
Stochastic Koopman Operator and the Numerical
Approximations of its Spectral Objects

Operator Theoretic Methods in Dynamic Data Analysis,
IPAM Workshop

February 11-15, 2019
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Koopman Operator

(ϕt )t∈T - a nonlinear dynamical flow over M ⊆ Rn with the cocycle property

ϕt+s(x) = ϕt (ϕs(x)).

Koopman operator: linear infinite-dimensional operator defined by

U t f (x) = f (ϕt (x)). (1)

Figure: Source: http://homepages.laas.fr/henrion/ecc15/mezic-workshop-ecc15.pdf by
I. Mezić and A. Mauroy
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Stochastic Koopman Operator

Random dynamical system (RDS) ϕ consists of two ingredients:
I Model of noise: A driving flow θ := (θ(t))t∈T over (Ω,F ,P) with cocycle

property, where θ(t) are measurable and measure preserving, i.e.
θ(t)P = P.

I Model for the evolution: A measurable mapping ϕ : T× Ω×M → M
(M ⊆ Rd ) over θ such that ϕ(t , ω) = ϕ(t , ω, ·) : M → M satisfies cocycle
property:

ϕ(0, ω) = idM , ϕ(t + s, ω) = ϕ(t , θ(s)ω) ◦ ϕ(s, ω), s, t ∈ T, ω ∈ Ω. (2)

T is the group (or semigroup) and we call it time.

For each x ∈ M, (ϕ(t , ω)x)t∈T ,ω∈Ω is a stochastic process, so that the initial
distribution over Ω induces a probability measure on MT.

Definition
The stochastic Koopman operator Kt associated with the RDS ϕ is
defined on functions f : M → C (observables) by

Kt f (x) = E[f (ϕ(t , ω)x)]. (3)

(Kt )t∈T - stochastic Koopman operator family
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Types of RDS (Arnold: RDS, Springer, 1998.)

Discrete time RDS (T = Z or T = Z+ ∪ {0})

ϕ(n, ω) = T (ψn−1(ω), ·) ◦ · · · ◦ T (ψ(ω), ·) ◦ T (ω, ·), n ≥ 1, ψ = θ(1). (4)

I (T (ψi (ω), ·))i∈T - stationary sequence of random maps on M
I the sequence xn = ϕ(n, ω)x0, n = 0, 1, . . . solves the random difference

equation
xn+1 = T (ψn(ω), xn), n ≥ 0, x0 = x. (5)

Continuous time RDS generated by random differential eq. (RDE)

ẋ = F (θ(t)ω, x), θ(t)ω − real noise (6)

This RDE generates an RDS ϕ over θ:

ϕ(t , ω)x = x +

∫ t

0
F (θ(s)ω, ϕ(s, ω)x)ds, ϕ(0, ω)x = x. (7)

Continuous time RDS generated by stochastic differential eq. (SDE)
dXt = G(Xt )dt + σ(Xt )dWt , θ(t)ω(·) = ω(t + ·)− ω(t). (8)

I G : M → M, σ : M → Rd×r - L2 measurable
I Wt = (W 1

t , . . . ,W
r
t ) r -dimensional Wiener process

ϕ(t , ω)x = Xt (ω) = x +

∫ t

0
G(Xs(ω))ds +

∫ t

0
σ(Xs(ω))dWs. (9)
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Stochastic Koopman Eigenvalues and Eigenfunctions

Definition
The observables φt : M → C that satisfy equation

Ktφt (x) = λS(t)φt (x) (10)

are the eigenfunctions of the stochastic Koopman operator (3) and λS(t)
are its eigenvalues.

Proposition 1. - Discrete Linear RDS
Let be M ⊆ Rd and Φ(n, ω) the linear RDS generated by T (ω, x) = A(ω)x,
so that T n(ω, x) = Φ(n, ω)x and

Φ(n, ω) = A(ψn−1(ω)) · · ·A(ψ(ω))A(ω).

Assume that Φ̂(n) := E[Φ(n, ω)] are diagonalizable, with simple eigenvalues
λ̂j (n) and left eigenvectors ŵn

j , j = 1, . . . , d . Then the eigenfunctions of the
stochastic Koopman operator Kn are

φn
j (x) = 〈x, ŵn

j 〉, j = 1, . . . , d , (11)

with the corresponding eigenvalues λS
j (n) = λ̂j (n).

Moreover, if matrices A(ω), ω ∈ Ω are simultaneously diagonalizable with
simple eigenvalues λj (ω) and left eigenvectors wj , j = 1, . . . , d , then

ŵn
j = wj and λS

j (n) = E

[
n∏

i=1

λj (ψ
i−1(ω))

]
.
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Linear RDS generated by RDE

Proposition 2.
If A : Ω→ Rd×d and A ∈ L1(Ω,F ,P) then RDE

ẋ = A(θ(t)ω)x, (12)

generates a linear RDS Φ satisfying

Φ(t , ω) = I +

∫ t

0
A(θ(s)ω)Φ(s, ω)ds. (13)

Assume that Φ̂(t) = E[Φ(t , ω)] is diagonalizable, with simple eigenvalues µ̂t
j

and left and right eigenvectors ŵt
j , v̂t

j j = 1, . . . , d . Then

φt
j (x) = 〈x, ŵt

j 〉, j = 1, . . . , d , (14)

are the principal eigenfunctions of Kt with eigenvalues λS
j (t) = µ̂t

j .
Moreover, if matrices A(ω) commute and are diagonalizable with the simple
eigenvalues λj (ω) and corresponding left eigenvectors wj , j = 1, . . . , d , then

ŵt
j = wj and λS

j (t) = E
[
e
∫ t
0 λj(θ(s)ω)ds

]
.

Koopman mode decomposition of the full-state observable:

Ktx =
d∑

j=1

λS
j (t)〈x, ŵt

j 〉v̂t
j . (15)
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Linear RDS generated by SDE

Consider the nonautonomous SDE of the form

dXt = G(t ,Xt )dt + σ(t ,Xt )dWt , (16)

where G : [0,T ]× Rd → Rd and σ : [0,T ]× Rd → Rd×r are L2 measurable.
The driving flow θ(t) is defined by "Wiener shifts":

θ(t)ω(·) = ω(t + ·)− ω(t). (17)

The solution Xt (ω) with the initial condition Xt0 (ω) = x is formally defined in
terms of Itô integral as

ϕ(t , t0, ω)x = Xt (ω) = Xt0 (ω) +

∫ t

t0

G(s,Xs(ω))ds +

∫ t

t0

σ(s,Xs(ω))dWs. (18)

Definition
The stochastic Koopman operator family Kt,t0 related to this RDS is defined
by

Kt,t0 f (x) = E[f (ϕ(t , t0, ω)x)]. (19)

In this more general setting with the two-parameter family of Koopman
operators (19), the eigenfunctions φt,t0 : M → C and eigenvalues λS(t , t0) of
the Koopman operator Kt,t0 defined on a finite-time interval satisfy

Kt,t0φt,t0 (x) = λS(t , t0)φt,t0 (x). (20)
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Linear RDS generated by SDE

Proposition 3.
Let the linear SDE with additive noise be defined by

dXt = A(t)Xtdt +
r∑

i=1

bi (t)dW i
t , A(t) ∈ Rd×d , bi (t) ∈ Rd , i = 1, . . . , r . (21)

Assume that the fundamental matrix Φ(t , t0) satisfying the matrix differential
equation

Φ̇ = A(t)Φ, Φ(t0) = I (22)

is diagonalizable, with simple eigenvalues µ̂t,t0
j and left eigenvectors ŵt,t0

j .
Then φt,t0

j (x) = 〈x, ŵt,t0
j 〉, j = 1, . . . , d , are the eigenfunctions of Kt,t0 with

the eigenvalues λS
j (t , t0) = µ̂

t,t0
j .

If matrices A(t) commute and are diagonalizable with the simple eigenvalues
λj (t) and corresponding left eigenvectors wj , j = 1, . . . , d , then

ŵt,t0
j = wj and λS

j (t , t0) = e
∫ t

t0
λj (s)ds

. (23)

Sketch of the proof.

Follows from Xt (ω) = Φ(t , t0)

(
x +

r∑
i=1

∫ t

t0

Φ−1(s, t0)bi (s)dW i
s

)
.
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Linear RDS generated by SDE

Proposition 4.
Let the linear SDE with multiplicative noise be defined by

dXt = A(t)Xtdt +
r∑

i=1

Bi (t)Xt dW i
t , A(t),Bi (t) ∈ Rd×d , i = 1, . . . , r . (24)

Denote with Φ(t , t0) the fundamental matrix satisfying the matrix SDE

dΦ = AΦ dt +
r∑

i=1

Bi (t)Φ dW i
t , Φ(t0) = I (25)

and assume that Φ̂(t , t0) = E [Φ(t , t0)] is diagonalizable, with simple
eigenvalues µ̂t,t0

j and left eigenvectors ŵt,t0
j . Then

φ
t,t0
j (x) = 〈x, ŵt,t0

j 〉, j = 1, . . . , d , (26)

are the eigenfunctions of Kt,t0 with the eigenvalues λS
j (t , t0) = µ̂

t,t0
j .

If the matrices A(t),Bi (t), i = 1, . . . , r commute and if the matrices A(t) are
diagonalizable with the simple eigenvalues λj (t) and left eigenvectors wj ,
then ŵt,t0

j = wj and λS
j (t , t0) = e

∫ t
t0
λj (s)ds

. (27)

Sketch of the proof. Follows from Xt (ω) = Φ(t , t0)x.
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Semigroup property of the Koopman operator family

Let suppose that the generated RDS is homogeneous Markovian, i.e.,
that for any x ∈ M, (ϕ(t , ω)x)t∈T,ω∈Ω is time-homogeneous Markov
process.
This will happen in the following cases:

I discrete RDS with i.i.d. increments
I continuous time RDS generated by an autonomous SDE (8)

Let Fx,ω
t = σ(ϕ(s, ω)x, θ(s)(ω), 0 ≤ s ≤ t) be σ-algebras induced by a

solution and a driving system. Moreover, assume that ϕ(t , ·) and θ(t)(·)
are independent for each t ∈ T.
The Markov property implies that for every s ≤ t and every random
variable Y , measurable with respect to filtration Fx,ω

t ,

E[Y |Fx,ω
s ] = E[Y |ϕ(s, ω)x]. (28)

Proposition 5.
If RDS is time-homogeneous Markovian, the stochastic Koopman
operator family satisfies the semigroup property, i.e.

Kt+s = Ks ◦ Kt .
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Koopman operator semigroup for discrete time RDS

Let the one step map be: T (ω, ·) = T0(π(ω), ·), π(ω) = ω0, so that

ϕ(n, ω) = T0(π(ψn−1(ω)), ·) ◦ · · · ◦ T0(π(ψ(ω)), ·) ◦ T0(π(ω), ·), n ≥ 1.

If ω is i.i.d. stochastic process, {(ϕ(n, ω)x)t∈T,ω∈Ω , x ∈ M} is homogeneous
Markov process realized on M and

Kn = (K1)n.

We call KS = K1 the generator of the Koopman semigroup.

Example: A perturbed rotation on circle
Suppose that a driving flow is defined by shift transformations:

θ(t)ω(·) = ω(·+ t).

The one-step map T : Ω× S1 → S1 is defined by

T (ω, x) = x + ϑ+ π(ω), π(ω) = ω0, (29)

ϑ ∈ S1 \Q, (ωi )i∈Z i.i.d random variables ∼ U[−δ/2, δ/2], δ > 0.

I φj (x) = exp (i2πjx) and λS
j =

sin (jπδ)

jπδ
exp(i2πjϑ).

I f : L2(S1)→ C: Knf (x) =
∑
j∈Z

cj

(
sin (jπδ)

jπδ

)n

exp(i2πjnϑ) exp(i2πjx).
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Example: A rotation on circle

Figure: Rotation on circle, ϑ = π/320 - deterministic case: (a) solution; (b)
eigenvalues; (c) real part of eigenfunctions.
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Example: A perturbed rotation on circle

Figure: Rotation on circle, ϑ = π/320, δ = 0.01 - stochastic case: (a) solution; (b)
eigenvalues; (c) real part of eigenfunctions.
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Koopman operator semigroup for continous time RDS

The action of the generator of the stochastic Koopman semigroup (Kt )t∈T is
given by

KS f (x) = lim
t→0+

Kt f (x)− f (x)

t
. (30)

Proposition 6. - RDS generated by RDE
If the solution of RDE ẋ = F (θ(t)ω, x) is differentiable with respect to t and if
(Kt )t∈T is a semigroup, for f ∈ C1

b (Rd ):

KS f (x) = E [F (ω, x)] · ∇f (x). (31)

Proposition 7. - RDS generated by SDE
If the RDS generated by SDE dXt = G(Xt )dt + σ(Xt )dWt , (Kt )t∈T is a
semigroup. For f ∈ C2

b (Rd )

KS f (x) = G(x)∇f (x) +
1
2

Tr
(
σ(x)(∇2f (x))σ(x)T

)
. (32)

Let φ ∈ C2
b (Rd ) be an eigenfunction of KS with the eigenvalue λ. Then

dφ(Xt ) = λφ(Xt )dt +∇φ(Xt )σ(Xt )dWt and (33)

Ktφ(x) = eλtφ(x). (34)
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Stochastic Koopman
Operator

Koopman eigenvalues
and eigenfunctions,
Linear RDS

14 Semigroup property of
the Koopman operator
family

Numerical
approximations of the
stochastic Koopman
operator

sHankel-DMD
algorithm

The continuation of
the research

February 11-15, 2019

Koopman operator semigroup for continous time RDS

The action of the generator of the stochastic Koopman semigroup (Kt )t∈T is
given by

KS f (x) = lim
t→0+

Kt f (x)− f (x)

t
. (30)

Proposition 6. - RDS generated by RDE
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Stochastic Koopman
Operator

Koopman eigenvalues
and eigenfunctions,
Linear RDS

Semigroup property of
the Koopman operator
family

15 Numerical
approximations of the
stochastic Koopman
operator

sHankel-DMD
algorithm

The continuation of
the research

February 11-15, 2019

The application of DMD algorithms on RDS

Different approaches are used: standard DMD approach using snapshot
pairs and sHankel DMD applied on stochastic Hankel matrix

I f = (f1, . . . , fn)T : M → Cn - vector valued observable

I fk (ω, x) = f ◦ T k (ω, x), k = 0, 1, 2, . . .

I Discrete RDS: fk (x) = E[fk (ω, x)] = Kk f(x)

I Continuous RDS:
fk (x) = E[fk (ω, x)] = Kk

∆t f(x), where K∆t f(x) = E[f(ϕ(∆t , ω)x)]

I Define

Xm =
(
f0(x1) f0(x2) . . . f0(xm)

)
, Ym =

(
fk (x1) fk (x2) . . . fk (xm)

)
.

or

Xm =
(
f0(x0) f1(x0) . . . fm−1(x0)

)
, Ym =

(
f1(x0) f2(x0) . . . fm(x0)

)
.

I Output: (λi , vi ) obtained from Rayleigh quotient of K with respect to
Xm where K is the matrix representation of the projection of the
stochastic Koopman operator (or its generator) satisfying

Ym = KXm ≈ KUkΣk V∗k , where Xm = UΣV∗. (35)

→ approximations of Koopman eigenvalues and eigenvectors
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DMD algorithms on RDS
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Numerical approximations of the transfer operators for
stochastic DS
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Example: A perturbed rotation on circle

Observables: fj (x) = cos(j2πx), gj (x) = sin(j2πx), j = 1, . . . , n1,

f = (f1, . . . , fn1 , g1, . . . , gn1 )T .

Figure: Rotation on circle, ϑ = π/320, δ = 0.01 - stochastic case: (a) solution; (b)
eigenvalues; (c) real part of eigenfunctions.
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Example: Linear RDS generated by SDE

dX = µx dt + σdWt , µ < 0 (36)

In deterministic case, i.e. when σ = 0, the Koopman eigenvalues are
equal to

λn = nµ,

and the related Koopman eigenfunctions are

φn(x) =
1
n!

xn.

In stochastic case, i.e. when σ > 0, the eigenvalues are same as in
deterministic case, while the eigenfunctions are

φn(x) = anHn(αx), α =

√
|µ|
σ
.

Here an denotes normalizing parameter and Hn are Hermite polynomials.

I Numerical approximations: DMD RRR algorithm
I Observable functions: fj (x) = x j , j = 1, . . . , n
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Stochastic Koopman
Operator

Koopman eigenvalues
and eigenfunctions,
Linear RDS

Semigroup property of
the Koopman operator
family

20 Numerical
approximations of the
stochastic Koopman
operator

sHankel-DMD
algorithm

The continuation of
the research

February 11-15, 2019

Example: Linear RDS generated by SDE

Figure: Linear scalar equation (36). Deterministic case µ = −0.5: (a) solution; (b)
Koopman eigenvalues; (c) Koopman eigenfunctions; Stochastic case µ = −0.5
σ = 0.001: (d) stochastic Koopman eigenvalues - 1st approach: DMD RRR with
values determined along trajectory; (e) stochastic Koopman eigenvalues - 2nd
approach: DMD RRR with multiple initial conditions; (f) stochastic Koopman
eigenfunctions.
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Stochastic Hankel DMD algorithm (sHankel DMD)

fn(ω, x) =
(

f (x), f (T (ω, x)), . . . , f (T n−1(ω, x))
)T

fk
n = E

[
fn(θ(k)ω,T k (ω, x))

]
=
(
Kk f (x),Kk f (T (ω, x)), . . . ,Kk f (T n−1(ω, x))

)T

Observe: fk
n are values of Kk f along the trajectory of length n starting at x.

The stochastic Hankel matrix of dimension n ×m: associated with the
trajectories starting at x ∈ M, generated by the map T is defined by

Hn×m(ω, x) =
(

f0
n f1

n . . . fm−1
n

)
(37)

=


f (x) Kf (x) . . . Km−1f (x)

f (T (ω, x)) Kf (T (ω, x)) . . . Km−1f (T (ω, x))
...

...
. . .

...
f (T n−1(ω, x)) Kf (T n−1(ω, x)) . . . Km−1f (T n−1(ω, x))

 .

Note that the columns of Hn×m(ω, x) are approximations of functions in the
Krylov subspace

Km(K, f ) =
(
f Kf . . . Km−1f

)
(38)

obtained by sampling values of functions Kj f , j = 0, . . . ,m − 1 along the
trajectory of length n starting at x ∈ M.
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Stochastic Hankel DMD algorithm (sHankel DMD)

fn(ω, x) =
(

f (x), f (T (ω, x)), . . . , f (T n−1(ω, x))
)T

fk
n = E

[
fn(θ(k)ω,T k (ω, x))

]
=
(
Kk f (x),Kk f (T (ω, x)), . . . ,Kk f (T n−1(ω, x))

)T

Observe: fk
n are values of Kk f along the trajectory of length n starting at x.

The stochastic Hankel matrix of dimension n ×m: associated with the
trajectories starting at x ∈ M, generated by the map T is defined by

Hn×m(ω, x) =
(
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...
. . .

...
f (T n−1(ω, x)) Kf (T n−1(ω, x)) . . . Km−1f (T n−1(ω, x))

 .

Note that the columns of Hn×m(ω, x) are approximations of functions in the
Krylov subspace

Km(K, f ) =
(
f Kf . . . Km−1f

)
(38)

obtained by sampling values of functions Kj f , j = 0, . . . ,m − 1 along the
trajectory of length n starting at x ∈ M.
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Convergence of the stochastic Hankel DMD algorithm

Assume that the skew-product DS Θ(n)(ω, x) = (θ(n)ω,T n(ω, x))
generated by T and θ(t) is ergodic on Ω×A w.r.t. some invariant measure ν.

Birckhoff’s ergodic theorem
For f ∈ L2(Ω× A; ν):

lim
n→∞

1
n

n−1∑
k=0

f (θ(k)ω,T k (ω, x)) =

∫
Ω×A

f (ω, x)dν, a. e. on Ω× A. (39)

The measure ν is invariant (resp. ergodic) for RDS ϕ if it is invariant (resp.
ergodic) for the skew product flow, i.e., if Θ(n)ν = ν and if πΩν = P.
If A is a Polish space: dν(ω, x) = dµω(x)dP(ω), i.e. for f ∈ L1(ν)∫

Ω×A
fdν =

∫
Ω

∫
A

f (ω, x)dµω(x)dP(ω).

Let suppose ϕ is ergodic with respect to the invariant measure ν and that
µ = πAν = EP(ν) = EP(µω).

Consider the observables f : A→ R, f ∈ H = L2(A, µ). It follows from (39):

lim
n→∞

1
n

n−1∑
k=0

f (T k (ω, x)) =

∫
Ω×A

f (x)dν =

∫
Ω

∫
A

f (x)dµω(x)dP(ω) =

∫
A

fdµ. (40)
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Convergence of the stochastic Hankel DMD algorithm
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Convergence of the stochastic Hankel DMD algorithm

Proposition 8.
Suppose that the dynamics on the compact invariant set A ⊆ M is given by
the one step map T (ω, ·) : A→ A for each ω ∈ Ω and that the associated
discrete time RDS ϕ is ergodic with respect to the invariant measure ν.
Assume additionally that the processes {ϕ(n, ω)x, x ∈ A} form a Markov
family. Denote by µ the marginal measure µ = EP(ν) on A.
Let the Krylov subspace Km(K, f ) span an r -dimensional subspace of the
Hilbert space H = L2(A, µ), with r < m, invariant under the action of the
stochastic Koopman operator. Then for almost every x ∈ A, as n→∞, the
eigenvalues and eigenfunctions obtained by applying DMD algorithm to the
first r + 1 columns of the n × (m + 1) dimensional stochastic Hankel matrix,
converge to the true eigenvalues and eigenfunctions of the stochastic
Koopman operator.

Sketch of the proof.

Arbabi, H. and Mezić, I., Ergodic theory, Dynamic Mode Decomposition
and Computation of Spectral Properties of the Koopman operator, SIAM
J. Appl. Dyn. Syst., 16(4) (2017), pp. 2096-2126
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Convergence of the stochastic Hankel DMD algorithm

Since Km(K, f ) spans r -dimensional subspace of H, invariant under the
action of K, its representation in the basis

(
f , Kf , . . . , Kr−1f

)
is

C =


0 0 . . . 0 c0

1 0 . . . 0 c1

0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 cr−1

 companion matrix (41)

The vector c =
(
c0 c1 . . . cr−1

)T is equal to:

c = G−1 (< f ,Kr f >H, < K1,Kr f >H, . . . , < Kr−1f ,Kr f >H
)T
. (42)

where G = (Gij )
r
i,j=1 and Gij =< Ki−1,Kj−1f >H .

For f , g ∈ H, let denote by < fn(ω, x),gn(ω, x) > the data-driven inner
product. We have

lim
n→∞

1
n
< fn(ω, x),gn(ω, x) >= lim

n→∞

1
n

n−1∑
k=0

f (T k (ω, x)) g∗(T k (ω, x))

= lim
n→∞

1
n

n−1∑
k=0

f g∗
(

T k (ω, x)
)

=

∫
A

f g∗dµ =< f , g >H . (43)
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Convergence of the stochastic Hankel DMD algorithm

Consider the stochastic Hankel matrix Hn×(r+1)(ω, x) of dimension
n × (r + 1) along a trajectory starting at x and the companion matrix
algorithm [Arbabi, Mezić 2017; Drmač 2018] applied to

Xr =
(

f0
n(x) f1

n(x) . . . fr−1
n (x)

)
and Yr =

(
f1
n(x) f2

n(x) . . . fr
n(x)

)
.

Then numerical companion matrix solves

C̃ = arg minB∈Cr×r ‖Yr − Xr B‖.

Since Xr has a full column rank, X†r = (X∗r Xr )
−1X∗r , thus

C̃ = X†r Yr = (X∗r Xr )
−1X∗r Yr

=

(
1
n

X∗r Xr

)−1(1
n

X∗r Yr

)
= G̃−1

(
1
n

Yr X∗r

)
. (44)

Here G̃ = (G̃ij (ω, x))r
i,j=1 and

G̃ij (ω, x) = 1
n < fi−1

n (x), fj−1
n (x) >=

1
n

n−1∑
k=0

Ki−1f (T k (ω, x))Kj−1f ∗(T k (ω, x))

=
1
n

n−1∑
k=0

(Ki−1f )(Kj−1f ∗)(T k (ω, x)), i, j = 1, . . . , r . (45)
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Convergence of the stochastic Hankel DMD algorithm

From (44) we get that the elements in the last column of C̃ are equal to

c̃ = G̃−1 1
n

(
< f0

n(x), fr
n(x) >, < f1

n(x), fr
n(x) >, . . . , < fr−1

n (x), fr
n(x) >

)T
.

(46)
Now, by using (43), we conclude that

lim
n→∞

G̃ij (ω, x) =< Ki−1f ,Kj−1f >H, i, j = 1, . . . , r (47)

and

lim
n→∞

< fj−1
n (x), fr

n(x) >=< Kj−1f ,Kr f >H j = 1, . . . , r , for a.e. x (48)

=⇒ C̃ n→∞−−−→ C

As proved in [Drmač 2018], the eigenvalues and eigenvectors provided by
DMD RRR algorithm are obtained from the eigenvalues and eigenvectors of
the matrix that is similar to the companion matrix C̃.
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Example: Stuart-Landau equations

The deterministic case:

dr = (δr − r 3)dt

dθ = (γ − βr 2)dt . (49)

For δ > 0 the system has the limit cycle Γ : r =
√
δ with the base frequency

ω0 = γ − βδ and eigenvalues λln = −2lδ + inω0, l ∈ N, n ∈ Z.
The stochastic case:

dr = (δr − r 3 +
ε2

r
)dt + ε dWr

dθ = (γ − βr 2)dt +
ε

r
dWθ, (50)

where Wr and Wθ satisfy SDE system

dWr = cos θdWx + sin θdWy

dWθ = − sin θdWx + cos θdWy ,

and dWx and dWy are independent Wiener processes. For small noise and
δ > 0 the system has the stable limit cycle Γ and the eigenvalues are

λln =

{
− n2ε2(1+β2)

2δ + inω0 +O(ε4), l = 0
−2lδ + inω0 +O(ε2), l > 0

. (51)

(Tantet et. al., ArXiv 2017)
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Example: Stuart-Landau equations

Observable: f (r , θ) =
K∑

k=1

e±ik(θ−β log(r/δ))

Figure: δ = 0.5, β = 1, γ = 1. Deterministic case: (a) solution; (b) Koopman
eigenvalues. Stochastic case: (c) solution; (d) stochastic Koopman eigenvalues.
Algorithm: sHankel-DMD; The threshold for the residuals: 0.001.
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Stochastic Koopman
Operator

Koopman eigenvalues
and eigenfunctions,
Linear RDS

Semigroup property of
the Koopman operator
family

Numerical
approximations of the
stochastic Koopman
operator

29 sHankel-DMD
algorithm

The continuation of
the research

February 11-15, 2019

Example: Noisy Van der Pol oscillator

dX1 = X2dt (52)

dX2 =
(
µ(1− X 2

1 )X2 − X1

)
dt +

√
2εdWt (53)

Deterministic case: µ = 0.3, ε = 0

Figure: (a) eigenvalues obtained by using standard DMD algorithm; (b)
eigenvalues obtained by using DMD-RRR algorithm; The threshold for the
residuals: 10−2.
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Example: Noisy Van der Pol oscillator

Observable: f (X1,X2) = X1 + X2 +
√

X 2
1 + X 2

2

Figure: Deterministic case: (a) solution; (b) Koopman eigenvalues; (c) Koopman
eigenfunctions along trajectories. Stochastic case ε = 0.005: (d) solution; (e)
stochastic Koopman eigenvalues; (f) stochastic Koopman eigenfunctions along
trajectories. Algorithm: sHankel-DMD; The threshold for the residuals: 0.001.
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Example: Noisy Lotka-Volterra predator-prey system

dX1 = (a1 − b1X2 − c1X1) X1dt + σ1X1dW 1
t (54)

dX2 = (−a2 + b2X1 − c2X2) X2dt + σ2X2dW 2
t . (55)

The model parameters a1, b1, c1, a2, b2, c2 > 0 depend on the particular
species under consideration. The intensity of the noise is modeled by
nonnegative parameters σ1 and σ2.

Deterministic case:
I a1 = 1.0, b1 = 0.5, c1 = 0.01, a2 = 0.75, b2 = 0.25, c2 = 0.01
I Equilibrium point: (x∗1 , x

∗
2 ) = (3.07754, 1.93845)

I λ1,2 = −0.02500799± 0.863524i
I System has exponentially stable fixed point and is conjugate to the

linear one
Stochastic case:

I Stochastic case: σ1 = σ2 = 0.05
I Equilibrium point:(x̄∗1 , x̄

∗
2 ) = (3.08243, 1.93585)

I λS
1,2 = −0.02509± 0.86363i
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Example: Noisy Lotka-Volterra predator-prey system

Observable: f (X1,X2) = X1 + X2

Figure: Deterministic case: (a) solution; (b) Koopman eigenvalues. Stochastic
case: (a) solution; (b) stochastic Koopman eigenvalues - the exact eigenvalues
refer to the determined eigenvalues λS

1,2 that we heuristically expect to be valid.
Algorithm: sHankel-DMD; The threshold for the residuals: 0.001.
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What’s next

I The application of the data-driven algorithms in nonautonomous
systems with noise

I Considering the dynamics of the RDS by using the geometry of level
sets of Koopman eigenfunctions (isostables, isochrones)

I Computation of stochastic isostables and isochrones
I Analyzing the prediction ability of the stochastic Koopman operator

on noisy systems

Thank you for your attention!
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Stochastic Koopman
Operator

Koopman eigenvalues
and eigenfunctions,
Linear RDS

Semigroup property of
the Koopman operator
family

Numerical
approximations of the
stochastic Koopman
operator

sHankel-DMD
algorithm

33 The continuation of
the research

February 11-15, 2019

What’s next

I The application of the data-driven algorithms in nonautonomous
systems with noise

I Considering the dynamics of the RDS by using the geometry of level
sets of Koopman eigenfunctions (isostables, isochrones)

I Computation of stochastic isostables and isochrones
I Analyzing the prediction ability of the stochastic Koopman operator

on noisy systems

Thank you for your attention!



33

Stochastic Koopman
Operator
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