Economics of Matching & Optimal Transport

Prepared as a Tutorial for IPAM

William Zame

Applications of ideas of Optimal Transport

- labor markets
- commodity markets

with and without money

Plan of two lectures

- history of a particular labor market without money
- what is the connection to optimal transport?
- structure of a market without money
 - stability, incentives
- structure of a market with money
 - stability, duality, incentives
- generalizations

Economic History: Medical Internships

- organization of medical training
 - formal classes: medical school
 - apprenticeships: internships/residencies
- decentralized market for residencies
- problems with the decentralized market
- success of centralization
- failure of centralization

Questions

- 1. Why was the market unstable early?
- 2. Why did the market become stable?
- 3. Why did the market become unstable again later?
- 4. What has any of this to do with optimal transport?

Classical Transportation Problem

Given

- $X, Y \subset \mathbb{R}^n$ with $\lambda(X) = \lambda(Y)$
- function $C: X \times Y \to \mathbb{R}$

Find $F: X \to Y$ (measure preserving) to minimize $\int_X C(x,F(x))d\lambda(x)$

Mathematical focus: geometry of ${\cal F}$

Economic Interpretation

- X = produced output of a firm, Y = customers
- Problem of a central manager of firm

Alternative Economic Version

- (X, μ) , (Y, ν) abstract measure spaces
- $\mu(X) = \nu(Y)$
- function $\Pi : X \times Y \to \mathbb{R}$

Find $F: X \to Y$ (measure preserving) to maximize

 $\int_X \Pi(x,F(x))d\mu(x)$

Interpretation

• X =workers, Y =jobs/firms

(each firm hires single worker)

Π(x, y) = profit generated if worker x occupies job y
(works for firm y)

Problem of benevolent social planner

Of special interest

- X, Y finite
- μ, ν counting measure

F and F^{-1} match workers and jobs

Small issues

- $\mu(X) \neq \nu(Y)$?
 - unemployed workers
 - unfilled jobs
- workers prefer unemployment
- firms prefer not to operate

More careful about unemployed workers, unfilled jobs

Matching $M: X \cup Y \to X \cup Y$

- $M^2 = \text{identity}$
- $M(x) \in Y \cup \{x\}$
- $M(y) \in X \cup \{y\}$

Convention : $\Pi(y,y) = 0$

Perspectives on matching problem

- 1. Social perspective: planner's problem
- 2. Individual perspective
- 3. Market perspective

Individual perspective

Decompose joint profit: worker wage, firm residual

$$\Pi(x, M(x)) = w_M(x) + r_M(M(x))$$

Matching M is **stable** if there exists a match-specific decomposition $w_M, r_M \ge 0$ and there does NOT exist $x_0 \in X, y_0 \in Y$:

 $M(x_0) \neq y_0 \text{ and } w_M(x_0) + r_M(y_0) < \Pi(x_0, y_0)$

Market perspective

Worker/Job-specific wages $W : X \cup Y \rightarrow \mathbb{R}_+$

Matching M, wages W are market equilibrium if for all x_0, y_0 :

 $y = M(x_0)$ maximizes $W(x_0, y)$

$$x = M(y_0)$$
 maximizes $\Pi(x, y_0) - W(x, y_0)$

(with obvious adjustments for unmatched workers, firms)

Theorem

Socially optimal matchings

 \updownarrow

Stable matchings

 \updownarrow

Market equilibrium matchings

Corollary (Adam Smith) The market is efficient.

Comment

- Social optimality makes no sense without money
- Market equilibrium makes no sense without money
- Stability does

Matching without money (ordinal problem)

• each
$$x \in X$$
: \succ_x on $Y \cup \{x\}$

(complete transitive strict) preference of worker x over jobs (or unemployment)

• each $y \in Y$: \succ_y on $X \cup \{y\}$

(complete transitive strict) preference of job y over workers

(or not operating)

Matching M is **stable** if

 $z \in X \cup Y \Rightarrow M(z) \succeq_z z$

and there do not exist $x_0 \in X, y_0 \in Y$ such that

- $M(x_0) \neq y_0$
- $y_0 \succ_{x_0} M(x_0)$
- $x_0 \succ_{y_0} M(y_0)$

That is: x_0, y_0 would prefer to be matched to each other rather than to their mates under F

M **not** stable \rightarrow after-match unraveling

Group (partial) preferences over matchings:

$$M \succeq_X M' \Leftrightarrow M(x) \succeq_x M'(x) \text{ all } x \in X$$

$$M \preceq_Y M \iff M(y) \preceq_y M'(y)$$
 all $y \in Y$

These are transitive relations.

Theorem

(i) Stable matchings exist

(ii) $M \succeq_X M' \Leftrightarrow M \preceq_Y M'$

(iii) Stable matchings form a lattice

(iv) for all M, M':

$$\{x \in X : M(x) = x\} = \{x \in X : M'(x) = x\}$$
$$\{x \in Y : M(y) = y\} = \{y \in Y : M'(y) = y\}$$

Finding stable matches ?

- NIMP algorithm
- Gale-Shapley algorithm: deferred acceptance
 - each x proposes to favorite y
 - each y holds favorite proposer, rejects others
 - rejected *x*'s propose to next favorite
 - each y holds favorite proposer, rejects others
 - repeat
 - stop when no rejections: X-optimal matching

Questions

- 1. Why was the market unstable?
 - individual behavior with time limits $\not\rightarrow$ stable matchings
- 2. Why did the market become stable?
 - NIMP algorithm \rightarrow stable matchings

What if workers/firms lie?

 \mathcal{P}_X = all preference profiles for Workers

 \mathcal{P}_Y = all preference profiles for Firms

 $\mathcal{M} = \text{set of matchings}$

Mechanism $\mu : \mathcal{P}_X \times \mathcal{P}_Y \to \mathcal{M}$

 μ is **stable mechanism** if for all $P_X \in \mathcal{P}_X$,

 $P_X \in \mathcal{P}_X, P_Y \in \mathcal{P}_Y \Rightarrow \mu(P_X, P_Y)$ is stable for P_X, P_Y

Theorem The mechanism

 $(P_X, P_Y) \mapsto X$ -optimal stable matching

can never be manipulated by workers and is the only such.

Theorem The mechanism

 $(P_X, P_Y) \mapsto Y$ -optimal stable matching

can never be manipulated by firms and is the only such.

Theorem If the set of stable matchings for (P_X, P_Y) is not a singleton then every mechanism can be manipulated (by workers or firms or both).

What if workers/firms care about whole match?

Stable matchings may not exist.

Questions

- 3. Why did the market become unstable again?
 - because some interns were married to other interns