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“Definition”

Aggregation of agents
of similar size and body type
generally moving in a coordinated way

Highly developed social organization:

Insects - Ants, Bees, Locusts, Termites
Animals - Fish, Birds, Wildebeast, Geese
Microorganisms - Bacteria,

Artificial Robots



army ants

bacteria R NS A

herds
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Fish:

Defense against predators - size deception
Hydrodynamic efficiency
Mating

Uniform schools
odd fish out will increase predator attack

Foraging - leaders may develop?

Imprinting - Fish joins school based upon
rearing similarities?




Ants, Termites and Bees:

Ant Colony:

Reproductive castes:
Queen, Males

Worker castes:
Sterile females
New colony:
Break-away
Swarming
Young males and queens

Genetic mixing

Environmental cues

Resting bee swarm



Ants:

Dynamic phenomerone trails
Reinforced by successive passages
Dissipated after food source depleted
May attract predators

Modulations to signal
death, food sources, enemies
Can detect polarized light

Interactive learning
To lead naive ant from nest to food

Beneficial to group

M. Moglich, Science 1974
N. Franks, T. Richardson, Nature 2006
Couzin, Nature 2006

“tandem running”

Leader ant waits for follower
Follower taps
Leader steps ahead
Acceleration/Deceleration



Approaches:

Behavioral ecology Protect juvenile members Compete for resources
Evolutionary biology Deceive predators Easier targets
Mating easier Disease spread
Energetic benefits for motion Cannibalism

Parrish, Edelstein-Keshet Science 1999

Just by chance - Aberrant behaviors?

AMERICAN MUSEUM NOVITATES

Published by
Number 1253  Tre Aumericax Museum or Naturar History April 8, 1944
New York City

UNIQUE CASE OF CIRCULAR MILLING IN ANTS, CONSIDERED
IN RELATION TO TRAIL FOLLOWING AND THE
GENERAL PROBLEM OF ORIENTATION!

By T. C. ScHNEIRLA®

Fig. 1. The ¢ colu u/m praedator, Llwn( n !g aph taken shortly be-
fore 12:00 p.. Anh nm th Ing was pp oximately 14 ¢

Ants died of exhaustion



But also:

Unmanned Vehicle
Operations

Exploration :

Space, Underwater

Dangerous missions:

Land-mine removal,
Earthquake recovery
Military missions

Individuals: limited capabilities

Teams: new, better properties

without leaders

...to artificial systems?




Interactions:

Mediated by background: Gradients of chemical or physical fields

food, light concentrations

Bacteria, plankton
temperature

electromagnetic fields

Direct information exchange between particles:

fish, birds

Nucleation agents: External agents as triggers

tuna fish under floating objects



Interactions: design challenges

“I don’t attribute emergent behaviors to amazing insights and
interactions among the robots. I attribute them to me as the engineer not
understanding the system.

One example of an emergent behavior that I was not anticipating: I was
trying to get the robots to spread evenly throughout their environment,
trying to have them move themselves so that there were robots
everywhere in the whole room, leaving no empty spaces. And I made an
error in the program; I flipped some signs in the equations. And when I
ran the software, the robots formed into little clumps. Essentially they
made polka dots on the floor, which was very entertaining after the fact.”

James McLurkin, Nova-PBS December 2004



Approaches:

Discrete particle models: Equations of motion (coupled ODEs)
Albano PRL (1996), Shimoyama PRL (1996), Niwa JTB (1996), Levine PRE (2000), Mogilner JMB
(2003), Gregoire PRL (2004), Birnir JSP (2007), Zhang PRE(2007)

Discrete particle models: Computer Rules

Viczek PRL (1995), Couzin Nature (2005), Franks JTB(2001)

Swarm Intelligence models

Ant Colony Optimization
(search for optimal paths - Dorigo 1992)

Particle Swarm Optimization
(optimizing fitness function on interacting particles - Kennedy 1995 )

Stochastic Diffusion Search
(one to one random communication - Bishop 1989)
Continuum Fields (PDE-s)

Toner PRL (1995), Topaz JAM (2004), Grunbaum JMB (1994), Edelstein-Keshet (1998)



A First Study:

Vicsek algorithm CVA  (PRL,1995):
Constant speed

Velocity direction adjusts

according to neighbor directions

+ noise M

Phase transition to finite velocity
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High density - high noise (c)
Low density - high noise (b)

High density - low noise (d)




Starflag:

k.o

cs
rocgay

The physics of flocking

Fixed number of neighbors, no matter how far



Simple discrete model:

Y -2\
mia_tl= (a_ﬁ|vi|2 )Vi

-V, S U(% - %)
J

Rayleigh friction
Pumping - Self accelerating av,;
— 2 —
Dissipation - Self decelerating - /3 | \Z | \Z

=12 the two terms balance and there is no
/3) ‘Vi ‘ = pumping from or dissipating to the
environment




Simple discrete model:

m = (-5 F|-V, S U (R

|5, -

U(% -5 )=-Ce " +

Morse potential




Simple discrete model:

miaa_‘_f= (a_/j)|‘_;i|2);i _ﬁiZU(‘X}

2

Rayleigh friction B =a
Levine et al 2000
Morse potential ,
Schweitzer et al 2000
Mogilner et al 2003

Self propulsion:

Self-acceleration
+

Friction

v

Optimal speed B ’

—

i

Attractive-Repulsive potential:

Ca, Cr, 1a, Ir

Parameter choice




A few examples:
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Example 2:

a=08 B=05
C, =05 C =10
[ =20, [ =05



A few examples:
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Why are they qualitatevely different?

What if we add more particles




Naive parameters:
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N=200 N=300
~ "'(.H * T as o e “H*:"\.\ r‘r“’:‘:—‘::}:‘“’\.\
o= A P &0 O o f 7 (—‘4—“—0‘__.
Pt «® e o " e 2 ‘/:/‘4-‘ M o (‘L’/‘ k:‘r:’.ﬂ ““\
» e *o P e o e Seve Aot \S'
PR A T o ”«»*“"’J‘n.'\'.{:-“? y f//";“f‘:-“g,:"\. LR
" 5 Y Fis e 2 \R& k.z*. ; ﬁﬁf .g“‘\%: 2
J Iff’[ *:. 1 £ f»’f‘@"&%\' %é i& I;:;}f; )"‘\.&EI&’L'&:%
Pl it i M N g
i Feak IR D N R L ORI '\\}*.?.:?:Y:: it
: N T FEL Vil TN P \.\\*‘g oy F
G B =g LN AR e
., i .\M H-—vﬂ .;'., J ."\. b WL \“‘:-;»w;, el
a8 = ak
Example 2
a=08, p=0.5 The density is increasing!
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[ =20, [ =05

Why is the system not extensive?




Another example:

a=3 B=05 Example 3

C,=05C =10 N=200
[,=20, [ =0.1



Double spirals

# of particles

0 200 400 600 800
time

Persisting double spiral {——>  Higher self propulsion
(04



What is the role of the potential?



From Statistical Mechanics:

Given a many-body microscopic system

Is a “real” macroscopic description possible?
i.e. thermodynamics

Interactions must obey “H-stability” constraints

if not: CATASTROPHIC COLLAPSE!

D. Ruelle,
Statistical Mechanics,
Rigorous results



From Statistical Mechanics:

MICRO > MACRO
x;,v; for N particles Volume, density, pressure
Many variables Few variables
H-STABILITY Extensive behavior

(more particles occupy more volume)

IF NOT H-STABLE Catastrophic collapse

(all particles converge to a small volume)



Easy Recipe:

Take all configurations of the system
for fixed agent number N,
that is all possible positions, all possible velocities

Calculate the energy
kinetic and potential

Sum over all contributions of a “likelihood” function
Higher energy means less likely
This sum is called the partition function

And contains ALL relevant macroscopic information
that are derived via elementary math operations

H-Stability means that the partition function is mathematically well defined

D Ruelle, Statistical Mechanics Rigorous Results



H-stability:

A system of N >> 1 interacting agents
is H-stable if a non-negative

constant B exists such that:

N
EU(|xl.—xj )= -BN

i>]

where the Lh.s. is the total potential

Pairwise interactions:

H-stable constraints on the two-body potential



An H-Stable condition:

Pair-wise potential:

Pair-wise potential

4
fue d*r >0 0.4

fU(r) d"'r<0 S [u@) d*r<o

U(d)

Catastrophic !

Qualitatively similar

Soft-core, exponentially decaying, minimum exists

TWO particles will find a minimum, optimal distance

in BOTH cases




An H-Stable condition

Pair-wise potential:
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Catastrophic !

Example: particles on lattice

@ & ® & 9 9 "9 e
P & @ & & @ & @& @ @& 0
e & ¢ & & 0 & & 0 0
b % & & & & & & & & O
® & & & & & & & & & <«
b & & & @ * & & & @
¢ & & & k. ® & & & ¢
P ® & & & & & & & & @
® & % & % ® PSP
b & & & & ¢ & & ¢ & 0
¢ & & & & & & & & & «
P & S & b S S e e
® & & & & 0 ¢ & 0 9

e’




H-stability: Guiding interaction criteria



Morse Potential and H-stability:

I=1/1

Catastrophic:

particles collapse as

N — ©
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v, in rotation

MRD, Chuang, Bertozzi, Chayes PRL 2006

C=C/C,

Stable:

volume occupied as

N — o©



Morse Potential and H-stability:

I=1/1

Catastrophic:

particles collapse as

N — ©

catastrophic
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MRD, Chuang, Bertozzi, Chayes PRL 2006

C=C/C,

Stable:

volume occupied as

N — o©



Catastrophic features and patterns:

U(r
0
T ! No intrinsic separation
4> ///
L/ Negative area Self-propelling speed
Random initial conditions
e
S -

i ‘b‘

v, @
-

N=100 N=150




Catastrophic features and patterns:

7/ .
’ Negative area

Minimum at r=0
borderline

Intrinsic length-scale=0

Self-propelling speed

Random initial conditions

Sos, s o> o7

pS S
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e e

N=100

N=200

N=300




Ring Formation:

Implicit formula:

N/2
o Co s C. . 7N
- = E Sa po2rsin@a /), _ Zr ,=2rsinQal N, | i
2/37' n=1 l l

a r
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0.18 — O numerically ]

e analytically

0.16 —

0.14 —

0.12

Ring radius

0.1

0.08 —

0.06 L

Number of particles
Excellent agreement!



Catastrophic Features:

U()
T Finite intrinsic separation
—
< Negative area Self-propelling speed
Random initial conditions

N=150
N=100




Potential features and patterns:

r=C

always stable

catastrophic

-~ always stable

catastrophic

r=1/C2

oy
.\._;_“.




Potential Features:

/ r=C

always stable

catastrophic

always stable

catazstrophic

r=1/C'2

Different random
initial conditions,

speed
In both cases:

inter-particle spacing
constant

H-STABLE

Pair-wise
U(r)
Optimal spacing
“Crystalline’
Small values o/
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STABLE
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Potential Features:
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z always stable
8
&)
'_g always stable
§ r
r=1/C'?
sl CATASTROPHIC
PO
- TS ey - P 5,
/../'/ r"Ho—;‘\’o\,\\ /”{:‘ /l\‘ /.;o’];‘(‘]{//f‘;f{///
, & ‘ ‘ ‘
o e (SN Lo mTNN PR AP TE AP
/./_,.F»H-\‘\\ S NN .z//.//-’
]././‘/./.\’\ \\\ 17/;4"’._:\\\ /‘/]/.7///]//'//]
i 77 /,,m‘\f\\-\ Lyt Js ~ PR E f’/.ffi /‘,/i
II\ le//ffm:\\\\\\\l ctoyg 1] L Y 8 MERES TS AL
F4407 =30V 1 b Ly > PGl G0 g
ilIIt 1 N 7 ! b P { FR PSS T O A
A ARG AR PR L S LT A
LAtk 5?5"! Seny e 2t SR e
1\&\‘\ f‘/ A AN i RS T A
Wy o A (R RENPND PP S oSS,
S.\.\\\\M.H///// Vs N A .]-”]-j/.ﬂ/./j/./x/
s ’ N R ! REATY
\.\: :H:“/':..’i./f N a2 Cone?
e A L -~ «
Co L gimt -
Flock

Core free, same as example 2

Optimal spacing
Collapse at large N

Larger values o/f

Example 2

In both cases:

V2~ a/p

CATASTROPHIC



vortex area

inner radius

15

<
W

1)

Catastrophic Vortices:

0o 2 4 6 0 2 4 6
self propulsion o self propulsion o

p fixed, catastrophic vortex regime

vortex ared

outer radius

Area decreases with N!

Fly apart a increases with N:

Centrifugal force mv?/r vs. interactions

ma/(Pr) force vs. N-dense system

o ~N

max



Other potentials?

Lennard-Jones

Hard disks Always stable
P 1 -5 |5 -%)|
.Owel‘ aw U(‘X:l _ 5(?‘) _ _Cae l, n Cre I,
divergences J -
‘xi B xj‘
p>=2 p<2
Always stable Stable vs. catastrophic

Separatrix [ C?P)=1

Other potentials: Heynes ] Phys C (2007)



Locusts:

From Disorder to Order in Marching Locusts - J. Buhl et al. Science 2006

Recent models from theoretical physics have predicted that mass-migrating animal groups may share group-level properties, irrespective of
the type of animals in the group. One key prediction is that as the density of animals in the group increases, a rapid transition occurs
from disordered movement of individuals within the group to highly aligned collective motion. Understanding such a transition is crucial
to the control of mobile swarming insect pests such as the desert locust. We confirmed the prediction of a rapid transition from disordered
to ordered movement and identified a critical density for the onset of coordinated marching in locust nymphs. We also demonstrated a
dynamic instability in motion at densities typical of locusts in the field, in which groups can switch direction without external
perturbation, potentially facilitating the rapid transfer of directional information.



How to go from discrete to continuum?



Irving Kirkwood:

SR, Ry s Prseves Py t)

f: Probability distribution function in phase space

ff dR,...dR,dp,..dp, =1

f N

Dy Hamiltonian equations of motion, U potential
~ ey 4V UV, f

m Liouville equation for conserved system




Irving Kirkwood:

SR, Ry s Prseves Py t)

f: Probability distribution function in phase space

ff dR,...dR,dp,..dp, =1

f N

Hamiltonian equations of motion, U potential

ey, v, UV, f

m Liouville equation for conserved system
JR, Dy
—_— = vk =—"
ot m,



Irving Kirkwood:

SR, Ry s Prseves Py t)

f: Probability distribution function in phase space

ff dR,...dR,dp,..dp, =1

f N

ey, v, UV, f

m

a(Rla---sRNapla'”’pN)

Hamiltonian equations of motion, U potential

Liouville equation for conserved system

a: Dynamic variable

<a, f > = f af dR,..dR,dp,..dp, expectation value = Macroscopic value of a

Use Liouville equation to find dynamics of variable <a,f>

Hydrodynamics equations, JCP 1950



Irving Kirkwood 2:

N
p(r,t) = Z m, (8(R, -7), f) MACROSCOPIC DENSITY
=]
N
o(r,t) u(r,t) = Z (PSR, -7, f) MEAN FIELD VELOCITY
=1
N 2
E,(r,t) = Z <2pmk S(R, - 1), f> KINETIC ENERGY DENSITY
=] k

Continuity equation, momentum transport, energy transport



Non-Hamiltonian systems?

But: These Liouville equations are valid for conserved systems!

CAN PROVE existence of Liouville’s equation for NON Hamiltonian systems

CAN generalize Irving Kirkwood continuum limit!



Our simple model becomes:

Continuum:

ap
+V v) =0
py (pv) =

—_

@+v Vv =av - [a"v
ot

-V [UG-7) p(F.Ddr

Euler

Irving-Kirkwood

p(V,t)= ka <(S(Rk —V),f>

average in phase space




Continuum swarms

set rotational velocities

a
v = |—(-sinf,cosh)
\/;

a=10, B=05
C, =05 C =10
[ =20, [ =05

p(r)

:Z‘p(R) U(r-R)dR =D —%lnr

Density implicitly defined N

Constant speed,
Catastrophic, discrete

Catastrophic, continuum




Continuum equations:

TRANSLATIONAL MOTION:
A
N P15 (p7)=0
A = -
A Uniform density’ 01_ +v-Vy = aV [),|V VfU(I’ I’ ) p(l’ Z)d}’
velocity d
Linear stability analysis around
= %5
p
P =Py
C C.1,1 — Predict instabilities,

a> a>cr most unstable wavelengths




Linear stability analysis

& : Unstable at short wavelengths
s
R 7 e=C
— l‘ ’
' ///
§ A
\\
w Stable
)
<
-+
2]
S
-
o r=1/C'?
/" Unstable at long wavelengths =~~~
C=Cr/Ca

At t=0 translational motion



B =05
0.5, C =10

C, =
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<n(t) n(t)> = 0% o(t-t)

<n(t)>=0

white noise

Transition from flock to vortex
For large noise values



Noise?
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Magnetic field

H>0
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Variable masses:
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Variable masses
Vortex

Segregation
m; o/p r;= Interactions

Same segregation behavior
for variable a.-s



Gite avoidance:
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Site convergence:

1w

. T=0 Flock
Medium attraction to target

1i Wait a little bit

=i
% T=Tfina1 Swarm




Site convergence:

1w

1

T=0 Flock
Medium attraction to target

When center of mass
is close to target

Turn on noise
Randomize
Turn off noise
T=T

final Swarm



Chemotaxis:

1w

- Diffusing chemical at origin
% Point Source, Decay

11 Particle gradient over length




Application to robots?

Cars have intrinsic speed v
Pairwise potentials - Morse type

Steer in direction of the total force vy,

X; =vcos0,

Y, =vsino,

) if y, > threshold

0.={-w if y, <—threshold

1

0 otherwise

R. Huang et al, ICRA 2007
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Applications to biology?

Myxococcus xanthus

Stigmatella aurantiaca

‘ :
e

Under starving conditions the bacteria will aggregate

2D double spirals  collapse into 3D aggregates

Direct interactions

D. Aggregate E Immature fruit

Maybe!

Top view _ B Side View




Conclusions:

Potential determines stability of structures in large agent limit
H-stability
statistical mechanics - biology - device control

can apply to other potentials

can tune cross-over from stable-dispersive

to catastrophic-site convergent

natural systems: “‘movement ecology?’



