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The Porous Medium - Fast Diffusion Equation
The simplest model of nonlinear diffusion equation is maybe

ut = ∆um = ∇ · (c(u)∇u)

c(u) indicates density-dependent diffusivity

c(u) = mum−1[= m|u|m−1]

If m > 1 it degenerates at u = 0 , =⇒ slow diffusion
For m = 1 we get the classical Heat Equation.
On the contrary, if m < 1 it is singular at u = 0 =⇒ Fast Diffusion.
Some General References. About PME
J. L. Vázquez, ”The Porous Medium Equation. Mathematical Theory”, Oxford
Univ. Press, 2007, xxii+624 pages
About estimates and scaling
J. L. Vázquez, “Smoothing and Decay Estimates for Nonlinear Parabolic
Equations of Porous Medium Type”, Oxford Univ. Press, 2006, 234 pages.
About asymptotic behaviour. (Following Lyapunov and Boltzmann)
J. L. Vázquez. Asymptotic behaviour for the Porous Medium Equation posed in
the whole space. Journal of Evolution Equations 3 (2003), 67–118.
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What to do ?

Following your inclinations

or

Reading the classics
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FDE profiles
We have well-known explicit formulas for Selsfsmilar Barenblatt profiles with
exponents less than one if 1 > m > (n − 2)/n:

B(x , t ; M) = t−αF(x/tβ), F(ξ) =
1

(C + kξ2)1/(1−m)

The exponents are α = n
2−n(1−m)

and β = 1
2−n(1−m)

> 1/2.

Solutions for m > 1 with fat tails (polynomial decay; anomalous distributions)

Big problem: What happens for m < (n − 2)/n?

Main items: existence for very general data, non-existence for very fast diffusion,
non-uniqueness for v.f.d., extinction, universal estimates, lack of standard
Harnack.
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The Pareto, Zipf and other power laws

William J. Reed
Many empirical distributions encountered in economics and other realms of
inquiry exhibit power-law behaviour in the upper tail. In economics prime
examples are the distributions of incomes (Pareto’s law) and city sizes (Zipf’s law
or the rank-size property), as well as the standardized price returns on individual
stocks or stock indices.

Elsewhere, empirical size distributions for which power-law behaviour has been
claimed include those of sand particle sizes; of meteor impacts on the moon; of
numbers of species per genus in flowering plants; of frequencies of words in long
sequences of text and of areas burnt in forest fires etc.

This widespread observed regularity has been explained in many ways. It
continues to fascinate both natural scientists, who have recently proposed
explanations based on current ideas such as self-organized criticality and highly
optimized tolerance (e.g. Newman, 2000), as well as economists, as recent
papers by Gabaix(1999) and Brakman et al., (1999) testify.

It seems unlikely that there is a single general theory that could explain all
instances of power-law behaviour.

Juan Luis Vázquez (Univ. Autónoma de Madrid) Fast Diffusion Equations
IPAM, UCLA, Los Angeles, April 2007 7 /

40



The Pareto, Zipf and other power laws

William J. Reed
Many empirical distributions encountered in economics and other realms of
inquiry exhibit power-law behaviour in the upper tail. In economics prime
examples are the distributions of incomes (Pareto’s law) and city sizes (Zipf’s law
or the rank-size property), as well as the standardized price returns on individual
stocks or stock indices.

Elsewhere, empirical size distributions for which power-law behaviour has been
claimed include those of sand particle sizes; of meteor impacts on the moon; of
numbers of species per genus in flowering plants; of frequencies of words in long
sequences of text and of areas burnt in forest fires etc.

This widespread observed regularity has been explained in many ways. It
continues to fascinate both natural scientists, who have recently proposed
explanations based on current ideas such as self-organized criticality and highly
optimized tolerance (e.g. Newman, 2000), as well as economists, as recent
papers by Gabaix(1999) and Brakman et al., (1999) testify.

It seems unlikely that there is a single general theory that could explain all
instances of power-law behaviour.

Juan Luis Vázquez (Univ. Autónoma de Madrid) Fast Diffusion Equations
IPAM, UCLA, Los Angeles, April 2007 7 /

40



The Pareto, Zipf and other power laws

William J. Reed
Many empirical distributions encountered in economics and other realms of
inquiry exhibit power-law behaviour in the upper tail. In economics prime
examples are the distributions of incomes (Pareto’s law) and city sizes (Zipf’s law
or the rank-size property), as well as the standardized price returns on individual
stocks or stock indices.

Elsewhere, empirical size distributions for which power-law behaviour has been
claimed include those of sand particle sizes; of meteor impacts on the moon; of
numbers of species per genus in flowering plants; of frequencies of words in long
sequences of text and of areas burnt in forest fires etc.

This widespread observed regularity has been explained in many ways. It
continues to fascinate both natural scientists, who have recently proposed
explanations based on current ideas such as self-organized criticality and highly
optimized tolerance (e.g. Newman, 2000), as well as economists, as recent
papers by Gabaix(1999) and Brakman et al., (1999) testify.

It seems unlikely that there is a single general theory that could explain all
instances of power-law behaviour.

Juan Luis Vázquez (Univ. Autónoma de Madrid) Fast Diffusion Equations
IPAM, UCLA, Los Angeles, April 2007 7 /

40



The Pareto, Zipf and other power laws

William J. Reed
Many empirical distributions encountered in economics and other realms of
inquiry exhibit power-law behaviour in the upper tail. In economics prime
examples are the distributions of incomes (Pareto’s law) and city sizes (Zipf’s law
or the rank-size property), as well as the standardized price returns on individual
stocks or stock indices.

Elsewhere, empirical size distributions for which power-law behaviour has been
claimed include those of sand particle sizes; of meteor impacts on the moon; of
numbers of species per genus in flowering plants; of frequencies of words in long
sequences of text and of areas burnt in forest fires etc.

This widespread observed regularity has been explained in many ways. It
continues to fascinate both natural scientists, who have recently proposed
explanations based on current ideas such as self-organized criticality and highly
optimized tolerance (e.g. Newman, 2000), as well as economists, as recent
papers by Gabaix(1999) and Brakman et al., (1999) testify.

It seems unlikely that there is a single general theory that could explain all
instances of power-law behaviour.

Juan Luis Vázquez (Univ. Autónoma de Madrid) Fast Diffusion Equations
IPAM, UCLA, Los Angeles, April 2007 7 /

40



The good and bad range

Figure 1. The (m, p) diagram for the PME/FDE in dimensions n ≥ 3.
SE: smoothing effect, BE: backwards effect, IE: instantaneous extinction
Critical line p = n(1−m)/2 (in boldface)

More exponents appear. One is m = 0. A third exponent m = (n − 2)/(n + 2) (in
dimensions n ≥ 3), which is the inverse of the famous Sobolev exponent of the
elliptic theory. The relation is clear by separation of variables. Exercise
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The good and bad range II
Smoothing effect means that data in Lp imply that the weak solution is in L∞ for all
t > 0. Over the ”green” line the result is true even locally. Smoothing book, 2006,
for u0 ∈ Lp, Bonforte-Vazquez, preprint for u0 ∈ Lp

loc . Here, p = p∗ = n(1−m)/2.

Backwards effect is a strange effect. Data in Lp imply u(t) ∈ L1 for all t > 0
Smoothing book, 2006.

On the green line exactly there is extinction in finite time (not at the end value
p = 1). The correct extinction space is a Marcinkiewicz space: X = Mp∗(Rn)
Smoothing book, 2006.

For m < 0 below the green line there are no solutions. Vazquez 92,
Daskalopoulos del Pino 97.

For 1 > m > mc we can solve the initial value problem with any nonnegative
measure, even a Borel Measure because there are very good local estimates
Chasseigne-Vazquez 03. For m < mc Dirac masses cannot be initial data
Brezis-Friedman 83, Pierre 87.

Harnack holds for m > mc
1, but is very difficult for m < mc work just finished 2.

1M Bonforte- JL Vazquez, Global positivity estimates and Harnack inequalities for the fast
diffusion equation.J. Funct. Anal. 240 (2006), no. 2, 399–428

2M Bonforte- JL Vazquez, Positivity, local smoothing, and Harnack inequalities for very fast
diffusion equations, Preprint March 2008
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for u0 ∈ Lp, Bonforte-Vazquez, preprint for u0 ∈ Lp

loc . Here, p = p∗ = n(1−m)/2.

Backwards effect is a strange effect. Data in Lp imply u(t) ∈ L1 for all t > 0
Smoothing book, 2006.

On the green line exactly there is extinction in finite time (not at the end value
p = 1). The correct extinction space is a Marcinkiewicz space: X = Mp∗(Rn)
Smoothing book, 2006.

For m < 0 below the green line there are no solutions. Vazquez 92,
Daskalopoulos del Pino 97.

For 1 > m > mc we can solve the initial value problem with any nonnegative
measure, even a Borel Measure because there are very good local estimates
Chasseigne-Vazquez 03. For m < mc Dirac masses cannot be initial data
Brezis-Friedman 83, Pierre 87.

Harnack holds for m > mc
1, but is very difficult for m < mc work just finished 2.
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The good and bad range III

Figure 2. Left: (m, p) diagram for the PME/FDE in dimension n = 2
Right: (m, p) diagram for the PME/FDE in dimension n = 1

There is existence and non-uniqueness if n = 1 and −1 < m < 0
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The Aronson Caffarelli Estimate for PME

CASE m > 1 Aronson-Caffarelli’s result 3 is a positivity estimate for the PME,
m > 1, valid for all nonnegative weak solutions defined in the whole space.
We take a point x0 and a ball BR(x0) and try to see how positive is the solution at
time t0 if there is a ”mass” MR(x0) =

R
BR (x0)

u0(x) dx at t = 0. It says

(1)
MR(x0)

Rd ≤ C1 R2/(m−1) t−
1

m−1 + C2 R−d td/2uλ/2(t , x0).

with λ = 2 + d(m − 1). C1 and C2 given positive constants depending only on m
and d . Looking at the three terms we discover that there is a time t∗ where the
second is already less than the first one. We can calculate this intrinsic positivity
time as t∗ = C(m, d)Rλ/Mm−1.

For t > t∗ the third one is positive, hence u(x0, t) > 0. Hence, for all large t we
have u = O(td/λ). OK!

We go on to prove that u ∈ Cα for some α > 0. There is no way you can get
positivity for small times because of finite propagation (free boundaries).

3Aronson, D. G.; Caffarelli, L. A. The initial trace of a solution of the porous medium equation.
Trans. Amer. Math. Soc. 280 (1983), no. 1, 351–366.
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Universal Pointwise Estimates for Good Fast
Diffusion

CASE mc < m < 1 This range has wonderful a priori estimates of local type. We
assume that u ≥ 0.

If u0 ∈ L1
loc(Rn) then for all t > 0 we have u(·, t) ∈ L∞(Rn), cf. Herrero-Pierre,

1985.

There is a universal constant C > 0 such that if v = um−1

(2) t |∆v | ≤ C, t |vt

v
| ≤ C, t

|∇v |2

v
≤ C.

Estimates for the PME were original of Aronson, Crandall and Benilan. 4 5

Note that v satisfies the quadratic equation

vt = v∆v − γ|∇v |2, γ = 1/(1−m).

4DG Aronson, Ph. Bénilan, Regularité des solutions de l’équation des milieux poreux dans
RN . C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 2, A103–A105.

5Ph. Bénilan, MG Crandall. Regularizing effects of homogeneous evolution equations.
Contributions to analysis and geometry (Baltimore, Md., 1980), pp. 23–39, Johns Hopkins Univ.
Press, Baltimore, Md., 1981.
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Universal Estimates continued

Universal estimates have been found in other problems.

Some can can be found for the heat equation. They also work for the p-Laplacian
equation (fast or slow) in similar exponent ranges6

Similar estimates were discovered by Yau and Li 7 for flows on manifolds and they
prove that they produce continuity.

Later Hamilton for the Rcci flow. 8

For m ≤ mc the first estimate from below fails and the second also from below
and the third from above.

6JR Esteban, JL Vázquez. Régularité des solutions positives de l’équation parabolique
p-laplacienne. [Regularity of nonnegative solutions of the p-Laplacian parabolic equation] C. R.
Acad. Sci. Paris Sér. I Math. 310 (1990), no. 3, 105–110.

7Li, Peter; Yau, Shing-Tung, On the parabolic kernel of the Schrödinger operator. Acta Math.
156 (1986), no. 3-4, 153–201.

8RS Hamilton, The Harnack estimate for the Ricci flow. J. Differential Geom. 37 (1993), no. 1,
225–243.
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AC Type Estimate for Good Fast Diffusion
In the paper Bonforte- Vazquez, Global positivity estimates and Harnack
inequalities for the fast diffusion equation. J. Funct. Anal., 2006
we take the approach to regularity through positivity inspired by the work of Di
Benedetto and collaborators for PME, FDE and PLE using intrinsic versions of
Harnack.
We study local solutions of the FDE in the good exponent range mc < m < 1.
The change in the sign of the exponent m − 1 implies that we get good lower
estimates for 0 < t ≤ t∗ if the ideas of AC can be made to work. Moreover, we
can continue these estimates for t ≥ t∗ thanks to the fortunate circumstance that
we have further differential inequalities, like ∂tu ≥ −Cu/t in the case of the
Cauchy problem. We get a continuation of the lower bounds with optimal decay
rates in time. The final form is

(3) u(t , x) ≥ MR(x0) H(t/tc), MR(x0) = R−d
Z

BR (x0)

u0 dx .

The critical time is defined as before; the function H(η) is defined as Kη1/(1−m) for
η ≤ 1 while H(η) = Kη−dϑ for η ≥ 1, with K = K (m, d). Note that for 0 < t < tc
the lower bound means

u(t , x0) ≥ k(m, d)(t/R2)1/(1−m)

which is independent of the initial mass.

Juan Luis Vázquez (Univ. Autónoma de Madrid) Fast Diffusion Equations
IPAM, UCLA, Los Angeles, April 2007 15 /

40



AC Type Estimate for Good Fast Diffusion
In the paper Bonforte- Vazquez, Global positivity estimates and Harnack
inequalities for the fast diffusion equation. J. Funct. Anal., 2006
we take the approach to regularity through positivity inspired by the work of Di
Benedetto and collaborators for PME, FDE and PLE using intrinsic versions of
Harnack.
We study local solutions of the FDE in the good exponent range mc < m < 1.
The change in the sign of the exponent m − 1 implies that we get good lower
estimates for 0 < t ≤ t∗ if the ideas of AC can be made to work. Moreover, we
can continue these estimates for t ≥ t∗ thanks to the fortunate circumstance that
we have further differential inequalities, like ∂tu ≥ −Cu/t in the case of the
Cauchy problem. We get a continuation of the lower bounds with optimal decay
rates in time. The final form is

(3) u(t , x) ≥ MR(x0) H(t/tc), MR(x0) = R−d
Z

BR (x0)

u0 dx .

The critical time is defined as before; the function H(η) is defined as Kη1/(1−m) for
η ≤ 1 while H(η) = Kη−dϑ for η ≥ 1, with K = K (m, d). Note that for 0 < t < tc
the lower bound means

u(t , x0) ≥ k(m, d)(t/R2)1/(1−m)

which is independent of the initial mass.

Juan Luis Vázquez (Univ. Autónoma de Madrid) Fast Diffusion Equations
IPAM, UCLA, Los Angeles, April 2007 15 /

40



The AC Estimate for Bad Fast Diffusion
We know that for m, mc all kinds of functional disasters may happen. In particular,
extinction in finite holds for all integrable data (and some more) so that positivity
for long times must be excluded. Let u be a local solution with extinction time > 0.
We prove this result in M Bonforte- JL Vazquez, Positivity, local smoothing, and
Harnack inequalities for very fast diffusion equations, Preprint.

Theorem

Let 0 < m < 1 and let u be the solution to the FDE under the above assumptions. Let
x0 be a point in Ω and let d(x0, ∂Ω) ≥ 5R. Then the following inequality holds for all
0 < t < T

(4) R−d
Z

BR (x0)

u0(x) dx ≤ C1 R−2/(1−m) t
1

1−m + C2 T
1

1−m R−2 t−
m

1−m um(t , x0).

with C1 and C2 given positive constants depending only on d. This implies that there
exists a time t∗ such that for all t ∈ (0, t∗]

(5) um(t , x0) ≥ C′
1 R2−d‖u0(x)‖L1(BR )T

− 1
1−m t

m
1−m .

where C′
1 > 0 depends only on d; t∗ depends on R and ‖u0(x)‖L1(BR ) but not on T .
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The local boundedness result for Fast Diffusion

The main result of this part is the local upper bound that applies for the same type
of solution and initial data, under different restrictions on p. Here is the precise
formulation.
We take d ≥ 3. recall that mc = (d − 2)/d , that pc = d(1−m)/2.

Theorem

Let p ≥ 1 if m > mc or p > pc if m ≤ mc . Then there are positive constants C1, C2 such
that for any 0 < R1 < R0 we have

sup
x∈BR1

u(t , x) ≤ C1

tdϑp

"Z
BR0

|u0(x)|p dx

#2ϑp

+ C2

�
t

R2
0

� 1
1−m

.(6)

We recall that ϑp = 1/(2p − d(1−m)) = 1/2(p − pc). The constants Ci depend
on m, d and p, R1 and R0 and blow up when R1/R0 → 1; an explicit formula for Ci

can be found.
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Local Boundedness II
The proof consists in two steps: (1) The norm ‖u(·, t)‖Lp

loc
grows with time in a

controlled way in terms of its value at t = 0, if p ≥ 1, p > 1−m. This uses
Herrero-Pierre’s approach.

(2) Solutions in Lp
x,t locally in space/time are in fact bounded in a smaller cylinder

if p > pc . This uses Moser iteration.

Local Boundedness implies existence of Large Solucions having boundary data
u = +∞. Such solutions form the Maximal Semigroup. A reference is E
Chasseigne, JL Vazquez, Theory of extended solutions for fast-diffusion
equations in optimal classes of data. Radiation from singularities. Arch. Ration.
Mech. Anal. 164 (2002), no. 2, 133–187.

Reference for more general PME and Fast Diffusion ut = ∆Φ(u) in good fast
diffusion: P. Daskalopoulos, C. Kenig. Degenerate diffusions. Initial value
problems and local regularity theory. EMS Tracts in Mathematics, 1. European
Mathematical Society (EMS), Zürich, 2007.

The adaptation of these two arguments to p-Laplacian flows is being done by
Razvan Iagar with us.. It also works for p, 1 without the restriction p larger than a
critical p∗ (explained in the book Smoothing).
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Outline

1 Fast Diffusion
Introduction
Generalities
Fast Diffusion Ranges
Regularity through inequalities. Aronson–Caffarelli Estimates
Local Boundedness

2 Asymptotic behaviour for the PME
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Asymptotic behaviour for PME
Nonlinear Central Limit Theorem

Choice of domain: Rn. Choice of data: u0(x) ∈ L1(Rn). We can write

ut = ∆(|u|m−1u) + f

Let us put f ∈ L1
x,t . Let M =

R
u0(x) dx +

RR
f dxdt .

Asymptotic Theorem [Kamin and Friedman, 1980; V. 2001] Let B(x , t ; M) be the
Barenblatt with the asymptotic mass M; u converges to B after renormalization

tα|u(x , t)− B(x , t)| → 0

For every p ≥ 1 we have

‖u(t)− B(t)‖p = o(t−α/p′), p′ = p/(p − 1).

Note: α and β = α/n = 1/(2 + n(m − 1)) are the zooming exponents as in
B(x , t).

Starting result by FK takes u0 ≥ 0, compact support and f = 0.
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Asymptotic behaviour

The rates. Carrillo-Toscani 2000. Using entropy functional with entropy
dissipation control you can prove decay rates when

R
u0(x)|x |2 dx < ∞ (finite

variance):
‖u(t)− B(t)‖1 = O(t−δ),

We would like to have δ = 1. This problem is still open for m > 2. New results by
JA Carrillo, Markowich, McCann, Del Pino, Lederman, Dolbeault, Vazquez et al.
include m < 1.

Eventual geometry, concavity and convexity Result by Lee and Vazquez (2003):
Here we assume compact support.There exists a time after which the pressure is
concave, the domain convex, the level sets convex and

t ‖(D2v(·, t)− k I)‖∞ → 0

uniformly in the support. The solution has only one maximum. Inner Convergence
in C∞.
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Asymptotic behaviour

If we are only assuming u0 ≥ 0, u0 integrable The rate of convergence cannot be
improved without more information on u0.

m may be also less than 1 but supercritical (→ with even better convergence
called relative error convergence)

For m < (n − 2)/n we do not have the original model. Big surprises;

m = 0 → ut = ∆ log u →, Ricci flow with strange properties;

Proof works for p-Laplacian flow;

Proofs of convergence to a Barenblatt solution for m < 1 need sophisticated
entropy - entropy rate analysis based on Hardy-Poincaré inequalities (with
weights of the form (1 + x2)−γ).

A. Blanchet, Adrien, M. Bonforte, Matteo, J. Dolbeault, G. Grillo, JL Vázquez,
”Hardy-Poincaré inequalities and applications to nonlinear diffusions” C. R. Math.
Acad. Sci. Paris 344 (2007), no. 7, 431–436.
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weights of the form (1 + x2)−γ).

A. Blanchet, Adrien, M. Bonforte, Matteo, J. Dolbeault, G. Grillo, JL Vázquez,
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Calculations of the entropy rates

We rescale the function as u(x , t) = R(t)n ρ(y R(t), s)

where R(t) is the Barenblatt radius at t + 1, and “new time” is s = log(1 + t).
Equation becomes

ρs = div (ρ(∇ρm−1 +
c
2
∇y2)).

(this conserves mass
R

u(x , t)dx +
R

ρ(y , τ) dy ).

Then define the entropy
E(u)(t) =

Z
(

ρm

m − 1
+

c
2

ρy2) dy

The minimum of entropy is identified as the Barenblatt profile.

Calculate
dE
ds

= −
Z

ρ|∇ρm−1 + cy |2 dy = −D

Moreover,
dD
ds

= −R, R ∼ λD.

We conclude exponential decay of D and E in new time s, which is potential in
real time t.
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The Cauchy Problem for the FDE in Rd

We consider the solutions u(t , x) of8<
:

∂tu = ∆(um/m) = ∇ · (um−1∇u)

u(0, ·) = u0

where m ∈ (0, 1) (fast diffusion) and (t , x) ∈ QT = (0, T )× Rd

Two parameter ranges: mc < m < 1 and 0 < m < mc , where

mc :=
d − 2

d

For 1 > m > mc the mass
R

Rd u(y , t) dy is preserved in time if u0 ∈ L1(Rd) .
Non-negative solutions are positive and smooth for all x ∈ Rd and t > 0.
Intermediate asymptotics, as t → +∞
If m < mc mass is NOT preserved and solutions may extinguish in finite time.

u0 ∈ Lpc (Rd) , pc =
d (1−m)

2
=⇒ ∃ T = T (u0) : u(τ, ·) ≡ 0 ∀ t ≥ T

With minor changes we can also do m ≤ 0
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Barenblatt solutions and rescaling
The BS

UD,T (t , x) :=
1

R(t)d

(
D +

1−m
2

∣∣∣∣ x
R(τ)

∣∣∣∣2
)− 1

1−m

with R(τ) :=
[
d (m −mc) (t + T )

] 1
d (m−mc ) if mc < m < 1

(vanishing in finite time) if 0 < m < mc

R(τ) :=
[
d (mc −m) (T − t)

]− 1
d (mc−m)

Time-dependent rescaling:

τ := log
(

R(t)
R(0)

)
and y := x

R(t) . The function v(τ, y) := R(t)d u(t , x) solves
a nonlinear Fokker-Planck type equation{

∂τ v = ∆y vm +∇y · (y v) (τ, y) ∈ (0,+∞)× Rd

v(0, y) = v0(y) = R(0)d u0(R(0) y) y ∈ Rd
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]− 1
d (mc−m)

Time-dependent rescaling:

τ := log
(

R(t)
R(0)

)
and y := x

R(t) . The function v(τ, y) := R(t)d u(t , x) solves
a nonlinear Fokker-Planck type equation{

∂τ v = ∆y vm +∇y · (y v) (τ, y) ∈ (0,+∞)× Rd

v(0, y) = v0(y) = R(0)d u0(R(0) y) y ∈ Rd
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Assumptions
(H1) u0 is a non-negative function in L1

loc(Rd) and that there exist positive constants T
and D0 > D1 such that

UD0,T (0, x) ≤ u0(x) ≤ UD1,T (0, x) ∀ x ∈ Rd

(H2) If m ∈ (0, m∗], there exist D∗ ∈ [D1, D0] and f ∈ L1(Rd) such that

u0(x) = UD∗,T (0, x) + f (x) ∀ x ∈ Rd

(H1’) v0 is a non-negative function in L1
loc(Rd) and there exist positive constants

D0 > D1 such that
VD0(x) ≤ v0(x) ≤ VD1(y) ∀ y ∈ Rd

(H2’) If m ∈ (0, m∗], there exist D∗ ∈ [D1, D0] and f ∈ L1(Rd) such that

v0(y) = VD∗(y) + f (y) ∀ x ∈ Rd

A New Critical Exponent m∗ appears

m∗ =
d − 4
d − 2

< mc =
d − 2

d

it has a meaning in the linearized analysis in terms of spectral properties of some
self-adjoint operator.
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Conv. to the asymptotic profile (without rate)
Theorem

Let d ≥ 3, m ∈ (0, 1). Consider a solution v with initial data satisfying (H1’)-(H2’)

(i) For any m > m∗, there exists a unique D∗ such that
R

Rd (v(t)− VD∗) dx = 0 for
any t > 0. Moreover, for any p ∈ (q(m),∞], limt→∞

R
Rd |v(t)− VD∗ |p dx = 0

(ii) For m ≤ m∗, v(t)− VD∗ is integrable,
R

Rd (v(t)− VD∗) dx =
R

Rd f dx and v(t)
converges to VD∗ in Lp(Rd) as t →∞, for any p ∈ (1,∞]

(iii) (Convergence in Relative Error) For any p ∈ (d/2,∞],

lim
t→∞

‖ v(t)/ VD∗ − 1 ‖p = 0.

We have put q(m) := d (1−m)
2 (2−m)

References: A. Blanchet, Adrien, M. Bonforte, Matteo, J. Dolbeault, G. Grillo, JL
Vázquez, 07:
P Daskalopoulos- N Sesum, 06.
Many previous references for m > 1, for m < 1, but m near 1: Dolbeault-Del Pino,
McCann et al., Markowich et al.
Paper Carrillo-Vazquez got to m = mc but estimates blow up as m → mc . Here we go
past mc .
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Convergence to the asymptotic profile with rate

Theorem

If m 6= m∗, there exist t0 ≥ 0 and λm,d > 0 such that

(i) For any q ∈ (q∗,∞], there exists a positive constant Cq such that

‖v(τ)− VD∗‖q ≤ Cq e−λm,d τ ∀ t ≥ t0

(ii) For any ϑ ∈ [0, (2−m)/(1−m)), there exists a positive constant Cϑ such that |y |ϑ(v(τ)− VD∗)


2 ≤ Cϑ e−λm,d t ∀ t ≥ t0

(iii) For any j ∈ N, there exists a positive constant Hj such that

‖v(τ)− VD∗‖C j (Rd ) ≤ Hj e−
λm,d

d+2(j+1)
t ∀ t ≥ t0

q∗ :=
2 d (1−m)

2 (2−m) + d (1−m)

Reference: Blanchet-Bonforte- Dolbeault-Grillo-Vázquez, 07, Arch Rat Mech Anal, to
appear:
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Consequences. Bad case
We translate the result as power decay in the original problem

Corollary

Let d ≥ 3, m ∈ (0, 1), m 6= m∗. Consider a solution u with initial data satisfying
(H1)-(H2). For τ large enough, for any q ∈ (q∗,∞], there exists a positive constant C
such that

‖u(t)− UD∗(t)‖q ≤ C R(t)−α

where α = λm,d + d(q − 1)/q and large means T − t > 0, small, if m < mc , and
t →∞ if m ≥ mc

We also have convergence in relative error

Corollary

For any p ∈ (d/2,∞], there exists a positive constant C and γ > 0 such that v(τ)/ VD∗ − 1


Lp(Rd )
≤ C e−γ t ∀ t ≥ 0

The case m = m∗ does not have a power decay in time t for u, in fact it is a
power of τ for v (Bonforte-Grillo-Vazquez, in preparation)
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Idea of the proof

Passing to the quotient: the function w(t , x) :=
v(t , x)

VD∗(x)
solves

8>>><
>>>:

wt =
1

VD∗
∇ ·

�
w VD∗∇

�
1

m − 1
(wm−1 − 1) V m−1

D∗

��
in (0, +∞)× Rd

w(0, ·) = w0 :=
v0

VD∗
in Rd

with
0 < inf

x∈Rd

VD0

VD∗
≤ w(t , x) ≤ sup

x∈Rd

VD1

VD∗
< ∞

We then get a number of preliminary estimates on w like conservation of the relative
mass and the Harnack Principle

‖w(t)‖Ck (Rd ) ≤ Hk < +∞ ∀ t ≥ t0

∃ t0 ≥ 0 s.t. (H1) holds if ∃ R > 0, sup|y|>R u0(y) |y |
2

1−m < ∞, and m > mc
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Heuristics: linearization and weights
Take w(t , x) = 1 + ε g(t,x)

V m−1
D∗

(x)
and formally consider the limit ε → 0 in

8>>><
>>>:

wτ =
1

VD∗
∇ ·

�
w VD∗∇

�
1

m − 1
(wm−1 − 1) V m−1

D∗

��
in (0, +∞)× Rd

w(0, ·) = w0 :=
v0

VD∗
in Rd

Then g solves
gτ = V m−2

D∗ (x)∇ · [VD∗(x)∇g(t , x)]

and the entropy and Fisher information functionals

F(g) :=
1
2

Z
Rd
|g|2 V 2−m

D∗ dx and I(g) :=

Z
Rd
|∇g|2 VD∗ dx

consistently verify

(7)
d
dτ

F(g(τ)) = − I(g(τ)).

It is interesting to write dν = V dy and dµ = V 2−mdy = dν/(D + cy2).
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Linear weighted problem
Consider the following linear equation for g,

∂g
∂τ

= Am g

where
Am g := m V m−2

D∗ (y)∇ · [VD∗ ∇ g ] .

The linear operator Am : L2(Rd , dµ) → L2(Rd , V 2−m
D∗

dx) is the positive self-adjoint
operator associated to the closure of the quadratic form - the Dirichlet Form - defined
for φ ∈ C∞

c (Rd) by

I[φ] := m
Z

Rd
|∇φ|2 VD∗ dx .

If we can relate I[φ] to F(φ) by a functional inequality of the form

λF(φ) ≤ I[φ],

combining this with dF(g(τ))/dτ) = − I(g(τ)) to get after one integration

F(g(τ) ≤ F(g(0)) e−λτ .
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Theorem - Spectral Gap: Hardy-Poincaré Inequalities

Let d ≥ 1 and D > 0. If m ∈ (0, 1) and 1 ≤ d ≤ 4, or m ∈ (m∗, 1) and d ≥ 5, then
there exists a positive constant Cm,d , which does not depend on D, such thatZ

Rd
|g − g|2 V 2−m

D dx ≤ Cm,d

Z
Rd
|∇g|2 VD dx , ∀ g ∈ D(Rd) ,

g =

Z
Rd

g V 2−m
D dx .

(8)

In case d ≥ 5 and m ∈ (0, m∗), we have

(9)
Z

Rd
g2 V 2−m

D dx ≤ Cm,d

Z
Rd
|∇g|2 VD dx , ∀ g ∈ D(Rd)

with optimal constant

Cm,d =
8 m (1−m)

[(d − 2) (m −m∗)]2

Estimates of the optimal constant Cm,d when m > m∗ are needed
Recall that m∗ = (d − 4)/(d − 2) and VD = (D + 1−m

2m |x |2)−
1

1−m .
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Weighted Hardy Inequalities

We now consider the limit D → 0+, in the Spectral Gap Theorem .
Letting α := 1/(m − 1), we obtain the Weighted Hardy inequality,Z

Rd

|g|2

|x |2 |x |
α dx ≤ Hα

Z
Rd
|∇g|2 |x |α dx , ∀ g ∈ D(Rd) .

with the optimal constant

Hα :=
4

[2 α + d − 2]2
=

8 m (1−m)

[(d − 2) (m −m∗)]2
· 1−m

2 m
.

SKETCH OF PROOF. Such an inequality is easy to establish by the “completing the
square method” as follows.

0 ≤
Z

Rd

����∇g + λ
x
|x |2 g

����
2

|x |2α dx

=

Z
Rd
|∇g|2 |x |2α dx +

h
λ2 − λ (2 α + d − 2)

i Z
Rd

|g|2

|x |2 |x |
2α dx .

An optimization of the right hand side with respect to λ gives the desired inequality.
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The nonlinear functionals
Relative entropy

F(w) :=
1

1−m

Z
Rd

�
(w − 1)− 1

m
(wm − 1)

�
V m

D∗ dx

Relative Fisher information

I(w) :=
1

(m − 1)2

Z
Rd

��∇ h�
wm−1 − 1

�
V m−1

D∗

i ��2 w VD∗ dx

These functionals are the linear counterpart of the nonlinear functionals that will be
used in the nonlinear analysis:

Relative Entropy F , linearized gives the L2(Rd , V 2−m
D∗

dx)-norm
Relative Fisher Information J , linearized gives the Dirichlet Form.

Proposition

Under assumptions (H1)-(H2),

d
dτ
F(w(τ)) = −I(w(τ))
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Comparison of the functionals

Let m ∈ (0, 1) and assume that u0 satisfies (H1)-(H2) we get for the Relative
entropy]

C1

Z
Rd
|w − 1|2 V m

D∗ dx ≤ F [w ] ≤ C2

Z
Rd
|w − 1|2 V m

D∗ dx

For the Fisher information there is only approximate equivalence

I[g] ≤ β1 J [w ] + β2 F[g] with g := (w − 1) V m−1
D∗

Use the spectral gap estimate, with Cm,d = m/λm,d , to obtain
2 F[g] ≤ Cm,d I[g] ,

which gives, for the solution of the linear problem gt = Am g ,
the exponential decay of the weighted L2-norm

F[g(t)] ≤ e− 2 λm,d t F[g(0)] ∀ t ≥ 0 .

We prove that β2(τ) goes to zero with large τ and then we easily get a similar
exponential decay of the weighted L2-norm
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Limit when m tends to 1

In the limit m → 1, we observe that

lim
m→1−

D1/(1−m)
∗ VD∗ = (2 π D∗)d/2 µ with µ(x) =

e−
|x|2
2 D∗

(2 π D∗)d/2 .

so that the equation formally converges to the Ornstein-Uhlenbeck equation,

gt = m V m−2
D∗ (x)∇ · [VD∗ ∇ g ] −→ gt = µ−1 ∇ ·

�
µ∇g

�
.

Also the spectral gap inequalityZ
Rd
|g|2 V 2−m

D dx ≤ Cm,d

Z
Rd
|∇g|2 VD dx ∀ g ∈ C∞(Rd ) such that

Z
Rd

g V 2−m
D dx = 0

formally converges to the Gaussian-Poincaré inequalityZ
Rd
|φ|2 dµ ≤

Z
Rd
|∇φ|2 dµ ∀ φ ∈ C∞(Rd ) such that

Z
Rd

φ dµ = 0 ,

where dµ := µ dx . In the Gaussian case, a logarithmic Sobolev inequality holds, [Gross]Z
Rd
|φ|2 log

 
|φ|2R

Rd |φ|2 dµ

!
dµ ≤ 2

Z
Rd
|∇φ|2 dµ ,

which is stronger than the Gaussian Poincaré inequality. With the measure VD∗dx . Although the
spectral gap inequality holds true, there is no corresponding logarithmic Sobolev inequality.

Juan Luis Vázquez (Univ. Autónoma de Madrid) Fast Diffusion Equations
IPAM, UCLA, Los Angeles, April 2007 39 /

40



En su inocencia creyó que la ciencia
era una justa de amor interminable

End
Thank you
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