Economics of Matching & Optimal Transport

Lecture 2: Markets with Money

Prepared as a Tutorial for IPAM

William Zame

Economic Version of Transportation Problem

- $(X, \mu), (Y, \nu)$ finite measure spaces
- *X*, *Y* compact metric
- $\Pi : X \times Y \to \mathbb{R}_+$ continuous

Find $F: X \to Y$ (measure preserving) to maximize

$$\Gamma(F) = \int_X \Pi(x, F(x)) d\mu(x)$$

Interpretation

- X = workers, Y = firms
- $\Pi(x,y)$ = value of output if x works for y
- Γ = social gain

Problem of benevolent social planner

Expand/Recast to take account of

- unequal numbers of workers, firms
 - involuntary unemployment
 - firms not operating
- voluntary unemployment
- no optimal F

Recast

- $(X, \mu), (Y, \nu)$ finite measure spaces
- X, Y compact metric; μ, ν full support
- $\Pi : X \times Y \to \mathbb{R}_+$ continuous
- $\rho: X \to \mathbb{R}_+$ continuous
- $V(x,y) = \Pi(x,y) \rho(x)$

Fix population measures μ, ν .

A matching is a measure $\sigma \in M_+(X \times Y)$ such that

 $\sigma_X \leq \mu | X \ , \sigma_Y \leq \mu | Y$

Problem: Find matching $\sigma \in M(X \times Y)$ to maximize

$$\Gamma(\sigma) = \int_{X \times Y} V(x, y) d\sigma(x, y)$$

Comments

- allows for unemployment, unfilled jobs
- avoids problem that maximal F might not exist
- allows "fractional matchings" –

but if X,Y finite; μ,ν counting

- matchings \leftrightarrow doubly stochastic matrices
- optimal matchings compact convex set
- extreme optimal matchings are integral matchings

This is a Linear Programming problem

Primal Problem Find $\sigma \in M_+(X \times Y)$ to maximize $\Gamma(\sigma) = \int_{X \times Y} V(x, y) d\sigma(x, y)$ subject to $\sigma_X \leq \mu | X$, $\sigma_Y \leq \mu | Y$

Dual Problem

Find $q \in C_+(X \cup Y)$ to minimize

$$\gamma(q) = \int_X q(x) d\mu(x) + \int_Y q(y) d\mu(y)$$
 subject to $q(x) + q(y) \ge V(x,y)$

Caution

- Duality: $\langle M, C \rangle$
- Abstract LP theory **does not work in this duality**

Fundamental Theorem of Linear Programming may not hold

Theorem

- (i) Primal problem has solutions $\mathcal{M}(\mu,\nu) \subset M_+(X \times Y)$ weak-* compact, convex
- (ii) Dual problem has solutions $Q(\mu, \nu) \subset C_+(X \cup Y)$ norm compact, convex

(iii) Primal/Dual solutions have same value function

$$g(\mu, \sigma) = \max_{\sigma} \left[\int_{X \times Y} V(x, y) d\sigma(x, y) \right]$$
$$= \min_{q} \left[\int_{X} q(x) d\mu(x) + \int_{Y} q(y) d\mu(y) \right]$$

Theorem

(i) g is weak* continuous, norm Lipschitz, concave, homogeneous of degree 1

(ii) g is subdifferentiable

(iii) $\partial g(\mu,\nu) = Q(\mu,\nu)$

Can partially order $Q(\mu, \nu)$

• *X*-ordering:

$$q \ge_X q' \Leftrightarrow q(x) \ge q'(x)$$
 for all $x \in X$

• *Y*-ordering:

$$q \leq_Y q' \Leftrightarrow q(y) \leq q'(y)$$
 for all $y \in Y$

Theorem

(i) For
$$q,q' \in Q(\mu,\nu)$$
:
$$q \ge_X q' \Leftrightarrow q \le_Y q'$$

(ii) $Q(\mu,\nu)$ is a complete lattice

Comments

- Social perspective: planner's problem
- Individualistic perspective
- Market perspective

Individualistic perspective

Matching σ is **stable** if there exist continuous

$$w_{\sigma}: X \to \mathbb{R}_+$$
, $r_{\sigma}: Y \to \mathbb{R}_+$

such that

- $\sigma_X\{x: w_\sigma(x) < \rho(x)\} = 0$
- $\sigma\{(x,y): w_{\sigma}(x) + r_{\sigma}(y) \neq \Pi(x,y)\} = 0$
- there do not exist x_0, y_0 such that $w_\sigma(x_0) > \rho(x_0)$ and

$$w_{\sigma}(x_0) + r_{\sigma}(y_0) < \Pi(x_0, y_0)$$

Market perspective

Equilibrium: wage $w: X \to \mathbb{R}_+$, residual $r: Y \to \mathbb{R}_+$,

matching σ such that

•
$$\sigma_X\{x : w(x) < \rho(x)\} = 0$$

•
$$\sigma_X\{x : w(x) > \rho(x)\} = \mu\{x : w_\sigma(x) > \rho(x)\}$$

- $\sigma_Y\{y: r(y) < \sup_x[\Pi(x,y) w(x)]\} = 0$
- $\sigma\{(x,y) : w(x) + r(y) \neq \Pi(x,y)\} = 0$

Theorem

Solutions to planner's problem

 \updownarrow

Stable matchings

 \uparrow

Market equilibria

Where do wages/residuals come from?

- population (μ, ν)
- σ stable (optimal) matching for (μ, ν)
- $q \in \partial g(\mu, \nu)$
- $(x,y) \in \text{support}(\sigma)$

$$\Rightarrow w(x) = q(x) + \rho(x), r(y) = q(y)$$

Example

- X = Y = [0, 1]
- $\mu = \nu = \lambda$
- $\Pi(x,y) = xy + \beta, \ \beta \ge 0$
- $\rho \equiv 0$

Important: Π is supermodular

$$\frac{\partial^2 \Pi}{\partial x \partial y} > 0$$

 Π supermodular \Rightarrow stable matching is assortative:

higher x matched with higher y

Assortative matching

+
$$\mu = \nu = \lambda$$

+ $\lambda(X) = \lambda(Y) = 1$

 \implies matching is diagonal

Diagonal matching + subdifferential inequality

 \rightarrow differential equation for w = wages

Subdifferential inequality \rightarrow

$$w(x) + r(y) = \Pi(x, y)$$

$$w(x + \varepsilon) + r(y) \ge \Pi(x + \varepsilon, y)$$

$$w(x + \varepsilon) + \Pi(x, y) - w(x) \ge \Pi(x + \varepsilon, y)$$

$$w(x + \varepsilon) - w(x) \ge \Pi(x + \varepsilon, y) - \Pi(x, y)$$

Similarly

$$w(x + \varepsilon) + r(y + \varepsilon) = \Pi(x + \varepsilon, y + \varepsilon)$$

$$w(x) + r(y + \varepsilon) \ge \Pi(x, y + \varepsilon)$$

$$w(x + \varepsilon) + \Pi(x + \varepsilon, y + \varepsilon) - w(x + \varepsilon) \ge \Pi(x + \varepsilon, y)$$

$$w(x + \varepsilon) - w(x) \le \Pi(x + \varepsilon, y + \varepsilon) - \Pi(x, y + \varepsilon)$$

Hence

$$\Pi(x+\varepsilon,y) - \Pi(x,y) \le w(x+\varepsilon) - w(x) \le \Pi(x+\varepsilon,y+\varepsilon) - \Pi(x,y+\varepsilon)$$

Divide by ε , send $\varepsilon \to 0$, remember that x = y, Π smooth

$$\Rightarrow w'(x) = \frac{\partial \Pi}{\partial x}(x, x) = x$$
$$\Rightarrow w(x) = \frac{x^2}{2} + C$$

What is C ?

Recall $\Pi(x,y) = xy + \beta$

•
$$\beta = 0 \Rightarrow w(0) = 0 \Rightarrow C = 0$$

determinate

• $\beta > 0 \Rightarrow 0 \le w(0) \le \beta \Rightarrow 0 \le C \le \beta$

indeterminate – but w(0) determines whole wage structure

Manipulation: how?

- Workers: misrepresent ρ
- Firms: misprepresent П

Manipulation: by whom?

- finite case: individuals or groups on one side
- infinite case: infinitesimal subsets (proxy individuals) large groups can always manipulate (with transfers)

If $\beta > 0$

- $C < \beta \rightarrow$ low quality workers manipulate claim to have reservation values = β
- $C > 0 \rightarrow$ low quality firms manipulate claim to have $\Pi(x, y) = xy$ (higher cost)

No manipulation $\leftrightarrow \beta = \mathbf{0} \leftrightarrow \{w\}$ is a singleton

Theorem

No manipulation

 $\partial g(\mu, \nu)$ is a singleton

g is Gateaux differentiable

 \updownarrow

g is Frechet differentiable

Theorem g is generically differentiable

Real economy is finite but large \rightarrow asymptotics?

Theorem

- $\partial g: M_+(X \cup Y) \to C(X \cup Y)$ is USC
- ∂g is continuous at (μ, ν) if $g(\mu, \nu) =$ singleton
- $(\mu_n, \nu_n) \rightarrow (\mu, \nu)$, $\partial g(\mu, \nu)$ is a singleton

 $\Rightarrow \partial g(\mu_n, \nu_n)$ is small for *n* large

 \Rightarrow for *n* large: no one can manipulate very much