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Overview

• Nontrivial exact solutions of 2D (XY) Semi-Geostrophic
equations in elliptical domain.

• Dual variable formulation: active scalar with Monge-Ampère
equation for potential.

• Find exact quadratic solutions to Monge-Ampère 2nd BVP on
ellipses.

• Take advantage of conserved quantities.

• Reduce the PDE (under quadratic ansatz) to Hamiltonian
system of 2 ODE.

• Study parameter dependence of the Hamiltonian system: find
bifurcations, give Mass Transport interpretation.

• Reinterpret results in the physical domain.
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Motivation/Application

• Have an explicit, nontrivial solution. Few available in the S-G
theory. Nonlinear analog for S-G of Kirchoff ellipses.

• S-G a useful model:

– Physically valid approximation for small Rossby numbers.

– Density stratification due to gravity makes flows 2D,

– Can be used to model fully resolved Euler flows with
coarsely resolved SG.

• Exact solution useful for validation purposes.

– Numerical solution of Monge-Ampère/ Mass Transport &
S-G still a challenge.

– Can test solutions of PDE by solving a nonlinear ODE.
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Euler, SG, and QG

2D Rotating Euler, stream function, Q. v = J∇Q = ∇⊥Q,

∇∂Q
∂t

+
(
D2Q+ I

)
J∇Q− J∇P = 0 (2D rotating Euler)

Approximate: Acceleration Terms � Rotation Term (Ro � 1).
Models:

Q = P (Gestrophic Balance)

Semi-geostrophic (Eliassen, Hoskins)

∇∂P
∂t

+
(
D2P + I

)
J∇Q− J∇P = 0, (SG)

Quasigeostrophic

∇∂P
∂t

+D2PJ∇P + J∇Q− J∇P = 0. (QG)
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Symmetries and Conservation Laws:

Potential Vorticity

The particle relabelling symmetry implies that the

ν2(t,y)/4 := det(D2P + I) (potential vorticity)

remains a constant along each particle’s Lagrangian trajectory.

Analogous to (ordinary) vorticity

ω(t,y) = Tr (D2Q+ I) (vorticity)

in Euler’s equation.

6



Symmetries and Conservation Laws

Conservation of Energy

The time translation invariance symmetry, combines with the
no-flux boundary condition to yield global conservation of the SG
energy

HSG :=
1
2

∫
Y

|∇P (t,y)|2 d2y, (Energy)

Check:

d

dt
HSG = −

∫
Y

div
[
(
|∇P |2

2
+ P ) J∇Q

]
d2y = 0,

Hamiltonian formulations of semigeostrophy based on such energies
have been proposed by (Salmon ’88 and Roulstone & Norbury ’94)
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Quadratic-potential ansatz and affine symmetry I

Assume physical domain an ellipse, area πf2, aspect ratio eϕ:

Y = {Fz | |z| < 1} ⊂ R2, F =

feϕ/2 0

0 fe−ϕ/2


Affine invariance of convex functions (and ellipses) motivates
quadratic ansatz for P,Q.

P (t,y) = yT P(t)y/2 Q(t,y) = yT Q(t)y/2

P(t), Q(t) symmetric 2× 2 matrices.

The no-flux condition forces Q(t) = q(t)F−2 and q(t) = 0.
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Quadratic-potential ansatz and affine symmetry II

Our ansatz therefore constrains the fluid to slosh around on
concentric ellipses in Y — with a velocity given by solving the 2× 2
matrix ODE

P′(t) + q(t)(P(t) + I)JF−2 − JP(t) = 0 (ODE physical vars.)

for the variable speed q(t) and the symmetric pressure matrix P(t).

Difficult to solve in Eulerian variables

• decouple the system: go to dual variables.

• reduce dimensionality of the system using variables consistent
with the conserved quantities
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Active scalar w. Nonlinear Law

Legendre trans. of convex V (t,y) = P (t,y) + |y|2/2,

U(t,x) = sup
y∈Y

y · x− V (t,y) (Legendre transform)

For U(t,x), V (t,y) smooth, strictly convex, SG, becomes a

∂ρ

∂t
+ div (ρu) = 0 (transport)

u = J(x−∇U) (velocity)

det(D2U) = ρ (Monge-Ampère)

∇U(t,R2) ⊂ Y (2nd BVP for M-A)

in the time-dependent dual coordinates x = ∇V (t,y).
aHoskins. ’75, Cullen-Norbury-Purser ’91, Benamou-Brenier. ’98
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Compare with Vorticity for 2D Rotating Euler

Active Scalar with Monge-Ampère equation:

∂ρ

∂t
+ div (ρu) = 0 (transport)

u = J(x−∇U) (velocity)

det(D2U) = ρ (Monge-Ampère)

Active Scalar with Laplace equation:

∂ω

∂t
+ div (ωv) = 0 (transport)

v = J(x−∇V ) (velocity)

∆V = ω (Euler)
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Related Works with Linear Potential Eqns

• self-gravitating fluid ellipsoidsa

• elliptical vorticity patches in a shearing fieldb

• exact solutions for QGc

Most of these solutions built around the quadratic Newtonian
potential generated inside a homogeneous ellipsoid.

Note: Our new solutions are built instead on quadratic solutions to
the Monge-Ampère equation when the domain and its gradient
image are both ellipses.

aDirichlet 1860, Dedekind 1860, and Riemann 1860,
bKirchhoff 1876, Chandrasekhar ’69, Moore & Saffman ’71 and Kida ’81
cMeacham, Pankratov, Shchepetkin & Zhmur ’94
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Main Theorem (Dual Vars)

For a fluid constrained to the ellipse Y = F(B1), if the potential
vorticity forms an elliptical patch X(t) = E(t)(B1) in SG dual
coordinates at t = 0 then it is an elliptical patch at t > 0.

There is an explicit ODE for the evolving ellipse, in terms of the
physical ellipse. Two variables: orientation and aspect ratio of the
potential ellipse. Two parameters: aspect ratio of physical ellipse,
and total mass (Rossy number). (below)

Furthermore, the trajectories of the ODE are constrained to the
level sets of the function W 2

2 = W 2
2 (X(t), Y ) equal to the energy in

the physical variables.

In addition, making the right choice of variables, the ODE can be
expressed as a Hamiltonian dynamical system, with two degrees of
freedom, and Hamiltonian W 2

2 .
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The ODE

Write

ρ(t,x) =
f2

ε2
1X(t)(x), U(t,x) =

1
2
xT U(t)x

and
E2 = ε2RθSσR−θ, F2 = f2Sϕ

then

U(t) =
1

Z(t)

(
E−2(t) +

F2

ε2f2

)
.

and, for σ(t0) 6= 0, and Z = Z(σ, θ;ϕ) (from transport map)

σ′ = − 2
Zε2

sinh(ϕ) sin(2θ)

θ′ = 1− 1
Zε2

(
coshϕ+ sinh(ϕ)

coshσ
sinhσ

cos(2θ)
)
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The Energy = the Transport Cost

The trajectories of the ODE are constrained to the level sets of the
function

W 2
2 =

1
2
(
ε2 coshσ + f2 coshϕ− Zε2f2

)
(Transport Cost)

which is the Wasserstein distance between the two ellipses, and,
equal, up to a constant, to the physical energy, HSG.
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Canonical coordinates

Changing variables to r = (σ + 1/σ)/2 and reexpressing the energy
as a function of (r, θ) and the parameters λ and s = coshϕ ≥ 1,
(parameters for the physical ellipse)

H̄(r, θ) = λ2s+ r − λ
(

2 + 2rs+ 2 cos(2θ)
√

(r2 − 1)(s2 − 1)
)1/2

converts evolution to an autonomous Hamiltonian system governing
the canonically conjugate variables (r(t), θ(t))

dr

dt
= −∂H̄

∂θ

dθ

dt
=
∂H̄

∂r
.
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Strategy for solving

Active scalar w. nonlinear (M-A) equation for velocity

∂ρ

∂t
+ div (ρu) = 0, u = J(x−∇U),

det(D2U) = ρ

∇U(t,R2) ⊂ Y

Make quadratic ansatz. Observations (to follow):

• M-A quadratic when target and source ellipses

• Quadratic potential gives linear vector field

• Linear vector field takes ellipses to ellipses.

Difficult calculation. Reduce dimensionality by choose appropriate
variables that capture symmetries & conservation laws.

Good choice of variables give Hamiltonian system.
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Optimal map between ellipses

Find the optimal map and transportation cost between two ellipses
in the planea.

This amounts to solvingdet(D2U) = ρ

∇U(t,R2) ⊂ Y
(Monge-Ampère)

when ρ(x) = λ21X(x), where X = E(B1), Y = F(B1) are ellipses.

The optimal map m−1(x) is given by

m(y) = F−1
√

(FE2F)F−1y

(Many linear maps, only one symmetric and positive definite.)
aDowson & Landau ’82, Givens & Shortt ’84 Knott & Smith ’84 and Olkin

& Pukelsheim ’82
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Explicit Optimal Map in 2D

Matrix square root is not convenient for our purposes.

The optimal map between the ellipses 1Y /|Y | and 1X/|X| is given
by x = m(y) = Vy, where V = U−1 is the positive symmetric matrix
inverse to

U := Z−1
(
E−2 + F2/det(EF)

)
(Explicit Map)

where Z normalizes determinant of U:

Z := trace
√

(FE2F)−1

Proof. Since E : B1 −→ X and F : B1 −→ Y , where B1 is the unit
ball, and U is symmetric, this is equivalent to showing F−1UE = Rθ
coincides with a rotation Rθ : B1 −→ B1 by some angle θ.

The rest is an explicit calculation in coordinates.
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Dynamics of the free boundary

Given u(t,x) = W(t)x on R2, W(t) C1, 2× 2 matrix

X′(t,x) = W(t)X(t,x)

X(0,x) = x.
(Lagrangian trajectories)

An ellipse X ⊂ R2 convected by linear velocity field u(x, t) = W(t)x
yields a family of ellipses X(t,X) = {E(t)z | |z| < 1} governed by

d

dt
E−2 = −WT E−2 − E−2W (Ellipse ODE)

Proof. Let x(t), be a trajectory of the ode, x′(t) = W(t)x(t).
Differentiate the equation

xT E−2x = 1.
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Rotation, reflection and shear matrices

Define the rotation matrices through the angle θ,

Rθ :=

cos θ − sin θ

sin θ cos θ

 J = Rπ/2 (Rotation Matrices)

reflection matrices (through the line with angle θ),

K :=

1 0

0 −1

 Kθ := RθKR−θ (Reflection Matrices)

and the shear matrix,

Sσ :=

eσ 0

0 e−σ

 (Shear Matrix)
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Choice of Basis for Matrices

Make a choice of variables to capture symmetries in the equation.

Write E, symmetric, 2× 2 matrix, with determinant ε2 as

E = εRθSσ/2R−θ. (Canonical form)

Then, if θ = θ(t) and σ = σ(t) evolve smoothly

d

dt
E−2 = θ′(JE−2

t − E−2
t J)− σ′KθE−2

t

Proof. This follows from the matrix identities

RθK = KθRθ,
d

dθ
Rθ = JRθ,

d

dσ
Sσ = KSσ.
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Solving SG with quadratic ansatz

Idea of proof/calculation

d

dt
E−2 = −WT E−2 − E−2W (Ellipse ODE)

W(t) = J(I− U(t)) (velocity from map)

U := Z−1
(
E−2 + F2/det(EF)

)
(Map from M-A)

d

dt
E−2 = θ′(JE−2

t − E−2
t J)− σ′KθE−2

t (E derivative)
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Classification of the Solutions

Two parameter system: Ro (rotation vs transport), asymmetry of Y .

What are possible dynamical behaviors?

• ellipse fixed

• ellipse rotates at constant speed (occurs if Y is a circle)

• ellipse wiggles back and forth (with finite, or infinite period)

• ellipse stretches (can’t stretch unboundedly, by cons. law)

• combination of stretching and wiggling/rotation

Classify Solutions: Non-generic: Fixed points. Aperiodic hetero and

homo clinic orbits which link saddles at ±σ2 on the vertical axis.

Generic: the aspect ratio a(t) and inclination (θ(t) mod π) of the dual

potential vorticity ellipse evolve periodically. The principal axes of this

ellipse (and of the isobars) either oscillate about the coordinate axes

(wobbling) or precess eternally (rotating pulsations).
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Theorem: Bifurcations of the energy landscape

If λ, ϕ > 0, H̃ ∈ C(R2) is smooth on R2 \ {0}, has global minima
placed symmetrically on the horizontal axis at (±σ−, 0), and a
topological saddle point at σ = 0.

These are the only critical points unless λ > 2 and ϕ ≤ ϕcr(λ),

where sinh ϕcr(λ)
2 = 1

λ
√

2

(
−1 +

√
λ2−1

3

)3/2

.

If ϕ < ϕcr(λ) there are two additional non-degenerate critical
points (±σ+, π/2) and (±σ2, π/2) on the vertical axis: a local
maximum at σ+ > 0 and a saddle point at σ2 > σ+ these coalesce
into a single degenerate critical inflection point σ+ = σ2 > 0 at the
bifurcation eccentricity ϕ = ϕcr(λ). The critical points are the
solutions to

sinhσ± = λ sinh
(
σ± ∓ ϕ

2

)
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and the corresponding critical values are ordered by

H̃(σ−, 0) =: h− < h1 := H̃(0, 0) < h+ := H̃(σ+, π/2)

h− < h2 := H̃(σ2, π/2) < h+.

There are no further critical points. A continuous increasing curve
ϕbi : ]2,∞[ −→ ]0,∞[ strictly less that ϕcr(λ) separates the region
0 < ϕ < ϕbi(λ) of the parameter space where h1 > h2 from the
region ϕbi(λ) < ϕ < ϕcr(λ) where h1 < h2. The curve
λ −→ (ϕbi(λ), σ2(λ, ϕbi(λ))) simultaneously solves

cosh(
σ − ϕ

2
) = cosh

ϕ

2
+

coshσ − 1
2λ

.

If ϕ 6= ϕbi(λ), one connected component of the level set
{(σ cos θ, σ sin θ) ∈ R2 | H̃(σ, θ) = h1} consists of a smoothly
immersed figure-eight curve with orthogonal self-intersection at the
origin.
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Show pictures

- Bifurcation Diagram for topology of H

- level sets of H in each of the 5 parameter regimes. Which depend
on size λ and eccentricity, φ of the physical domain.

In the figures, we fix λ = 3, increase φ, to pass through the regions.

27



Symmetry breaking bifurcation:

optimal transport problem

Transportation problem: Among all ellipses X ⊂ R2 of fixed area
π/λ2, find the one nearest the unit disc Y = B1 in Wasserstein
distance.

If λ ≤ 2, solution: a circle X = B1/λ,

If λ > 2, (meaning X is less than half as big as the unit disc), more
efficient to stretch the ellipse out so that some of the particles near
the boundary of B1 need not be transported so far.

Solution: aspect ratio a− := exp[2 cosh−1(λ/2)], arbitrary
orientation θ;

Note: If Y ellipse, instead of the unit ball, get unique solution.
(orientation must be same, by theorem).

28



Back to physical variables

By performing the Legendre transform of a quadratic function,
recover the pressure

P(t) =
1

λz(t)
(S−ϕ + Rθ(t)Slog σ(t)R−θ(t))− I.

where we have the ode’s for the variables. ϕ, σ.
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End
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