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Consider a dynamical system

xt+1 = f(xt), xt ∈ X, t = 0,1, . . .

on a compact set X ⊂ Rn

An invariant measure µ ∈M (X) satisfies

µ(B) = µ(f−1(B)) = µ({x ∈ X : f(x) ∈ B})

for all Borel sets B ⊂ X

The set of all invariant measures is a convex cone of M (X)

Let f#µ := µ ◦ f−1 denote the push-forward or image measure



This includes fixed points (x = f(x)) with

spt µ = {x}

and finite orbits (x0, x1 = f(x0), x2 = f(x1).., x0 = f(xk)) with

spt µ = {x0, x1, x2, . . . , xk}

but also infinite orbits, countable or uncountable .. attractors ..





Invariant measures can be also defined for

• continuous time systems

• piecewise dynamical systems

• iterative functional systems

• Markov stochastic systems



www.chaos-math.org/en/chaos-viii-statistics



We would like to approximate the support of invariant measures

We propose two approaches:

1. by regularity: absolutely continuous, singular continuous,

singular discrete

2. by convex optimization: ergodic measures, physical measures

For both approaches, the approximation is carried with the Lasserre

hierarchy (moments - sums of squares) and convex semidefinite

programming, provided the data are polynomial



Part 1 - invariant measures by regularity



Part 1.1 - absolutely continuous measures



Consider the infinite-dimensional conic problem

ρ∗ac = supµ

∫
µ

s.t. f#µ = µ
‖µ‖L p(X) ≤ 1

Theorem: this problem has an optimal solution, and if ρ∗ac > 0

then the solution is an invariant measure in L p(X)

Theorem: if there is a unique invariant probability measure

µac ∈ L p(X) then this problem has a unique optimal solution

µ∗ac = ρ∗ac µac



How do we compute with measures ?



Since X ⊂ Rn is compact, a measure µ ∈ M (X) is uniquely

characterized by its moments

ya :=
∫
X
ba(x)dµ(x) ∈ R, a ∈ Nn

wrt a dense family (ba)a∈Nn ⊂ R[x] (e.g. monomials, Chebyshev

polynomials)

An invariant measure µ satisfies f#µ = µ i.e.∫
X
ba(f(x))dµ(x) =

∫
ba(x)dµ(x), a ∈ Rn

which is a linear system of equations in the moments

A(y) = 0



Given a sequence (ya)a ⊂ R, define the Riesz linear functional

`y : R[x]→ R, p(x) =
∑
a
paba(x) 7→

∑
a
paya

Define the moment cone

M(X) := {y : ya =
∫
X
ba(x) dµ(x), µ ∈M (X)}

This cone can be approximated from outside by semidefinite

cones of increasing size: this is the Lasserre hierarchy



Given a compact basic semialgebraic sets

X := {x ∈ Rn : g1(x) = N2 −
n∑
i=1

x2
i ≥ 0, g2(x) ≥ 0, . . . , gm(x) ≥ 0}

with g0 := 1, define the semidefinite relaxations

Md(X) := {y : `y (gkh
2)︸ ︷︷ ︸

deg 2d

≥ 0, ∀h ∈ R[x], k = 0,1, . . . ,m}

= {y : Mdk
(gky)︸ ︷︷ ︸

moment matrices

� 0, k = 0,1, . . . ,m}

Theorem [Putinar]:

Md(X) ⊃Md+1(X) ⊃ · · · ⊃M∞(X) = M(X)



Theorem: if 1 ≤ q < ∞ and 1
p + 1

q = 1, the sequence y has a

representing measure µ such that ‖µ‖L p(X) ≤ 1 if and only if

`y(gkh
2) ≥ 0, ∀h ∈ R[x], k = 0,1, . . . ,m

and

|`y(h)| ≤ `z(|h|q)
1
q , ∀h ∈ R[x]

where z are moments of λX, the Lebesgue measure on X



Build the Lasserre hierarchy of moment relaxations for p = 2

ρdac := sup y0
s.t. Ad(y) = 0

Mdk
(gky) � 0, k = 0,1, . . . ,m(

Md(z) (ya)|a|≤d
? 1

)
� 0

and for p =∞

ρdac := sup y0
s.t. Ad(y) = 0

Mdk
(gky) � 0, k = 0,1, . . . ,m

Md(z)−Md(y) � 0

which are finite-dimensional semidefinite programming problems



Theorem: if there is a unique invariant probability measure µac ∈
L p(X) with moments (ya)a, then the moment relaxations have

a sequence yd of solutions converging pointwise

lim
d→∞

yda = ρ∗ac ya

Moreover, the polynomial hd ∈ R[x] of degree 2d with coefficients

Md(g0y)−1yd

converges weakly to the density of the invariant measure:

lim
d→∞

∫
X
g(x)hd(x)dx = ρ∗ac

∫
X
g(x)µac(dx), ∀g ∈ R[x]



Part 1.2 - singular measures



Consider the infinite-dimensional conic problem

ρ∗sing = sup
∫
ν

s.t.
∫
µ = 1

f#µ = µ
ν + ψ = µ
ν + ν̂ = λX
µ, ν, ν̂, ψ ∈M (X)

Theorem: if there is a unique invariant probability measure

µ∗ ∈ M (X), then this problem has a unique optimal solution

(µ∗, ν∗1, λX − ν
∗
1, µ
∗ − ν∗1) where ν∗1 := max{1, ν∗} and (ν∗, µ∗ − ν∗)

is the Lebesgue decomposition of µ∗ wrt λX



How can we visualize the support of a measure ?



Given the moments of a probability measure µ, perform
an eigenvalue decomposition of its moment matrix

Md(g0y) = PEPT

with diagonal E with entries ek ≥ 0, and orthonormal P
with columns pk coefficients of polynomials pk(x)

Construct the Christoffel polynomial

psos(x) :=
∑
k

p2
k(x)

Lemma: the measure µ concentrates on the sublevel sets of the
Christoffel polynomial, i.e. for all β ∈ (0,1)

µ({x : psos(x) ≤
∑
k ek
β
}) ≥ 1− β



Part 2 - invariant measures by convex optimization



Amongst all invariant probability measures, we may want
to single out a specific one by solving the moment problem

ρ∗ = min F (y)
s.t. y0 = 1

A(y) = 0
y ∈M(X)

with its Lasserre hierarchy of semidefinite relaxations

ρd = min F (y)
s.t. y0 = 1

Ad(y) = 0
Mdk

(gky) � 0, k = 0,1, . . . ,m

Theorem: if F is lower semi-continuous, then limd→∞ ρ
d = ρ∗.

If yd denote an optimal solution of the relaxation, then there is a
subsequence converging pointwise to the moments of an optimal
invariant measure



Typical choices of objective functions include

F (y) =
∑
a

(ya − za)2

where (za)a is a finite vector of given reference moments, or

F (y) =
∑
a
fa ya

where (fa)a is given for ergodic optimization

An ergodic measure µ is an invariant probability measure such

that for any Borel set B ⊂ X such that f−1(B) = B, its measure

µ(B) is either 0 or 1

Ergodic measures are extreme points of the convex set

of invariant probability measures



Examples



Logistic map

f(x) = 2x2 − 1

on X = [−1,1] = {x ∈ R : (1 + x)(1 − x) ≥ 0} for which there is

a unique absolutely continuous invariant probability measure

µ(dx) =
1

π

dx√
1− x2

We use the first moment z1 = 0 for the regression, i.e. F (y) = y2
1

We use Chebyshev polynomials for the semidefinite relaxations

homepages.laas.fr/henrion/papers/odds.pdf







For the Hénon map

f(x1, x2) = (1− 1.4x2
1 + x2, 0.3x1)

on the box X = [−1.5,1.5] × [−0.4,0.4], we use only the first
moment z1,0 = 0.2570 for the regression

We compare the moments obtained with the relaxation of order

d = 10 with the simulated moments
∫
xadµ(x) ≈

1

N

N∑
i=1

(f(x))a

moments x1 x2 x2
1 x1x2 x2

2
relax 0.2570 0.0771 0.5858 -0.0379 0.0527
simu 0.2570 0.0771 0.5858 -0.0291 0.0527

moments x3
1 x2

1x2 x1x
2
2 x3

2
relax 0.2468 0.0131 -0.0140 0.0067
simu 0.2320 0.0510 -0.0174 0.0063
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