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Introduction

Consider the deformation of a compact surface
>, in R3 by its Harmonic Mean Curvature:

oF __ SN (HMCF)
ot H

where G denotes the Gaussian curvature, H the
Mean curvature and N the unit outer normal
to the surface, so that

G A 1

H o A+X Ajt+ a5t

The resulting PDE is fully-nonlinear and re-
mains weakly parabolic without the condition
that >; is convex. However, the equation be-
comes degenerate at points where G = 0 and
singular when H — 0. In the latter case the
flow is not defined.



Known Results

e Andrews: EXistence of smooth solutions of
the HCMF with strictly convex initial data.
The solutions exist and remain smooth up to
the time Ty when >; shrinks to a point. It
follows from the Gauss-Bonnet formula that
To = pp(=p)/4m with ug(Xg) the surface area
of ZO-

e Andrews: The HMCF shrinks smooth strictly
convex surfaces to round points, i.e. the sur-
face becomes spherical as t — Tp.

e Dijéter: Convex surfaces with mean curva-
ture H > 0 become instantly strictly convex
and hence they shrink to round points.



Three Different Cases

e Highly degenerate HMCF: >4 = 21 U225 with
>1 flat & X2 strictly convex.

The flow is highly degenerate

on 2.1 where [ = 0.

e HMCF on surfaces of revolution with H < O:
2 ; iIs a surface of revolution

with boundary and /1 < O.

Also, H — —oo at 0.

e HMCF on star-shaped surfaces with H > O:
2 o is compact & star-shaped

without boundary and /- > O.

2 ; remains compact but not

necessarily star-shaped.

We study: short time and long time existence,
optimal regularity and final-shape of 2.



Highly degenerate HMCF

Let ~ = >1 U X2 with
>1 flat and X2 strictly
convex. Let [ = 3> 1n3s?
denote the interface.

Expressing the lower part of > as a graph z =
f(x,y,t), we compute:

Evolution of f:

B det D2 f
A+ A fyy — 2 fafyfey + QA+ ) faa

Jt

Non-degeneracy Condition: 3dp € (0,1) such
that ¢ = f7 satisfies

|1Dg| > X\, grr > A, VP e I (%)

for some number A > 0. Here 7 denotes the
tangential direction to the level sets of g.



STE: Jointly with M.C. Caputo we prove that
given an initial surface

>=3lus? ofclassCF® k>1,0<a<1

with X1 flat and X2 strictly convex, which sat-
isfies the non-degeneracy condition (%), then:

e the HMCF admits a viscosity solution >2; =
> UX? of class which is C*-smooth up
to the interface My = =} N X7.

e the flat side Ztl persists for some positive
time and the interface I'; is smooth and evolves
by the curve shortening flow.

e LTE: Given any initial
surface X, there exists a C11 solution ©; of
the HMCF up to time Ty = og /4. In addition,
the surface becomes strictly convex at time
T < Tp and hence it shrinks to a round point.

Open question: Given an initial surface 2 g
with flat sides of class Ck% show that there
exists a solution >; of class Ck up to the
extinction of the flat side.



HMCF on surfaces of revolution with H < 0

Assume that » = f(xz,¢), 0 < x <1 is a surface
of revolution with boundary such that

G=XN <0 & H=MN-+X<O.

Since
rr 1
A = — f 3 & Ao = I

(14 /2)2 f (14 12)2

the HMCF becomes
ft = Joz 5

—ffext+ f5+1

with f.. >0 and 7 = —f f,. + f7+ 1 <0.

Then, f; <0 which makes f to decrease, i.e.
the surface of revolution shrinks. The HMCF
becomes singular when H = 0, i.e. when the
mean curvature H = 0.



Jointly with R. Hamilton we showed that if
the initial surface is as above and satisfies the
boundary growth condition

c < x27P (1-— x>2—p fee <C, x€(0,1) (%)

for some numbers 0 <p <1, ¢c> 0 and C < oo,
then 3Ty > 0 where first /7 = 0 at Tp.

In addition, there exists a constant i > 0 and
an interval Iy of length |Ig| > g such that

ﬁ(-,To) = 0, on Ip.

Under our initial growth conditions (%) the equa-
tion becomes degenerate at the boundary points
x; = 0,1. As a consequence, the boundary of
the surface of revolution z = f(r,t) moves by
the curve shortening flow.

Our results in particular show that a neck-
pinch doesn’'t occur.



Sketch of proof

e To prove STE we introduce weighted Holder
spaces as before before and establish Schauder
estimates in those spaces.

e O prove that a neck pinch doesn’'t occur
we use the inequality and
compare with the minimal surfaces of revolu-
tion ¢(z) = 0~1 cosh (0 (x—xp)) for appropriate
choices of 6 and xg.

e [O prove LTE up to when H = 0 we show
that the boundary condition (%) is preserved in
time and also f € C?2 in the interior.

e To prove that at 1Ty, H vanishes on Iy with
, we analyze the PDE for w := 1/H
which is modeled on the diffusion

wp = w2 Wer + w3,

Such PDE was previously studied by M. Gage
and Gage and Hamilton in connection to the
curve shortening flow.



HMCF on star-shaped surfaces with H > 0

Consider a compact surface ¥; in R3 evolving
by the (HMCF)

o _ N (HMCF)
ot
with k(\q, o) = Qlj;\/gz. Assume that > < \q

The resulting PDE is fully-nonlinear, weakly
parabolic and it becomes degenerate at points
where Ao = 0 and singular if H = X1 + X — O.
In the latter case the flow is not defined.

The linearized operator L is given by
ik — OF

Ohy
Notice that in geodesic coordinates around a
point at which the second fundamental form
matrix A = diag(Aq1, \») we have

2 2

)‘2 >‘1 )
(A1 4+ 2A2)2" (A1 4+ A2)?

L(w) = a* Vv, Viu, a

(a™) = diag(



Results-Work in progress

Initial assumptions: We assume that > is
compact of class €41 and is mean convex i.e.
H > 0.

Jointly with Natasa Sesum:

e Short time existence: There exists = > 0, for
which the HMCF admits a C%1 solution X,
such that H >0 on t € [0,7).

e |_ong time existence: Assume in addition that
> o is star-shaped. Let Ty = up(=g)/4n. Ei-
ther, H — 0 at some point Py € 24,, at time
to < Tp, or a CL1 solution to the flow exists
up to Ty, it becomes strictly convex at time
T < 'Tp, and it shrinks to a round sphere at 1p.

e If in addition 2 is a surface of revolution,
then H > 6 > 0 up to Tp. Hence, 2; exists
up to Ty = po(Xp)/4m and shrinks to a round
point at Tp. Moreover, >, c (', 0 <t < Tp.



Important evolution equations:

The H = )\ + 2> and « = ;‘f/\? satisfy:

o Yl —r(H)+ VROV bl + 2 K2 H

ahpahl
o %Iﬁ} = L(k) +2k3

where by direct computation we get

9%k
OhbLOhL,
because the operator x(A1,A>) is concave.
Hence, when // > 0O this quadratic derivative
term drives H down. On the other hand the
constant order terms push k and H up. In

particular, they make x and H blow up in finite
time.

V'REV Rl - H < 0



Short time existence

We first reqularize the flow by considering
orP
ot

with ke = k + e H. The resulting flow is non-

degenerate and has similar properties. To show

STE for this flow on [0, 7¢) is standard. To pass

to the limit we need a'priori estimates indepen-
dent of ¢ and that 7. > 5 > 0.

_HE .

The evolutions of k¢ and the second funda-
mental form h] combined together imply that
a singularity will not develop in short time 7

with 7« > 79 > 0, unless . Since H
evolves by
aH 82116 ; l 2
— = L(H) + V'WEV :h, 4+ 2k H
ot OhbonL, 1 ™M ‘

to avoid H — 0 we need to control the term
uniformly in e.

We do so by estimating from above the quan-
tity % + |Vh![?. This is possible if g in C21.



Long time EXistence

We first establish LTE for the regularized flow
and then pass to the limit. It is important to
establish a’'priori estimates which are indepen-
dent of e.

e An increasing quantity: Let Q = (F,v)+2t ke.
We have Q(0) > 0 if > is star-shaped. Using
the evolution of Q we conclude that

%Qmm(t) >0, ieQ(t)>0, V. (%)

e Pinching estimate: dC; > 0,C> > 0 such
that:

We prove this by establishing that the quantity
H/({F,v) + 2t k¢) is decreasing in time.

Since |(F,v)| < C always, (x) implies ke > —C
for all t. We then show that )\, > —C for all
t. Also, if H — 0 both Amax — 0 and A, — O.



e By the Gauss-Bonnet theorem the e—flow
must extinct at time

1 Te
Te = —Mo( o)——/ ZGHQM

e [0 show that a singularity doesn’t occur be-
fore T¢, unless H — 0, we assume that

at some time 7' < I at which H > 0 and use
a blow up argument. By blowing up around a
point of maximal curvature and passing to the
limit we obtain a surface which is and
because of (x) it satisfies the pinching estimate
Amax < C1 Amin-

e By a result of R. Hamilton such a surface
must be ~which after we re-scale back
implies that diam>; — 0 as t — 1, contradict-
ing that T' < Te.. By working a little harder we
show that >; becomes strictly convex before T¢
and hence by the results of B. Andrews shrinks
to a round point at 7¢.



e [0 pass to the limit e — 0 we use the above
blow up argument in a manner which is inde-
pendent of e.

e We show that the |limit is independent of
sequences €; — O by combining our a'priori es-
timates with a uniqueness result of Chen, Giga
and Gotto.

e In the special case of a surface of revolu-
tion, we show that H > ¢ > O independently of
time. Hence, any star-shaped surface of revo-
lution becomes strictly convex and shrinks to
a round point. It is maybe possible to remove
the " star-shaped” assumption.

Question: In the non-radial case, does H — O
at some time tog <1y 7

Question: Consider similar flows in higher di-
mensions.



