅,

then the unique minimizers of (P) are:

{uα(x0 + .), x0 ∈ IRn, α ∈ V±}∪{−uα(x0 + .), x0 ∈ IRn, α ∈ V±}

where

uα := αχBρα and ρα :=
1

γ
1/n
n G(α)1/n

.

But if the infimum of H±(α) is not attained in (0,∞), then
(P) has no minimizers.
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Proof of the Main Result

Step 1: (P) is equivalent to the minimization of convex
function on a compact convex set.

Symmetrization: If u∗ is the symmetric-decreasing
rearrangement of u, then by Pòlya-Szegö inequality
and equimesurability of rearrangements:
u∗ is admissible in (P) and E±(u⋆) ≤ E±(u).
Then we can restrict (P) to nonnegative,
radially-symmetric, lsc, and nonincreasing functions
u s.t.

∫

IRn G(u) = 1.

For such u, ∃β : [0,∞) → [0,∞) nonincreasing s.t.

At := {u > t} = Bβ(t) (4)

is the ball in IRn centered at 0 with radius β(t).
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Proof of the Main Result

Step 1 continues:
Change of function: Set v := βn.
By the co-area formula and the layer cake
representation:

E±(u) =

∫ ∞

0
P (At)dt±

∫ ∞

0
|{F (u) > t}|dt

= nγn

∫ ∞

0
βn−1(t)dt± γn

∫ F (∞)

0
βn(F−1(t))dt

= nγn

∫ ∞

0
v(n−1)/n(t)dt± γn

∫ ∞

0
F ′(t)v(t)dt

=: J±(v).
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Proof of the Main Result

Step 1 continues:
Minimization of a concave function: Then (P) is
equivalent to:

(P)v : m± = inf{J±(v) : v ∈ K}

where K is the set of nonincreasing, nonnegative
functions v : IR+ → IR+, that satisfy the linear
constraint

∫ ∞

0
G′(t)v(t)dt =

1

γn
.

• Note that v 7→ J±(v) is strictly concave, and K is
convex and compact in L1(IR, G′(t)dt).
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Proof of the Main Result

Step 2: (P)v is attained at some wα :=
χ[0,α]

γnG(α) , α > 0.

wα ∈ K and J±(wα) = H±(α) where

H±(α) := nγ
1/n
n

α

G(α)(n−1)/n
±
F (α)

G(α)
.

Then
m± ≤ inf

α>0
J±(wα) = inf

α>0
H±(α). (5)

Conversely: Any v ∈ K can be written as:

v(t) =

∫ ∞

0
wα(t)dµv(α) where dµv(α) := −γnG(α)v′(α)

is a probability measure on [0,∞).
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Proof of the Main Result

Step 2 continues: (Reduction of (P) to a 1-D problem).
By Jensen’s inequality:

J±(v) = J±

(
∫ ∞

0
wαdµv(α)

)

≥

∫ ∞

0
J±(wα)dµv(α)

=

∫ ∞

0
H±(α)dµv(α)

≥ inf
α>0

H±(α)

∫ ∞

0
dµv(α) = inf

α>0
H±(α)

Then m± = inf
v∈K

J±(v) ≥ inf
α>0

H±(α) ≥ m±. (6)
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Proof of the Main Result

Step 3: The unique minimizers of (P) are ±uα(x0 + .) with
H±(α) = m±, where uα := αχBρα , and ρα := 1

γ
1/n
n G(α)1/n

If H±(α) = m±, then the admissible u in (P)
associated with wα is uα, and so:

E±(uα) = J±(wα) = H±(α) = m±.

Uniqueness: If ū is another minimizer in (P), define
u := ū∗, and associate v ∈ K. By the concavity of J±,

m± = J±

(
∫ ∞

0
wαdµv(α)

)

≥

∫ ∞

0
H±(α)dµv(α) ≥ m±

=⇒

∫ ∞

0
(H±(α) −m±) dµv(α) = 0.
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Proof of the Main Result

Step 3 continues:
Then

µv = δα, H(α) = m± =⇒ v = vα, H(α) = m±

Then ū∗ = u = uα = αχBρα . And E±(u) = E±(ū) implies
that:

|ū| = αχA with |A| = |Bρα |, P (A) = P (Bρα).

By the isoperimetric inequality, A is a ball with
|A| = |Bρα|, i.e., |ū| = uα(x0 + .) or ū = ±uα(xo + .)

Step 4: (nonexistence). If H±(α) is not attained in (0,∞),
then ∃uαn s.t. αn → 0 (dispersion) or αn → ∞
(concentration), and then (P) has no minimizers.
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Applications: sharp inequalities

Sharp L1 logarithmic Sobolev inequality: If F (t) = t ln t (or
F (t) = tβ ln t, 0 < β ≤ 1) and G(t) = t, then H−(α) is
attained at α∞ = 1/γn, and uα∞

= χB1
/γn. We have

∫

IRn
|u| ln

(

enγn|u|

‖u‖L1(IRn
)

)

≤

∫

IRn
d |∇u|, ∀u ∈ BV(IRn).

It is sharp and the extremal functions are ±uα∞
(xo + .)

Sharp L1 Gagliardo-Nirenberg inequality: Choose
F (t) = tq/q and G(t) = ts, with 1 < q < s < 1∗. Then
H+(α) has a unique minimizer.

Sharp L1 Sobolev inequality: Choose F = 0 and G(t) = t1
∗

,
then H+(α) = nγ1/n has all α > 0 as minimizers.
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Applications: PDEs involving 1-Laplacian

A Nonexistence Theorem: In addition to the previous
assumptions, if F is convex and G is concave on IR+,
then for λ ≥ 0, the PDE

{

−∆1u = λG′(u) − F ′(u)

u ≥ 0,
∫

IRn G(u) = 1
(7)

has no solutions in D1,q(IRn).

Formally, ∆1u = div
(

∇u
|∇u|

)

. A precised definition of

solutions to 1-Laplacian PDEs can be found for e.g.
in [Anzellotti, 83], [Demengel, 02].
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Applications: PDEs involving 1-Laplacian

A Nonexistence Theorem (continuation)

Proof: The convexity/concavity assumption implies
that u solves (9) iff u is a minimizer of

inf{

∫

IRn
d |∇u| +

∫

IRn
F (|u|) :

∫

IRn
G(|u|) = 1}. (8)

But (8) has no minimizers because the infimum in
H+(α) is not attained in (0,∞); in fact, it is 0, for
H+(0+) = 0 < H+(α).
For e.g., choosing G(t) = t and F (t) = tq/q (q > 1),
and using a scaling argument, we have that the PDE
−∆1u = 1 − uq−1 has no solutions in D1,q(IRn).
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Applications: PDEs involving 1-Laplacian

Existence Theorem: If H±(α) has a minimizer in (0,∞),
then the PDE (where λ ∈ IR is part of the unknown)

{

−∆1u = λG′(u) ± F ′(u)

u ≥ 0,
∫

IRn G(u) = 1
(9)

has a nontrivial solution.

For e.g., choosing F (t) = tq/q and G(t) = ts with
1∗ < s < q or 1 < q < s < 1∗, and using a scaling
argument, we have that −∆1u = us−1 − uq−1 has
nontrivial nonnegaive solutions in D1,q(IRn).

Similarly, if s < q < 1 + s/n, then −∆1u = us−1 + uq−1

has nontriivial nonnegative solutions in BV(IRn).
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Optimal Transportation Approach

Following similar arguments as in
[Cordero-Nazaret-Villani, 04] and [A, Ghoussoub, Kang,
04], we can recover our result in some special cases
(e.g. F (t) = t and G(t) = ts with s < 1∗, that is, the
special case q = 1 of the sharp L1 Gagliardo-Nirenberg
inequalities) – without using the isoperimetric inequality.

This is not surprising because q = 1 is the limit case of
q = 1 + s(p− 1)/p as p→ 1, where the sharp Lp

Gagliardo-Nirenberg inequality are recovered using OT.

This result as well as previous works in [A, 06] and [A,
08], suggest that the proof of the remaining Lp GN (i.e.
q 6∈ {1 + s(p− 1)/p, p(s− 1)/(p− 1)} ) should be
searched for by other means than OT. Then, possibly,
use their link with OT to derive new results in OT.
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Optimal Transportation Approach

Duality theorem: If ψ : [0,∞) → IR is s.t. ψ(0) = 0 and
x 7→ xnψ(x−n) is convex and non-increasing, then

sup{−Hψ(f1) : f ∈ P(B1)}

= inf{−Hψ+nPψ(f0) +

∫

IRn
d|∇

(

Pψ(f0)
)

| : f0 ∈ P(IRn)}

and any function f∞ ∈ P(B1) satisfying

‖∇
(

Pψ(f∞)
)

‖M(IRn
) = n‖Pψ(f∞)‖L1(IRn

). (10)

solves both variational problems.
Here Hψ(f) :=

∫

IRn ψ(f) and Pψ(x) := xψ′(x) − ψ(x).
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Optimal Transportation Approach

• The duality theorem follows from the displacement
convexity [McCann, 94] of Hψ which leads to [A, 02]:

−Hψ(f1) ≤ −Hψ+nPψ(f0) +

∫

IRn
Pψ(f0)div(T ),

and the relations: If |T (x)| ≤ 1, then
∫

IRn
Pψ(f0)div(T ) ≤ ‖∇

(

Pψ(f0)
)

‖M(IRn
) =

∫

IRn
d|∇

(

Pψ(f0)
)

|,

and if f0 = f1 ∈ P(B) (i.e. T (x) = x), then

‖∇
(

Pψ(f0)
)

‖M(IRn
) =

∫

B1

Pψ(f0)div(x) = n‖Pψ(f0)‖1.
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Optimal Transportation Approach

• For e.g., if we choose If ψ = xγ

γ−1 , γ = 1/s, with s < 1∗, and
f0 = us with ‖u‖s = 1, then the duality theorem shows that
functions u s.t.

spt(u) ⊂ B1, ‖∇u‖M(IRn
) = n‖u‖1, ‖u‖s = 1

are minimizers of

inf
u∈BV (IRn

)

{

(

s

s− 1
− n

)
∫

IRn
|u| +

∫

IRn
d|∇u| :

∫

IRn
|u|s = 1

}

.

In particular, u =
χB1

|B1|1/s
is a minimizer because

‖∇χB1
‖M(IRn

) = P (B1) = n|B1|.
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