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Koopman Operator

Stochastic Koopman
(¢")ter - a nonlinear dynamical flow over M C R with the cocycle property Operator

s s Nelida Crnjari¢-Zic
0 (X) = ¢ (¢7°(X))-
Koopman operator: linear infinite-dimensional operator defined by

U'f(x) = f(¢'(x))- (1

Stochastic Koopman
Operator

l/’f

linear
F %I |dent|f|cat|on -

nonlinear
identification

Figure: Source: http://homepages.laas.fr/henrion/ecc15/mezic-workshop-ecc15.pdf by
I. Mezi¢ and A. Mauroy
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Stochastic Koopman Operator @

Stochastic Koopman

Random dynamical system (RDS) ¢ consists of two ingredients: O"f“a“” )
» Model of noise: A driving flow 8 := (6(t))rer over (2, F, P) with cocycle | "= ™"
property, where 6(t) are measurable and measure preserving, i.e. Stoshastic Koopman
G(t)P _ P perator
» Model for the evolution: A measurable mapping ¢ : T x Q x M — M
(M C RY) over 0 such that o(t,w) = ¢(t,w, ) : M — M satisfies cocycle
property:
©(0,w) = idu, ¢(t+ s,w) = ¢(t,0(s)w) o p(S,w), s, t € T,we Q. (2)
T is the group (or semigroup) and we call it time.
imnm
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Stochastic Koopman

Random dynamical system (RDS) ¢ consists of two ingredients: O"f“a“” )
» Model of noise: A driving flow 8 := (6(t))rer over (2, F, P) with cocycle | "= ™"
property, where 6(t) are measurable and measure preserving, i.e. Stoshastic Koopman
G(t)P: P perator
» Model for the evolution: A measurable mapping ¢ : T x Q x M — M
(M C RY) over 0 such that o(t,w) = ¢(t,w, ) : M — M satisfies cocycle
property:
©(0,w) = idu, ¢(t+ s,w) = ¢(t,0(s)w) o p(S,w), s, t € T,we Q. (2)
T is the group (or semigroup) and we call it time.
For each x € M, (¢(t,w)X),c1 .,cq is @ stochastic process, so that the initial
distribution over Q induces a probability measure on M".
imnm
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Stochastic Koopman Operator @

Stochastic Koopman

Random dynamical system (RDS) ¢ consists of two ingredients: Operator

» Model of noise: A driving flow 6 := (6(t)):ct over (Q, F, P) with cocycle
property, where 6(t) are measurable and measure preserving, i.e. Stoshastic Koopman
o(t)P = P. i

» Model for the evolution: A measurable mapping ¢ : T x Q x M — M
(M C RY) over 0 such that o(t,w) = ¢(t,w, ) : M — M satisfies cocycle
property:

@(0,w) = fdu, p(t+s,w) = p(t,0(s)w) o p(s,w), s,teT,we Q. (2)

Nelida Crnjari¢-Zic

T is the group (or semigroup) and we call it time.

For each x € M, (¢(t,w)X),c1 .,cq is @ stochastic process, so that the initial
distribution over Q induces a probability measure on M".

Definition
The stochastic Koopman operator K' associated with the RDS ¢ is
defined on functions f : M — C (observables) by

K'(x) = E[f(¢(t,w)X)]- ©)

(K")ter - stochastic Koopman operator family . Febm:ﬁmvm



Types of RDS (Arnold: RDS, Springer, 1998.) @

Stochastic Koopman

Discrete time RDS (T = Z or T = Z" U {0}) Operator

W(nvw) — T(wn—1(w)7 ) 0--+0 T(/t/}(w)./ ) ° 7-({»}7 ) n 2 1’ ¢ _ 0(1). (4) elida Crnjari¢-Zic

Stochastic Koopman

. Operator
> (T(¢Y'(w),"))ier - stationary sequence of random maps on M
» the sequence X, = ¢(n,w)Xo,n = 0,1, ... solves the random difference
equation
Xny1 = T("(w),Xn), >0, Xo=X. (5)
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Types of RDS (Arnold: RDS, Springer, 1998.) @

Stochastic Koopman

Discrete time RDS (T = Z or T = Z* U {0}) Operator

Nelida Crnjari¢-Zic
@(nvw) = T(Uf"q(w)? ) 00 T(Q/}(b.)), ) © T(w7 ) n>1, P = 0(1) (4)

Stochastic Koopman

. Operator
> (T(¢Y'(w),"))ier - stationary sequence of random maps on M
» the sequence X, = ¢(n,w)Xo,n = 0,1, ... solves the random difference
equation
Xnp1 = T(¥"(w),Xn), n>0, Xo=X. ®)
Continuous time RDS generated by random differential eq. (RDE)
X = F(0(t)w,x), 6(t)w — real noise (6)
This RDE generates an RDS ¢ over 6:
t
pltx=x+ [ FO(shop(s.00s. sOux=x (1)
0
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Types of RDS (Arnold: RDS, Springer, 1998.) @

Stochastic Koopman

Discrete time RDS (T = Z or T = Z* U {0}) Operator

Nelida Crnjari¢-Zic
@(nvw) = T(Uf"q(w)? ) 00 T(Q/}(b.)), ) © T(w7 ) n>1, P = 6(1) (4)

Stochastic Koopman

. Operator
> (T(¢Y'(w),"))ier - stationary sequence of random maps on M
» the sequence X, = ¢(n,w)Xo,n = 0,1, ... solves the random difference
equation
Xpi1 = T(¥"(w),Xn), N> 0, Xo=X. (5)
Continuous time RDS generated by random differential eq. (RDE)
X = F(0(t)w,x), 6(t)w — real noise (6)
This RDE generates an RDS ¢ over 6:
t
pltx=x+ [ FO(shop(s.00s. sOux=x (1)
0
Continuous time RDS generated by stochastic differential eq. (SDE)
dXi = G(X)dt + o(Xp)dWs,  0(t)w(-) = w(t + ) — w(t). (8)
» G:M— M, o:M— R - [2 measurable
- W= (W, ..., W) r-dimensional Wiener process
o(t,w)x = Xi(w) = x +/ G(Xs(w))ds +/ o(Xs(w))dWs. 9) imm
0 0
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Stochastic Koopman Eigenvalues and Eigenfunctions @

Stochastic Koopman

Definition Operator
The observables ¢' : M — C that satisfy equation Nelda Grojarié-Zic
K'¢'(x) = A%(1)¢'(x) (10
are the eigenfunctions of the stochastic Koopman operator (3) and \5(t) Koopman eigenvalues
are its eigenvalues. and eigenfunctions,

Linear RDS
imm
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Stochastic Koopman Eigenvalues and Eigenfunctions @

orpa™

Stochastic Koopman

Definition Operator
The observables ¢' : M — C that satisfy equation Nelida Grnjarié-Zic
K'o'(x) = A°(1)6'(x) (10
are the eigenfunctions of the stochastic Koopman operator (3) and A5(t) Koopman eigenvalues
are its eigenvalues. and eigenfunctions,

Linear RDS
Proposition 1. - Discrete Linear RDS
Letbe M C RY and &(n, w) the linear RDS generated by T(w, x) = A(w)X,
so that T"(w, x) = ®(n,w)x and
o(n,w) =AW (W) Al (w)Aw).
Assume that &(n) := E[®(n,w)] are diagonalizable, with simple eigenvalues
Aj(n) and left eigenvectors W7, j = 1,...,d. Then the eigenfunctions of the
stochastic Koopman operator K" are
#x) = (X, W), j=1,....d, (11)

with the corresponding eigenvalues /\f(n) = N(n).
Moreover, if matrices A(w), w € Q are simultaneously diagonalizable with
simple eigenvalues \;(w) and left eigenvectors w;, j =1,...,d, then

n

W =w;, and X(n)=E I:H )\/(’zj)/‘q(w)):l .
i1 imm
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Linear RDS generated by RDE @

Stochastic Koopman
Operator

Proposition 2.
IfA:Q— R and A € L'(Q, F, P) then RDE

Nelida Crnjari¢-Zic

X = A(0(t)w)X, (12)
generates a linear RDS ¢ satisfying Zﬁ;";?;‘;ﬁfi'ﬁiﬁli's““
t Linear RDS
o(t,w) = 1+ / A(0(5)w)d(s, w)ds. (13)
0
imm
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Linear RDS generated by RDE

Proposition 2.
IfA:Q— R and A € L'(Q, F, P) then RDE

X = A(O(t)w)x, (12)
generates a linear RDS ¢ satisfying
(1, w)—|+/ AO(S)w) (s, w)ds. (13)
Assume that &(t) = E[®(t,w)] is diagonalizable, with simple eigenvalues i
and left and right eigenvectors W/, ¥/ j = 1,...,d. Then
Bi(X) = (X, W), j=1,....d, (14)

are the principal eigenfunctions of K with eigenvalues Ajs(t) = ﬂ}.
Moreover, if matrices A(w) commute and are diagonalizable with the simple
eigenvalues \j(w) and corresponding left eigenvectors w;, j =1,...,d, then

W =w, and A(t) =E [efo M@
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Linear RDS generated by RDE

Proposition 2.
IfA:Q— R and A € L'(Q, F, P) then RDE

X = A(O(t)w)x, (12)
generates a linear RDS ¢ satisfying
o(t,w) = 1+ /OtA(e(s)w)cb(s, )ds. (13)
Assume that &(t) = E[®(t,w)] is diagonalizable, with simple eigenvalues i
and left and right eigenvectors W/, ¥/ j = 1,...,d. Then
Bi(X) = (X, W), j=1,....d, (14)

are the principal eigenfunctions of K with eigenvalues Ajs(t) = ﬂ}.
Moreover, if matrices A(w) commute and are diagonalizable with the simple
eigenvalues \j(w) and corresponding left eigenvectors w;, j =1,...,d, then

Wi=w;, and MN()=E [efﬂt AiOs))ds |
Koopman mode decomposition gf the full-state observable:

Kx =N (1) (x, W))¥]. (15)
j=1
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Linear RDS generated by SDE

Consider the nonautonomous SDE of the form
aX; = G(t, X;)dt + o(t, X;)dW, (16)

where G: [0, T] x R? = R% and o : [0, T] x RY — RY*" are L? measurable.
The driving flow 6(t) is defined by "Wiener shifts":

O(t)w () = w(t+-) —w(b). (7

The solution X:(w) with the initial condition X, (w) = x is formally defined in
terms of It6 integral as

o(t, 1o, w)X = Xi(w) = Xy (w) + [G(S,Xs(w))ds-»-/to(s,Xs(w))dWS. (18)

o fo
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Linear RDS generated by SDE

@

orpa™

Consider the nonautonomous SDE of the form
aX; = G(t, X;)dt + o(t, X;)dW, (16)

where G: [0, T] x R? = R% and o : [0, T] x RY — RY*" are L? measurable.
The driving flow 6(t) is defined by "Wiener shifts":

O(t)w () = w(t+-) —w(b). (7

The solution X:(w) with the initial condition X, (w) = x is formally defined in
terms of It6 integral as

o(t, 1o, w)X = Xi(w) = Xy (w) + [G(S,Xs(w))ds-»-/to(s,Xs(w))dWS. (18)

o fo

Definition
The stochastic Koopman operator family K" related to this RDS is defined
by

KU f(x) = E[f(@(t, to, w)X)]. (19)

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic
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Linear RDS generated by SDE

Consider the nonautonomous SDE of the form
aX; = G(t, X;)dt + o(t, X;)dW, (16)

where G: [0, T] x R? = R% and o : [0, T] x RY — RY*" are L? measurable.
The driving flow 6(t) is defined by "Wiener shifts":

O(t)w () = w(t+-) —w(b). (7

The solution X:(w) with the initial condition X, (w) = x is formally defined in
terms of It6 integral as

o(t, 1o, w)X = Xi(w) = Xy (w) + [G(S,Xs(w))ds-&-/to(s,Xs(w))dWS. (18)

o fo

Definition
The stochastic Koopman operator family K" related to this RDS is defined
by

KH0f(x) = E[f(io(t, to, w)X)]- (19)

In this more general setting with the two-parameter family of Koopman
operators (19), the eigenfunctions ¢"© : M — C and eigenvalues \5(t, t) of
the Koopman operator K" defined on a finite-time interval satisfy

K060 (x) = A(, 10)0" (X). (20)

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic

Koopman eigenvalues
and eigenfunctions,
Linear RDS
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Linear RDS generated by SDE @

Stochastic Koopman
Operator

Proposition 3.
Let the linear SDE with additive noise be defined by

Nelida Crnjari¢-Zic

.
aX, = A(t)Xdt + > bI()dW;,  A(t) € R7B(t) e RY,i=1,..., 1. (21)()koopman igenvatues
i=1 tnearrps

Assume that the fundamental matrix ®(t, ty) satisfying the matrix differential
equation

d=A(t)P, () =1 (22)
is diagonalizable, with simple eigenvalues M' o and left eigenvectors wt o
Then ¢;°(x) = (x,W;®), j=1,...,d, are the eigenfunctions of K"© W|th

the eigenvalues )\,-S(t, o) = /1] ’0.
If matrices A(t) commute and are diagonalizable with the simple eigenvalues

Aj(t) and corresponding left eigenvectors w;, j=1,...,d, then
ij Mo =w, and )‘}S(t7 th) = efr:) A/(S)ds. 23)
Sketch of the proof.

Follows from Xi(w) = ®(t, ) <x+2/ (s, to)b’(s)dW>

imm

33 ) February 11-15,2019



Linear RDS generated by SDE @

Stochastic Koopman
Operator

Proposition 4.
Let the linear SDE with multiplicative noise be defined by

ax; = A(t)ertJrZB (X dW, A(t),B(t) e RV i=1,...,r. (24)

Nelida Crnjari¢-Zic

i=1 Koopman eigenvalues
a_nd eigenfunctions,

Denote with &(t, r) the fundamental matrix satisfying the matrix SDE Hinear RDS

do = Addt+ > B(H)odW, () =1 (25)

i=1
and assume that ®(t, ) = E[®(t, )] is diagonalizable, with simple
eigenvalues /i and left eigenvectors w;'®. Then
/(%) = (x W), j=1,....d, (26)

are the eigenfunctions of K" with the eigenvalues AP(t, to) = fi;°.
If the matrices A(t), B'(t), i = 1,...,r commute and if the matrlces A(t) are
diagonalizable with the simple elgenvalues Aj(t) and left eigenvectors w;,
then WO —w, and  AS(t k) = efo V%, (27)
Sketch of the proof. Follows from X:(w) = ®(t, f)x. imnm
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Semigroup property of the Koopman operator family @

Stochastic Koopman
Let suppose that the generated RDS is homogeneous Markovian, i.e., Operator
that for any x € M, (¢(t, w)X),cr ,cq is time-homogeneous Markov
process.

This will happen in the following cases:
» discrete RDS with i.i.d. increments
» continuous time RDS generated by an autonomous SDE (8) (1) semigroup property of

the Koopman operator
family

Nelida Crnjari¢-Zic
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Semigroup property of the Koopman operator family @

Stochastic Koopman
Operator

Let suppose that the generated RDS is homogeneous Markovian, i.e.,
that for any x € M, (¢(t, w)X),cr ,cq is time-homogeneous Markov
process.
This will happen in the following cases:

» discrete RDS with i.i.d. increments

» continuous time RDS generated by an autonomous SDE (8) (1) semigroup property of
the Koopman operator
family

Nelida Crnjari¢-Zic

Let F°“ = o(¢(s,w)x,0(s)(w),0 < s < t) be o-algebras induced by a
solution and a driving system. Moreover, assume that ¢(t, -) and 6(¢)(-)
are independent for each t € T.

The Markov property implies that for every s < t and every random
variable Y, measurable with respect to filtration ]—',’““,

E[Y|F$] = E[Y]p(s, w)X]. (28)
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Semigroup property of the Koopman operator family @

Stochastic Koopman

Let suppose that the generated RDS is homogeneous Markovian, i.e., Operator
that for any x € M, (¢(t, w)X),cr ,cq is time-homogeneous Markov Nelda Crrjarié-2ic
process.

This will happen in the following cases:

» discrete RDS with i.i.d. increments
» continuous time RDS generated by an autonomous SDE (8) (1) semigroup property of

the Koopman operator
family

Let F°“ = o(¢(s,w)x,0(s)(w),0 < s < t) be o-algebras induced by a
solution and a driving system. Moreover, assume that ¢(t, -) and 6(¢)(-)
are independent for each t € T.

The Markov property implies that for every s < t and every random
variable Y, measurable with respect to filtration ]—',’““,

E[Y|F$] = E[Y]p(s, w)X]. (28)

Proposition 5.
If RDS is time-homogeneous Markovian, the stochastic Koopman
operator family satisfies the semigroup property, i.e.

’Ct+s - ICS o ’Ct. Imm
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Koopman operator semigroup for discrete time RDS

»

Let the one step map be: T(w, ) = To(n(w), -), m(w) = wo, so that
e(n.w) = To(n(y" (@), ) o+ 0 To(m($(w)),-) o To(m(w),-), n>1.

If wis i.i.d. stochastic process, {(¢(n,w)X)cr ,cq X € M} is homogeneous
Markov process realized on M and

KM= (k"

We call £ = ' the generator of the Koopman semigroup.

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic

@Semigmup property of

the Koopman operator
family
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Koopman operator semigroup for discrete time RDS

@

Let the one step map be: T(w, ) = To(n(w), -), m(w) = wo, so that
p(nw) = To(r(¥" ' (w)),) 00 To(n(P(w)), ) © To(m(w),), n>1.

If wis i.i.d. stochastic process, {(¢(n,w)X)cr ,cq X € M} is homogeneous
Markov process realized on M and

K" = (K")".
We call £ = K' the generator of the Koopman semigroup.

Example: A perturbed rotation on circle
Suppose that a driving flow is defined by shift transformations:

O(tw(-) = w(- +1).
The one-step map T: Q x S' — S' is defined by
T(w,X) = x+ 9+ 7(w), 7(w)= wo, (29)
9 € 8"\ Q, (wi)iez i.i.d random variables ~ U[—3/2,5/2], § > 0.
sin UmS)

> ¢j(x) =exp(i2mjx) and )\]-S exp(i2nji).

> 2 13(S") = C: K"f(x) = Zq(

JEZ

sm (/7r6)
jmé

) exp(i2mjnd) exp(i2mjx).

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic

@Semigmup property of

the Koopman operator
family
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Stochastic Koopman
Operator

Nelida Crnjari¢-Zic

Example: A rotation on circle

/
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02 / / 12 )Semigroup property of
/ the Koopman operator
/ Lo| family
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Figure: Rotation on circle, ¥ = /320 - deterministic case: (a) solution; (b)

eigenvalues; (c) real part of eigenfunctions.



Example: A perturbed rotation on circle
10, («7 N Vb)
A
* /’ / / / [H
ol f /
// / / / Z o |
o [ :
[
. / / | / Y
/ /" /’

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic

eigenvalues; (c) real part of eigenfunctions.

Figure: Rotation on circle, ¥ = 7/320, 6 = 0.01 - stochastic case: (a) solution; (b)

13 )Semigroup property of
the Koopman operator

family

i
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Koopman operator semigroup for continous time RDS @

Stochastic Koopman
Operator

The action of the generator of the stochastic Koopman semigroup (K'):cr is
given by

Nelida Crnjari¢-Zic

KC5f(x) = lim M (30)

t—0+4

@Semigmup property of
the Koopman operator
family
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Koopman operator semigroup for continous time RDS

o

The action of the generator of the stochastic Koopman semigroup (K'):cr is
given by
t —
KSt(x) = fim KX = 1(X), (30)
t—0+4 t

Proposition 6. - RDS generated by RDE
If the solution of RDE x = F(6(t)w, X) is differentiable with respect to t and if
(K"ter is a semigroup, for f € C}(RY):

KSF(X) = E[F(w,X)] - VF(X). (31)

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic

@Semigmup property of

the Koopman operator
family

imm

33 ) February 11-15,2019



Koopman operator semigroup for continous time RDS

@

The action of the generator of the stochastic Koopman semigroup (K'):cr is
given by

KC5f(x) = lim Ki#(x) — f(x) (30)

t—0+4 t

Proposition 6. - RDS generated by RDE

If the solution of RDE x = F(6(t)w, X) is differentiable with respect to t and if
(K"ter is a semigroup, for f € C}(RY):

KSF(X) = E[F(w,X)] - VF(X). (31)

Proposition 7. - RDS generated by SDE

If the RDS generated by SDE dX; = G(X;)dt + o(X¢)dW;, (K')ier is a
semigroup. For f € C2(RY)

K5f(x) = GX)V1(X) + %Tr ()T 1) (X)) . (32)

Let ¢ € CZ(R?) be an eigenfunction of K with the eigenvalue . Then
do(Xi) = Ap(Xp)dt + Vo(Xi)o(X)dW;  and (33)
Klp(x) = e¥'é(x). (34)

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic

@Semigmup property of

the Koopman operator
family
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The application of DMD algorithms on RDS @

Stochastic Koopman
Different approaches are used: standard DMD approach using snapshot Operator

pairs and sHankel DMD applied on stochastic Hankel matrix Nelida Crnjari¢-Zic
» f=(f;,...,f,)" : M — C" - vector valued observable

> f(w,x) =fo TH(w,x),k=0,1,2,...

@Numerica\
approximations of the
stochastic Koopman
operator
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The application of DMD algorithms on RDS

»

Different approaches are used: standard DMD approach using snapshot
pairs and sHankel DMD applied on stochastic Hankel matrix

» f=(f;,...,f,)" : M — C" - vector valued observable

> f(w,x) =fo TH(w,x),k=0,1,2,...

» Discrete RDS: f*(x) = E[f(w, x)] = K*f(x)

» Continuous RDS:
K(x) = E[f*(w, x)] = KXf(x), where Karf(x) = E[f(o(At, w)X)]

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic

@Numerical

approximations of the
stochastic Koopman
operator
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The application of DMD algorithms on RDS

Stochastic Koopman

Different approaches are used: standard DMD approach using snapshot Operator
pairs and sHankel DMD applied on stochastic Hankel matrix

» f=(f;,...,f,)" : M — C" - vector valued observable
> f(w,x) =fo TH(w,x),k=0,1,2,...
» Discrete RDS: f*(x) = E[f(w, x)] = K*f(x)

» Continuous RDS:

K(x) = E[f*(w, x)] = KXf(x), where Karf(x) = E[f(o(At, w)X)]

» Define
Xm = (fO(X1) fO(XQ)
or

Xm = (fO(Xo) f1 (Xo)

£(xm) , Yo = (F(x1)  F(x2)

77 (%0)) , Ym = (f'(x0) *(xo)

Nelida Crnjari¢-Zic

@Numerical
approximations of the
stochastic Koopman
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The application of DMD algorithms on RDS

o

Different approaches are used: standard DMD approach using snapshot
pairs and sHankel DMD applied on stochastic Hankel matrix

>

>

»>

>

f=(f,...,f)" : M — C" - vector valued observable
*(w,x) = fo TH(w,x),k=0,1,2,...
Discrete RDS: f¥(x) = E[f*(w, x)] = K*f(x)

Continuous RDS:
K(x) = E[f*(w, x)] = KXf(x), where Karf(x) = E[f(o(At, w)X)]

Define

X = (P(x1) PX) ... PXm), ¥Ym= () ) ... #(xm)).
or
Xn=(Px) (k) ... (%)), Yn=(f'(x0) £(X) ... 1(x0)).

Output: ()\;, v;) obtained from Rayleigh quotient of K with respect to
Xn where K is the matrix representation of the projection of the
stochastic Koopman operator (or its generator) satisfying

Ym = KXm ~ KU XV, where X,=UZV". (35)

— approximations of Koopman eigenvalues and eigenvectors

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic
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DMD algorithms on RDS

o

Literature:

[

[

Schmid, P.J., Dynamic mode decomposition of numerical and
experimental data, J. Fluid Mech., 656(1) (2010), pp. 5-28
basic algorithm

Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L., Kutz, J.
N., On dynamic mode decomposition: theory and applications, J.
Comp. Dyn., 2(1) (2014), pp. 391-421

analysis, improvements and applications

Drmag¢, Z., Mezi¢, |., Mohr, R., Data driven modal decompositions:
analysis and enhancements, SIAM J. Sci. Comput., 40(4) (2018), pp.
A2253-A2285

enhancements: scaling, residual computation

1= [[K(UW) = A(UW)|[2 = [[(YmV-Z, )W = A(Uw) 2,

Takeishi, N., Kawahara, VY., Yairi, T., Subspace dynamic mode
decomposition for stochastic Koopman analysis, Phys. Rev. E,
96:033310 (2017)

convergence of the algorithm in the stochastic framework

Stochastic Koopman
Operator
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Numerical approximations of the transfer operators for
stochastic DS

Literature:

@ Williams, M., Kevrekidis, I., Rowley, C., A data-driven approximation of
the Koopman operator: extending dynamic mode decomposition, J.
Nonlinear Sci., 25(6) (2015), pp. 1307-1346
The eigenvalues and eigenfunctions of backward Kolmogorov
equation are computed by EDMD algorithm

@ Klus, S., Koltai, P., Schitte, C., On the numerical approximation of the
Perron-Frobenius and Koopman operator, J. Comp. Dyn., 3(1) (2016),
pp. 51-79

@ Klus, S., Schiitte, C., Towards tensor-based methods for the numerical
approximation of the Perron-Frobenius and Koopman operator, J.
Comp. Dyn., 3(2) (2016), pp. 139-161
The spectral objects of the Koopman and Perron-Frobenious
operator are computed using Ulam’s method and EDMD
algorithm

@ Klus, S., Niske, F., Koltai, P., Wu, H., Kevrekidis, I., Schitte, C., Noé,
F., Data-driven model reduction and transfer operator approximation,
J. Nonlinear Sci., 28(3) (2018), pp. 985-1010
A review of different numerical techniques for approximating the
spectral objects of different transfer operators
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Stochastic Koopman
Operator

Nelida Crnjari¢-Zic

Example: A perturbed rotation on circle

Observables: f(x) = cos(j27x), gj(x) = sin(j2nx), j=1,...,m,
~7fn17g17'~'7g’71)7—'

/

f = (f1 3t
@ o)
’ 7 ] 1
/ / /
N / .
/ / /
06 / /
/ // / % o |
o | / / / .
/ os 18 )Numerical
ol [ / / approximations of the
stochastic Koopman
/ / ” 10 operator
S M0 Bo m0 B o FHo a0 1o 5 oo B 1o
k Relr))

o
i
33 ) February 11-15,2019

Figure: Rotation on circle, ¥ = 7 /320, 6 - 0.01 - stochastic case: (a) solution; (b)

eigenvalues; (c) real part of eigenfunctions.



Example: Linear RDS generated by SDE @

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic

dX = pxdt + odWi, p <0 (36)

In deterministic case, i.e. when o = 0, the Koopman eigenvalues are
equal to
)"7 = Np,

and the related Koopman eigenfunctions are
@Numerical
approximations of the

¢n(x) = %Xn_ stochastic Koopman

operator

In stochastic case, i.e. when o > 0, the eigenvalues are same as in
deterministic case, while the eigenfunctions are

6n(X) = anHa(ax), o=/

g
Here a, denotes normalizing parameter and H, are Hermite polynomials.

» Numerical approximations: DMD RRR algorithm
» Observable functions: f(x) = x/,j=1,...,n imm

33 ) February 11-15,2019



Example: Linear RDS generated by SDE

10 +  exact 1.0-— exact ¢
0.04 « DMD-RRR
0.8
0.02
0.6 .
g T 000{+ 4 e r ke e
0.4 -
-0.02
0.2
-0.04
0.0
0 2 4 6 8 10 =5 -3 -2 -1 0
t Re(A)
(d) (€) ()
+ exact + exact
0.4 « DMD-RRR 0.4 « DMD-RRR
0.2 0.2
-0.2 -0.2
-0.4 -0.4
-5 -3 -2 ) =5 -3 -2 -1 0 0.0 0.2 0.4 0.6 0.8 1.0
Re(A) Re(A) x
Figure: Linear scalar equation (36). Deterministic case p = —0.5: (a) solution; (b)

Koopman eigenvalues; (c) Koopman eigenfunctions; Stochastic case u = —0.5
o = 0.001: (d) stochastic Koopman eigenvalues - 1st approach: DMD RRR with
values determined along trajectory; (e) stochastic Koopman eigenvalues - 2nd

(a)

(€)

approach: DMD RRR with multiple initial conditions; (f) stochastic Koopman
eigenfunctions.

Stochastic Koopman
Operator
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Stochastic Hankel DMD algorithm (sHankel DMD) @

Stochastic Koopman
Operator

.
fo(w, X) = <f(x)7 H(T(w,X)),..., f(T’H(w,x)))

8 = E [£,(0(k)w, Tk(w,x))] = <ICkf(x),ICkf(T(w,x)),....,ICkf(T”"(w,x)))T

Nelida Crnjari¢-Zic

Observe: f& are values of K*f along the trajectory of length n starting at x.

@sHanke\»DMD
algorithm
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Stochastic Hankel DMD algorithm (sHankel DMD) @

Stochastic Koopman
Operator

;
foleo, %) = (00, (T (@), ..o, KT ()
.

fh = B [fa(0(k)w, (w0, x))] = (K500, (T (0, ), ., KEH(T™ (w,%))
Observe: f& are values of K*f along the trajectory of length n starting at x.

The stochastic Hankel matrix of dimension n x m: associated with the
trajectories starting at x € M, generated by the map T is defined by

Hom(w, X) = (f‘n’ f ... f;"—1) (37)
f(x) Kf(x) o K™1(x) (2)sHankel.oMD
f(T(w, X)) KET(w,x)) ... K" "{(T(w,x)) algorithm
f(T"*1.(w7x)) /Cf(r"*'1 (w,X)) ... ICm*1f(T.”*1(w,x))

Note that the columns of H,xm(w, X) are approximations of functions in the
Krylov subspace
Kn(K, fy=(f Kf ... K" 'f) (38)

obtained by sampling values of functions ’f, j = 0, ..., m — 1 along the imm
trajectory of length n starting at x € M. ag) February 11-15,2019



Convergence of the stochastic Hankel DMD algorithm @

Stochastic Koopman
Assume that the skew-product DS ©(n)(w, x) = (6(n)w, T"(w, X)) Operator
generated by T and 4(¢) is ergodic on Q x A w.r.t. some invariant measure v. Nelida Crnjari¢-Zic

@sHanke\»DMD
algorithm
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Convergence of the stochastic Hankel DMD algorithm

Assume that the skew-product DS ©(n)(w, x) = (8(N)w, T"(w, X))
generated by T and 4(¢) is ergodic on Q x A w.r.t. some invariant measure v.
Birckhoff’s ergodic theorem
For f € [3(Q x A;v):
n—1
lim 1 > H(O(K)w, T (w, x)) = / f(w,X)dv, a.e on QxA (39
k=0 QxA

n—oo N

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic
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Convergence of the stochastic Hankel DMD algorithm

Assume that the skew-product DS ©(n)(w, x) = (8(N)w, T"(w, X))
generated by T and 4(¢) is ergodic on Q x A w.r.t. some invariant measure v.

Birckhoff’s ergodic theorem
For f € [3(Q x A;v):

n—oo N

lim 1if(9(k)w, Tk(w,x)):/ f(w,X)dv, a.c on QxA  (39)
k=0 QxA

The measure v is invariant (resp. ergodic) for RDS ¢ if it is invariant (resp.
ergodic) for the skew product flow, i.e., if ©(n)r = v and if mqv = P.

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic
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Convergence of the stochastic Hankel DMD algorithm

o

Assume that the skew-product DS ©(n)(w, x) = (8(N)w, T"(w, X))
generated by T and 4(¢) is ergodic on Q x A w.r.t. some invariant measure v.
Birckhoff’s ergodic theorem
For f € [3(Q x A;v):

n—oo N

lim 1if(9(k)w, Tk(w,x)):/ f(w,X)dv, a.c on QxA  (39)
k=0 QxA

The measure v is invariant (resp. ergodic) for RDS ¢ if it is invariant (resp.
ergodic) for the skew product flow, i.e., if ©(n)rv = v and if mqv = P.
If Ais a Polish space: dv(w, X) = du.(x)dP(w), i.e. for f € L' (v)

[ o= [ ] e x)onope)

Stochastic Koopman
Operator
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Convergence of the stochastic Hankel DMD algorithm

@

Assume that the skew-product DS ©(n)(w, x) = (8(N)w, T"(w, X))
generated by T and 4(¢) is ergodic on Q x A w.r.t. some invariant measure v.
Birckhoff’s ergodic theorem
For f € [3(Q x A;v):
n—1
lim 1 > H(O(K)w, T (w, x)) = / f(w,X)dv, a.e on QxA (39
k=0 QxA

n—oo N
The measure v is invariant (resp. ergodic) for RDS ¢ if it is invariant (resp.

ergodic) for the skew product flow, i.e., if ©(n)rv = v and if mqv = P.
If Ais a Polish space: dv(w, X) = du.(x)dP(w), i.e. for f € L' (v)

/S;Mfd”:/X;//;f(w-,X)duw(x)dP(w)_

Let suppose ¢ is ergodic with respect to the invariant measure v and that
p=mav = Ep(v) = Ep(ju).

Stochastic Koopman
Operator
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Convergence of the stochastic Hankel DMD algorithm

@

Assume that the skew-product DS ©(n)(w, x) = (8(N)w, T"(w, X))
generated by T and 4(¢) is ergodic on Q x A w.r.t. some invariant measure v.

Birckhoff’s ergodic theorem
For f € [3(Q x A;v):

n—oo N

lim 1if(9(k)w, Tk(w,x)):/ f(w,X)dv, a.c on QxA  (39)
k=0 QxA

The measure v is invariant (resp. ergodic) for RDS ¢ if it is invariant (resp.
ergodic) for the skew product flow, i.e., if ©(n)rv = v and if mqv = P.
If Ais a Polish space: dv(w, X) = du.(x)dP(w), i.e. for f € L' (v)

/S;Mfd”:/X;//;f(w-,X)duw(x)dP(w)_

Let suppose ¢ is ergodic with respect to the invariant measure v and that
p=mav = Ep(v) = Ep(ju).

Consider the observables f : A — R, f € H = L?(A, uu). It follows from (39):

1 B B B
nImeEkz::()f(T (w,)) = /Q 1(0dy = /Q /A F(x)dpto (X)dIP(w) = /A fdp. (40)

Stochastic Koopman
Operator
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Convergence of the stochastic Hankel DMD algorithm @

Stochastic Koopman
Operator

Proposition 8.

Suppose that the dynamics on the compact invariant set A C M is given by
the one step map T(w,-) : A— Afor each w € Q and that the associated
discrete time RDS ¢ is ergodic with respect to the invariant measure v.
Assume additionally that the processes {(n,w)x,x € A} form a Markov
family. Denote by n the marginal measure 1 = Ep(v) on A.

Let the Krylov subspace K (K, f) span an r-dimensional subspace of the
Hilbert space # = L2(A, 1), with r < m, invariant under the action of the
stochastic Koopman operator. Then for almost every x € A, as n — oo, the
eigenvalues and eigenfunctions obtained by applying DMD algorithm to the
first r + 1 columns of the n x (m + 1) dimensional stochastic Hankel matrix, @SHanke.,DMD
converge to the true eigenvalues and eigenfunctions of the stochastic algorithm
Koopman operator.

Nelida Crnjari¢-Zic
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Convergence of the stochastic Hankel DMD algorithm @

Stochastic Koopman
Operator

Proposition 8.

Suppose that the dynamics on the compact invariant set A C M is given by
the one step map T(w,-) : A— Afor each w € Q and that the associated
discrete time RDS ¢ is ergodic with respect to the invariant measure v.
Assume additionally that the processes {(n,w)x,x € A} form a Markov
family. Denote by n the marginal measure 1 = Ep(v) on A.

Let the Krylov subspace K (K, f) span an r-dimensional subspace of the
Hilbert space # = L2(A, 1), with r < m, invariant under the action of the
stochastic Koopman operator. Then for almost every x € A, as n — oo, the
eigenvalues and eigenfunctions obtained by applying DMD algorithm to the
first r + 1 columns of the n x (m + 1) dimensional stochastic Hankel matrix, @SHanke.,DMD
converge to the true eigenvalues and eigenfunctions of the stochastic algorithm
Koopman operator.

Nelida Crnjari¢-Zic

Sketch of the proof.

@ Arbabi, H. and Mezi¢, 1., Ergodic theory, Dynamic Mode Decomposition
and Computation of Spectral Properties of the Koopman operator, SIAM
J. Appl. Dyn. Syst., 16(4) (2017), pp. 2096-2126
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Convergence of the stochastic Hankel DMD algorithm @

Stochastic Koopman
Since Km(KC, f) spans r-dimensional subspace of H, invariant under the Operator
action of K, its representation in the basis (f, Kf, ..., K'7'f)is Nelida Crnjaric-Zic
00 ... 0 o
1 0o ... 0 C1
c=|0 1 0 ¢ companion matrix (41)
o o0 ... 1 Cr—1
Thevectorc = (¢cy ¢ ... c,,w)T is equal to:
c=G (<, KT>u, <K KTf>u, ..., <K HLKTf>y) . (42

@sHanke\»DMD
algorithm

where G = (Gj)j ;s and Gj =< K™, KI ' >, .
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Convergence of the stochastic Hankel DMD algorithm

Since Km(KC, f) spans r-dimensional subspace of H, invariant under the

action of K, its representation in the basis (f, Kf, ..., K'7'f)is
00 ... 0 o
1 0 0 C1
c=|0 1 0 ¢ companion matrix (41)
o o0 ... 1 Cr—1
Thevectorc = (¢cy ¢ ... c,,w)T is equal to:
C=G (<K T>n, <K, Kf>u .., <K 'LKTf>)". (42

where G = (Gj)j ;s and Gj =< K™, KI ' >, .

For f,g € H, let denote by < fy(w, X), gn(w, X) > the data-driven inner
product. We have

n&moo% < Fo(w, X), G(w, X) S= n&mm% ; (T (w, %)) 9" (T (w, X))

n—1

o [k ol
_nlemEkZ:;fg (7 (w,x))_/Afg du =< f,g > . (43)

Stochastic Koopman
Operator
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Convergence of the stochastic Hankel DMD algorithm

Consider the stochastic Hankel matrix H,, (,11)(w, X) of dimension
nx (r+ 1) along a trajectory starting at x and the companion matrix
algorithm [Arbabi, Mezi¢ 2017; Drma¢ 2018] applied to

X, = (f%(x) £(x) ... f’;‘(x)) and Y, = (f‘n(x) £(x) ... f;(x)).
Then numerical companion matrix solves
€ =arg mingcrxr||Yr — X/BJ.
Since X, has a full column rank, X} = (X;X,)~ "X}, thus

C=XY,. = (X X)) 'XY,

Ty ) 1y 2o 1y g
- (xx) (o) =& (v o

Here G = (Gj(w. X)), and

Gilw.X) = T < B (), 8 (x) >=

n—1

1

k=0

Z/c' V(T (w, X)) (TH(w, X))

=- SKTHETTENT (w0, X)), i =1,...r. (45)

Stochastic Koopman
Operator
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Convergence of the stochastic Hankel DMD algorithm

From (44) we get that the elements in the last column of € are equal to

- T
=611 (<00 1x) >, < H0). 800 >, ... <H7 (0, F(x) >)
(46)
Now, by using (43), we conclude that

lim Gi(w,X) =< KK >0, dj=1,..r (47)

and

lim < f7'(x),fo(x) >=< KV K f>y j=1,...,r, forae. x (48)

n—oo

— ¢ 2= c
As proved in [Drma¢ 2018], the eigenvalues and eigenvectors provided by
DMD RRR algorithm are obtained from the eigenvalues and eigenvectors of
the matrix that is similar to the companion matrix C.
O

Stochastic Koopman
Operator
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Example: Stuart-Landau equations

@

orpa™

The deterministic case:
dr = (6r — r*)at
do = (v — Bré)at. (49)

For & > 0 the system has the limit cycle I : r = v/§ with the base frequency
wo = v — 36 and eigenvalues \j, = —215 + inwy,l € N, n € Z.
The stochastic case:

2
dr = (6r—r° + %)dw e dW,
do = (v — Br3)dt + ; dWs, (50)
where W, and W, satisfy SDE system

dW, = cos 0dWy + sin 6dW,
dWy = — sin §dWy + cos 0dW,,
and dW, and dW, are independent Wiener processes. For small noise and

0 > 0 the system has the stable limit cycle I and the eigenvalues are

Pe(1+6%) o
m_{ PO | inwo + O(), 1 = 0 51)

215 + inwo + O(e?),1 > 0

(Tantet et. al., ArXiv 2017)

Stochastic Koopman
Operator
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Example: Stuart-Landau equations

Observable: f(r,0)

Z +ik(6— B log(r/3))

(b)

1.00-
0.75-
0.50
0.25
0.00-
-0.25-
~0.50-

Xa(t)

-0.75-
-1.00-

Im(A)

g
o owomen

B R e e S

0-0.8-0.6 -04 0.2 0.0
R

e(A)
(d)

x;(t)

T oo

- +
AL PUPRA S

+
4

-1o -05 00
xa(t)

Figure: § = 0.5, 3 = 1, = 1. Deterministic case: (a) solution; (b) Koopman
eigenvalues. Stochastic case: (c) solution; (d) stochastic Koopman eigenvalues.
Algorithm: sHankel-DMD; The threshold for the residuals: 0.001.

05

10

.
0-0.8-06-04-02 00 02

Re(A)

Stochastic Koopman
Operator
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Example: Noisy Van der Pol oscillator

»

aX; = Xealt (52)
aXo = (/;(1 — X12)X2 — X1> at + \/gdwt (53)

Deterministic case: . =0.3,e =0
15 (a) (b)
M + exact
e DMD RRR

+ exact
o standard DMD

Y

. .-'3.

Im(A)
°
.

oo oo . e o o
Sotfrte ittt bbbt bbbttt ib i
Im(A)

°

°

s o 3

151 | - | | | | | !

-1.0 -08 —06 —0.4 0.2 -1.0 -08 -06 —0.4 -0.2 0.0
Re(2) Re(A)

Figure: (a) eigenvalues obtained by using standard DMD algorithm; (b)
eigenvalues obtained by using DMD-RRR algorithm; The threshold for the
residuals: 10~2.
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Example: Noisy Van der Pol oscillator

Observable: f( X1, X2) = X1 + Xo + 1/ X2 + X2

(a)

(b)

4 B iam 3 s
T o 3
3 10 3 1.0
b4
2 5 3 os
4 3
gt g o 1 3 o0
x = >
o v bd
_5 2| -os o
3 N
-1 - -
3 Re(¢1(X(t))
—~10 Zl -10
5 3 Re(¢(X(1)
b Re($3(X(t)))
15 -15 : |
-2 -1 0 1 3 4 -04 -03 -0.2 -0.1 0.0 20 40 60 80
xa(t) Re(A) t
[C) (e 15 [
4
4 . 40402 2 1 ]
3 . 1.0
2 2 0.5
_ .
g1 S o0 ° 0.0
< E
0 - .
Y -0.5
1 Re(¢3(X(1))
.
-1.0 Re(g3(X(1)))
2 4 . s
Re(¢3(X(1)))
-15 . J
-2 -1 0 1 3 4 -0.02 -0.01 0.00 20 40 60 80
xa(t) Re(A%) t

Figure: Deterministic case: (a) solution; (b) Koopman eigenvalues; (c) Koopman

eigenfunctions along trajectories. Stochastic case ¢ = 0.005: (d) solution; (e)

stochastic Koopman eigenvalues; (f) stochastic Koopman eigenfunctions along

trajectories. Algorithm: sHankel-DMD; The threshold for the residuals: 0.001.
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Example: Noisy Lotka-Volterra predator-prey system @

Stochastic Koopman
Operator

Nelida Crnjari¢-Zic
dXy = (a1 — b1 Xo — ¢ X1) X dt + o4 X; dW, (54)
axXo = (*az + b Xy — C2X2) Xodt + UngthZ. (55)

The model parameters ay, by, ¢1, a2, b2, ¢2 > 0 depend on the particular

species under consideration. The intensity of the noise is modeled by
nonnegative parameters o4 and oo.

Deterministic case: (@eanierond
a; =1.0, by = 0.5, ¢; = 0.01, a2 = 0.75, b, = 0.25, ¢, = 0.01 algorithm

Equilibrium point: (x7', x3) = (3.07754, 1.93845)
A1,2 = —0.02500799 + 0.863524/
System has exponentially stable fixed point and is conjugate to the
linear one
Stochastic case:

» Stochastic case: o1 = 02 = 0.05

» Equilibrium point:(X;, X3 ) = (3.08243, 1.93585)

» A7, = —0.02509 + 0.86363/

v

v vy
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Example:

Noisy Lotka-Volterra predator-prey system

@

orpa™

Observable:

Figure: Deterministic case: (a) solution; (b) Koopman eigenvalues. Stochastic
case: (a) solution; (b) stochastic Koopman eigenvalues - the exact eigenvalues

f(X1, X2)

=Xi + X2

(b)

+ o+ v+

25 30 35 40 45 -0.10 __=0.05

x3(t)
()

25 30 35 40 45 °
(

()

refer to the determined eigenvalues )\

Re(A)

, that we heuristically expect to be valid.
Algorithm: sHankel-DMD; The threshold for the residuals: 0.001.
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