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Introduction

Consider the deformation of a compact surface
Σt in R3 by its Harmonic Mean Curvature:

∂P

∂t
= −

G

H
·N (HMCF)

where G denotes the Gaussian curvature, H the
Mean curvature and N the unit outer normal
to the surface, so that

κ :=
G

H
=

λ1 λ2

λ1 + λ2
=

1

λ−1
1 + λ−1

2

.

The resulting PDE is fully-nonlinear and re-
mains weakly parabolic without the condition
that Σt is convex. However, the equation be-
comes degenerate at points where G = 0 and
singular when H → 0. In the latter case the
flow is not defined.



Known Results

• Andrews: Existence of smooth solutions of

the HCMF with strictly convex initial data.

The solutions exist and remain smooth up to

the time T0 when Σt shrinks to a point. It

follows from the Gauss-Bonnet formula that

T0 = µ0(Σ0)/4π with µ0(Σ0) the surface area

of Σ0.

• Andrews: The HMCF shrinks smooth strictly

convex surfaces to round points, i.e. the sur-

face becomes spherical as t → T0.

• Diëter: Convex surfaces with mean curva-

ture H > 0 become instantly strictly convex

and hence they shrink to round points.



Three Different Cases

• Highly degenerate HMCF: Σt = Σ1∪Σ2 with

Σ1 flat & Σ2 strictly convex.

The flow is highly degenerate

on Σ1 where H = 0.

• HMCF on surfaces of revolution with H < 0:

Σt is a surface of revolution

with boundary and H < 0.

Also, H → −∞ at ∂Σt.

• HMCF on star-shaped surfaces with H > 0:

Σ0 is compact & star-shaped

without boundary and H > 0.

Σt remains compact but not

necessarily star-shaped.

We study: short time and long time existence,

optimal regularity and final-shape of Σt.



Highly degenerate HMCF

Let Σ = Σ1 ∪Σ2 with

Σ1 flat and Σ2 strictly

convex. Let Γ = Σ1 ∩Σ2

denote the interface.

Expressing the lower part of Σ as a graph z =

f(x, y, t), we compute:

Evolution of f :

ft =
detD2f

(1 + f2
x )fyy − 2 fxfyfxy + (1 + f2

y )fxx

Non-degeneracy Condition: ∃p ∈ (0,1) such

that g = fp satisfies

|Dg| ≥ λ, gττ ≥ λ, ∀P ∈ Γ (?)

for some number λ > 0. Here τ denotes the

tangential direction to the level sets of g.



STE: Jointly with M.C. Caputo we prove that
given an initial surface

Σ = Σ1 ∪Σ2, of class Ck,α, k ≥ 1, 0 < α ≤ 1

with Σ1 flat and Σ2 strictly convex, which sat-
isfies the non-degeneracy condition (?), then:

• the HMCF admits a viscosity solution Σt =
Σ1

t ∪Σ2
t of class Ck,α which is C∞-smooth up

to the interface Γt = Σ1
t ∩Σ2

t .

• the flat side Σ1
t persists for some positive

time and the interface Γt is smooth and evolves
by the curve shortening flow.

• LTE: Given any weakly convex C1,1 initial
surface Σ0, there exists a C1,1 solution Σt of
the HMCF up to time T0 = σ0/4π. In addition,
the surface becomes strictly convex at time
τ < T0 and hence it shrinks to a round point.

Open question: Given an initial surface Σ0
with flat sides of class Ck,α show that there
exists a solution Σt of class Ck,α up to the
extinction of the flat side.



HMCF on surfaces of revolution with H < 0

Assume that r = f(x, t), 0 ≤ x ≤ 1 is a surface

of revolution with boundary such that

G = λ1 λ2 < 0 & H = λ1 + λ2 < 0.

Since

λ1 = −
fxx

(1 + f2
x )

3
2

& λ2 =
1

f (1 + f2
x )

1
2

the HMCF becomes

ft =
fxx

−f fxx + f2
x + 1

with fxx > 0 and H̃ := −f fxx + f2
x + 1 < 0.

Then, ft ≤ 0 which makes f to decrease, i.e.

the surface of revolution shrinks. The HMCF

becomes singular when H̃ = 0, i.e. when the

mean curvature H = 0.



Jointly with R. Hamilton we showed that if

the initial surface is as above and satisfies the

boundary growth condition

c ≤ x2−p (1− x)2−p fxx ≤ C, x ∈ (0,1) (?)

for some numbers 0 < p < 1, c > 0 and C < ∞,

then ∃T0 > 0 where first H̃ = 0 at T0.

In addition, there exists a constant l0 > 0 and

an interval I0 of length |I0| ≥ l0 such that

H̃(·, T0) ≡ 0, on I0.

Under our initial growth conditions (?) the equa-

tion becomes degenerate at the boundary points

xi = 0,1. As a consequence, the boundary of

the surface of revolution z = f(r, t) moves by

the curve shortening flow.

Our results in particular show that a neck-

pinch doesn’t occur.



Sketch of proof

• To prove STE we introduce weighted Hölder
spaces as before before and establish Schauder
estimates in those spaces.

• To prove that a neck pinch doesn’t occur
we use the inequality −f fxx + f2

x + 1 ≤ 0 and
compare with the minimal surfaces of revolu-
tion φ(x) = θ−1 cosh (θ (x−x0)) for appropriate
choices of θ and x0.

• To prove LTE up to when H = 0 we show
that the boundary condition (?) is preserved in
time and also f ∈ C2 in the interior.

• To prove that at T0, H vanishes on I0 with
|I0| ≥ l0, we analyze the PDE for w := 1/H
which is modeled on the diffusion

wt = w2 wxx + w3.

Such PDE was previously studied by M. Gage
and Gage and Hamilton in connection to the
curve shortening flow.



HMCF on star-shaped surfaces with H > 0

Consider a compact surface Σt in R3 evolving
by the (HMCF)

∂P

∂t
= −κ ·N (HMCF)

with κ(λ1, λ2) = λ1 λ2
λ1+λ2

. Assume that λ2 ≤ λ1

The resulting PDE is fully-nonlinear, weakly
parabolic and it becomes degenerate at points
where λ2 = 0 and singular if H = λ1 + λ2 → 0.
In the latter case the flow is not defined.

The linearized operator L is given by

L(u) = aik∇i∇ku, aik =
∂κ

∂hi
k

.

Notice that in geodesic coordinates around a
point at which the second fundamental form
matrix A = diag(λ1, λ2) we have

(aik) = diag(
λ2
2

(λ1 + λ2)2
,

λ2
1

(λ1 + λ2)2
)



Results-Work in progress

Initial assumptions: We assume that Σ0 is
compact of class C2,1 and is mean convex i.e.
H > 0.

Jointly with Natasa Sesum:

• Short time existence: There exists τ > 0, for
which the HMCF admits a C2,1 solution Σt,
such that H > 0 on t ∈ [0, τ).

• Long time existence: Assume in addition that
Σ0 is star-shaped. Let T0 = µ0(Σ0)/4π. Ei-
ther, H → 0 at some point P0 ∈ Σt0, at time
t0 < T0, or a C1,1 solution to the flow exists
up to T0, it becomes strictly convex at time
T < T0, and it shrinks to a round sphere at T0.

• If in addition Σ0 is a surface of revolution,
then H ≥ δ > 0 up to T0. Hence, Σt exists
up to T0 = µ0(Σ0)/4π and shrinks to a round
point at T0. Moreover, Σt ∈ C∞, 0 < t < T0.



Important evolution equations:

The H = λ1 + λ2 and κ = λ1 λ2
λ1+λ2

satisfy:

• ∂H
∂t = L(H) + ∂2κ

∂h
p
q∂hl

m
∇ih

p
q∇jh

l
m + 2κ2 H

• ∂
∂tκ = L(κ) + 2κ3

where by direct computation we get

∂2κ

∂h
p
q∂hl

m
∇ihp

q∇jh
l
m ·H ≤ 0

because the operator κ(λ1, λ2) is concave.

Hence, when H > 0 this quadratic derivative

term drives H down. On the other hand the

constant order terms push κ and H up. In

particular, they make κ and H blow up in finite

time.



Short time existence

We first regularize the flow by considering

∂P

∂t
= −κε ·N

with κε = κ + ε H. The resulting flow is non-
degenerate and has similar properties. To show
STE for this flow on [0, τε) is standard. To pass
to the limit we need a’priori estimates indepen-
dent of ε and that τε ≥ τ0 > 0.

The evolutions of κε and the second funda-
mental form h

j
i combined together imply that

a singularity will not develop in short time τε

with τε ≥ τ0 > 0, unless H → 0. Since H
evolves by

∂H

∂t
= L(H) +

∂2κε

∂h
p
q∂hl

m
∇ihp

q∇jh
l
m + 2κ2

ε H

to avoid H → 0 we need to control the term
∇ih

p
q ∇j∂hl

m uniformly in ε.

We do so by estimating from above the quan-
tity 1

H + |∇h
j
i |

2. This is possible if Σ0 in C2,1.



Long time Existence

We first establish LTE for the regularized flow
and then pass to the limit. It is important to
establish a’priori estimates which are indepen-
dent of ε.

• An increasing quantity: Let Q = 〈F, ν〉+2t κε.
We have Q(0) ≥ 0 if Σ0 is star-shaped. Using
the evolution of Q we conclude that

d

dt
Qmin(t) ≥ 0, i.e Q(t) ≥ 0, ∀t. (?)

• Pinching estimate: ∃C1 > 0, C2 > 0 such
that:

λmax ≤ C1 λmin + C2. (??)

We prove this by establishing that the quantity
H/(〈F, ν〉+ 2t κε) is decreasing in time.

Since |〈F, ν〉| ≤ C always, (?) implies κε ≥ −C

for all t. We then show that λmin ≥ −C for all
t. Also, if H → 0 both λmax → 0 and λmin → 0.



• By the Gauss-Bonnet theorem the ε−flow

must extinct at time

Tε =
1

4π
µ0(Σ0)−

ε

4π

∫ Tε

0

∫
Σε

t

H2 µt.

• To show that a singularity doesn’t occur be-

fore Tε, unless H → 0, we assume that |A| → ∞
at some time T < Tε at which H > 0 and use

a blow up argument. By blowing up around a

point of maximal curvature and passing to the

limit we obtain a surface which is convex and

because of (?) it satisfies the pinching estimate

λmax ≤ C1 λmin.

• By a result of R. Hamilton such a surface

must be compact, which after we re-scale back

implies that diamΣt → 0 as t → T , contradict-

ing that T < Tε. By working a little harder we

show that Σt becomes strictly convex before Tε

and hence by the results of B. Andrews shrinks

to a round point at Tε.



• To pass to the limit ε → 0 we use the above

blow up argument in a manner which is inde-

pendent of ε.

• We show that the limit is independent of

sequences εj → 0 by combining our a’priori es-

timates with a uniqueness result of Chen, Giga

and Gotto.

• In the special case of a surface of revolu-

tion, we show that H ≥ δ > 0 independently of

time. Hence, any star-shaped surface of revo-

lution becomes strictly convex and shrinks to

a round point. It is maybe possible to remove

the ”star-shaped” assumption.

Question: In the non-radial case, does H → 0

at some time t0 < T0 ?

Question: Consider similar flows in higher di-

mensions.


