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Process and the nonautonomous flow

Let T be an additive semigroup (or group) with a metric space structure (Z, Z+
0 , R, or

R+
0 ). We call T the time set.

Let (X , dX ) be a metric state space and T a time set. Let S : T× T× X → X be a
continuous mapping such that the two-parameter family St,t0 = S(t, t0, ·), t, t0 ∈ T
satisfies the cocycle property

St0,t0 = idX and St+s,t0 = St+s,t ◦ St,t0 for t0 ≤ t ≤ t + s, t0, t, s ∈ T. (1)

The mapping S is called the process and the two-parameter family St,t0 is called the
nonautonomous flow.

Consider the case of a nonautonomous differential equation

ẋ = F(t, x) (2)

on X = Rd . Assume x = x(t, t0, x0) is the solution of (2) satisfying the condition
x(t0, t0, x0) = x0. Then, equation (2) generates the nonautonomous flow
St,t0 (x0) = x(t, t0, x0).
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Process formulation of the nonautonomous Koopman operator

Definition

Let St,t0 be a nonautonomous flow and Ut,t0 an operator family defined on the space
of observables f : X → C by

Ut,t0 f = f ◦ St,t0 . (3)

Then Ut,t0 is called the nonautonomous Koopman operator family. If λt,t0 ∈ C and
observable φλt,t0 : X → C are such that

Ut,t0φλt,t0 = eλ
t,t0
φλt,t0 , (4)

they are called the nonautonomous Koopman operator eigenvalue and eigenfunction.
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Koopman mode decomposition for the linear nonautonomous dynamical
system (process formulation)

Proposition

If A : R→ Rd×d is continuous, then the linear nonautonomous differential equation

ẋ = A(t)x (5)

generates a linear nonautonomous flow St,t0 : Rd → Rd satisfying

St,t0x = x +

∫ t

t0

A(τ)Sτ,t0x dτ. (6)

If St,t0 is diagonalizable, with simple eigenvalues µt,t0j = e
λ
t,t0
j and left and right

eigenvectors wt,t0
j , vt,t0j , j = 1, . . . , d , then φt,t0j (x) = 〈x,wt,t0

j 〉, j = 1, . . . , d , are the

eigenfunctions of the nonautonomous Koopman operator Ut,t0 with the corresponding
eigenvalues λt,t0j , j = 1, . . . , d . Furthermore, vt,t0j , j = 1, . . . , d are the Koopman

modes of the full-state observable and the following expansion is valid

Ut,t0x0 =
d∑

j=1

〈x0,w
t,t0
j 〉e

λ
t,t0
j vt,t0j . (7)
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Moving stencil approach (1)

Suppose that for some linear non-autonomous system (5) we have a sequence of
snapshots of the full-state observable

xk = x(tk ), k = 0, 1, ... (8)

where tk = k∆t, k = 0, 1, .... Our goal is to compute approximations of the principal
eigenvalues and principal eigenfunctions of the Koopman operators Utk ,t0 , k = 0, 1, ...
from these snapshots.
This task can be reduced to the computation of Stk ,t0 , k = 0, 1, .... Since it satisfies
the cocycle property, we get

Stk ,t0 = Stk ,tk−1Stk−1,t0 , k = 1, 2, ... (9)

This gives us the possibility to further reduce the problem to an approximate
evaluation of local Stk ,tk−1 , k = 1, 2, ....
In order to do this, let us look at the local stencil of snapshots

xk−1, xk , ..., xk+s−1 (10)

where s is fixed over the computational domain. We use this forward-positioned stencil
for technical reasons, since otherwise there would be no data for the first local St1,t0 .
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Moving stencil approach (2)

To this local stencil (10) we can apply any of the Krylov subspace methods and obtain
a matrix Mk,k−1 such that

xk+j ≈ Mk,k−1xk+j−1, j = 0, 1, ..., s − 1 (11)

The approximation is obtained by the projection of xk+s−1 to the Krylov subspace
spanned by xk−1, xk , ..., xk+s−2

c0xk−1 + c1xk + · · · cs−1xk+s−2 = xk+s−1 + rk (12)

under the condition that
rk ⊥ xk−1, xk , ..., xk+s−2. (13)

The matrix representation of the projection operator in basis xk−1, xk , ..., xk+s−2 is
given by the companion matrix

C =


0 0 · · · 0 c0

1 0 · · · 0 c1

0 1 · · · 0 c2

...
. . .

. . .
...

...
0 0 · · · 1 cs−1

 . (14)
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Moving stencil approach (3)

The condition (13) guaranties that the projection error

‖rk‖2 = ‖xk+s−1 − (c0xk−1 + c1xk + · · · cs−1xk+s−2) ‖2 (15)

is minimal. Observe that the companion matrix (14) is a representation of a
finite-dimensional approximation of the Koopman operator Utk ,tk−1 relative to the
Krylov basis, while the matrix Mk,k−1 is a representation of the same approximation,
but relative to the basis in which (5) is written. After we find Mk,k−1, k = 1, 2, ..., we
can construct the approximate fundamental matrix family

M0,0 = I, Mk,0 = Mk,k−1Mk−1,0, k = 1, 2, ..., (16)

We can use these matrices for the computation of the Koopman eigenvalue
approximations and also for the reconstruction of the original data

x̃k = Mk,0x0, k = 1, 2, ..., (17)

which is the same as the Koopman mode decomposition (7) done with eigenvalues
and eigenvectors of the approximate fundamental matrix Mk,0, k = 1, 2, .... We will
call this approach the moving stencil approach. In order to possibly capture all
principal eigenvalues, we use s = n.
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Example of a nonlinear nonautonomous dynamical system (1)

We consider the nonlinear dynamical system

ẋ1 = σ1x1

ẋ2 = σ2(x2 − x2
1 ).

(18)

If σ1, σ2 ∈ R, the system is autonomous, and two of the autonomous Koopman
operator eigenvalues and eigenfunctions are

λ1 = σ1, u1(x) = x1 (19)

and
λ2 = σ2, u2(x) = x2 −

σ2

σ2 − 2σ1
x2

1 . (20)

If we have snapshots from that nonlinear autonomous dynamical system we can try to
compute the eigenvalues and eigenfunctions (19)-(20) by applying the moving stencils
approach. If we use full-state observables, some error occurs due to nonlinearity (1). It
is easy to see that in this example, the error depends on the initial condition used. To
obtain accurate values with the moving stencils approach, it is enough to use
observables

y1 = x1, y2 = x2, y3 = x2
1 (21)

instead of the full-state observables.
These observables are equivalent with the Carleman linearization of (18)

ẏ = Ay, (22)
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Example of a nonlinear nonautonomous dynamical system (2)

where

A =

σ1 0 0
0 σ2 −σ2

0 0 2σ1

 . (23)

Let us emphasize that in the general case of a non-linear dynamical system, the
Carleman linearization will lead to a linear finite-dimensional approximation of the
original dynamical system. Then, the principal Koopman operator eigenvalues of the
linearized approximation, even if computed analytically, will be just approximations of
a finite subset of the Koopman operator eigenvalues of the original system. Related
principal Koopman operator eigenfunctions of the linearized approximation will be
linear in the new state vector. They will form a finite subset of Koopman operator
eigenfunctions of the original non-linear system and they will be non-linear relative to
the original full-state vector.
For this linearized system, an additional eigenvalue-eigenfunction pair appears

λ3 = 2σ1, u3(x) = x2
1 . (24)

Krylov subspace methods would typically correctly identify (19)-(20) from the
snapshots of observables 21 (1 (a) and (b)), and with the moving stencils approach we
obtain time-dependent variants, which in this autonomous case are reduced to
σi (t − t0), i = 1, 2 (1 (c) and (d)).
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Example of a nonlinear nonautonomous dynamical system (3)

Figure: Dynamical system (18), autonomous case and initial condition (−1, 1): (a) and (b)
dynamical system matrix eigenvalues, (c) and (d) Koopman operator eigenvalues (Exact values are
offset to improve visibility.)
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Example of a nonlinear nonautonomous dynamical system (4)

Now, let us consider the non-autonomous case by introducing time dependency
σ1 = σ1(t), σ2 = σ2(t) in (18). In particular, we take

σi (t) = σi,0 + Ai cos(ωi t) + Bi sin(ωi t), i = 1, 2 (25)

with σ1,0 = −1, σ2,0 = −0.05, A1 = B1 = 0.1, ω1 = 8, and A2 = B2 = 0. We can
also proceed with the Carleman linearization (21)-(23), but now, obviously, A = A(t)
in (23). The moving stencils approach gives good results if it is used for data
reconstruction (17) ((2) (a) and (c)). On the other hand, as we can see in (2) (b) and
(d), the moving stencils approach will give highly incorrect eigenvalues. Note that this
is happening on the observables which linearize the system and completely solve all
issues in the autonomous case. In the non-autonomous case, the same choice of
observables is not good enough.

So, we must take a deeper look into the nature of this issue specific to
non-autonomous Koopman operator family eigenvalues. Let us start with an analysis
of a similar error that appears when dynamical system matrix has pairs of complex
conjugate eigenvalues.
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Example of a nonlinear nonautonomous dynamical system (5)

Figure: Dynamical system (18), linearized non-autonomous case: (a) and (c) the solution for the
initial condition (-1,1); (b) and (d) the fundamental matrix eigenvalues.
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Error of the moving stencil approach (1)

Theorem

Consider the dynamical system (5) with diagonalizable matrix A(t) in the canonical
form

A(t) =


Aλ1

(t) 0 . . . 0
0 Aλ2

(t) . . . 0
...

...
. . .

...
0 0 . . . Aλm (t)

 (26)

where

Aλj
(t) =

(
σj (t) ωj (t)
−ωj (t) σj (t)

)
(27)

is a Jordan block in the real form, belonging to the complex conjugate pair of
eigenvalues λj (t) = σj (t) + iωj (t), λ̄j (t) = σj (t)− iωj (t), with ωj , σj ∈ C2 ([t0,∞)),
ωj 6= 0, for all j = 1, ...,m, n = 2m.

If λ̃j , j = 1, ...,m are the eigenvalues obtained with the Krylov subspace method, then

λ̃j (t) = λj (t) +
ω̇j (t)

2ωj (t)
− i

σ̇j (t)√
ωj (t)2 − σ̇j (t) + ωj (t)

+O(∆t) (28)

for every t ∈ [t0,∞), j = 1, ...,m.
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Error of the moving stencil approach (2)

Theorem

Consider the dynamical system (5) with matrix A(t) in the canonical form (26) where

Aλj
(t) =

(
λj (t) 1

0 λj (t)

)
(29)

is a Jordan block Aλj
(t), belonging to the complex eigenvalue λj (t) = σj (t) + iωj (t)

of multiplicity two, with ωj , σj ∈ C2 ([t0,∞)), j = 1, ...,m, n = 2m.

If λ̃j , j = 1, ...,m are the eigenvalues obtained with the Krylov subspace method, then

λ̃j (t) =

(
λj (t)±

√
λ̇j (t)

)
+O(∆t). (30)

for every t ∈ [t0,∞), j = 1, ...,m.
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Error of the moving stencil approach (3)

Theorem

If λ̃ is the eigenvalue obtained with the Krylov subspace method applied to a vector
observable f : X → CN such that f(x(t)) is C3, then

λ̃ =
〈ḟ0, f0〉
〈f0, f0〉

+O(∆t) (31)

in the two-snapshots case, and

λ̃ =
〈f̈0, f0〉
〈ḟ0, f0〉

+O(∆t) (32)

in the three-snapshots case.
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Error of the moving stencil approach (4)

Consider the simplest case, when f is the full-state observable of a nonautonomous
dynamical system that is linearized and diagonalized, i.e. f(t) = x(t) such that

ẋ = Λ(t)x. (33)

Then
ẍ =

(
Λ̇(t) + Λ(t)2

)
x, (34)

and Theorem 4 means that for the three-snapshots case Krylov subspace methods will
give us the following approximation of eigenvalues

λ̃ =
〈
(

Λ̇(t0) + Λ(t0)2
)
x0, x0〉

〈Λ(t0)x0, x0〉
+O(∆t). (35)

Therefore, even with the right choice of the initial state x0 instead of obtaining one of
the exact eigenvalues λ(t0) or at least an approximation that decreases with the
decrese of the time step, we obtain

λ̃ = λ(t0) +
λ̇(t0)

λ(t0)
+O(∆t). (36)

i.e., the error in the obtained approximation is proportional to the time derivative of
that eigenvalue.
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Algorithm 2 (that corrects the error)

Input: Sequence of snapshots xk = x(tk ), k = 0, 1, ... from a non-linear
non-autonomous dynamical system.

Output: Approximations of a finite set of Koopman operator eigenvalues λt,t0i and

eigenfunctions φt,t0i (·), i = 1, ..., n
1: Use linearization, conjugacy, or similar techniques to obtain a new set of

observables u = (u1, ..., um)T for which we can take s = 1.
2: for k = 0, 1, ... do
3: Apply the Standard DMD to the local stencil of two snapshots

{ui (tk−1), ui (tk )}, separately for each i = 1, ...,m, and then determine M̃k,k−1.

4: Compute M̃k,0 = M̃k,k−1M̃k−1,0.

5: Compute dynamical system matrix eigenvalues from M̃k,k−1 and Koopman

operator eigenvalues from M̃k,0.
6: end for
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Example of a nonlinear nonautonomous dynamical system (continued, 6)

Now we can return to our non-linear non-autonomous dynamical system (18). Observe
that, in this case, the error is of the same nature as in Theorems 2 and 3 but is not
covered by the statements in those theorems. Only if we apply Algorithm 2, in the
sense that we find such observables for which stencil size can be reduced, the
non-autonomous Koopman operator eigenvalues can be accurately computed. In this

example, we can achieve this by using observables u =
(
u1 u2

)T
from (19)-(20). If

we define such observables and proceed with Algorithm 2, we obtain excellent results
(Fig.3).
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Example of a nonlinear nonautonomous dynamical system (7)

Figure: Dynamical system (18), linearized non-autonomous case: (a) and (b) dynamical system
matrix eigenvalues, (c) and (d) Koopman operator eigenvalues (Exact values are offset to improve
visibility.)
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Example of a nonautonomous system with continuous frequency change
and noise (1)

In this example, we consider an oscillator with a continuously changing frequency. The
governing equations are (5) with the underlying matrix of the form (26)-(27) with only
one Jordan block, where we additionally set σ(t) = 0 and

ω(t) = ω0 + Ad cos(ωd t) + Bd sin(ωd t). (37)

We can obtain the eigenvalues analytically using the fundamental matrix

St,t0
j = eαj (t,t0)

(
cosβj (t, t0) sinβj (t, t0)
− sinβj (t, t0) cosβj (t, t0)

)
, (38)

where α(t, t0) = 0 and

β(t, t0) = ω0(t− t0) +
Ad

ωd
(sin(ωd t)− sin(ωd t0))−

Bd

ωd
(cos(ωd t)− cos(ωd t0)) . (39)

The computations are performed for ω0 = 2, ωd = π, and Ad = 0.5. We added
relative uniform noise of order 10−4 to the data.

Senka Maćešić (joint work with Nelida Črnjarić-Žic and Igor Mezić) Data-driven algorithms for nonautonomous Koopman operator



Example of a nonautonomous system with continuous frequency change
and noise (2)

When computations are performed with any Krylov subspace method on moving
stencils, the numerically evaluated real part of the eigenvalue of the underlying matrix
displays a nonexistent time-dependency (Fig. 4(a)), while the imaginary parts of those
eigenvalues are correct (Fig. 4(b)). As proven in Theorem 2, the numerical result for
the imaginary part of the dynamical system matrix eigenvalues are correct because
there is no time change in σ. Also, as proven in Theorem 2, numerical results for the
real part of the dynamical system matrix eigenvalues are compromised by the error
which is proportional to the time derivative of ω(t).
This error then propagates into the principal Koopman operator eigenvalue
computations (Fig. 4 (c)-(d)). From those results it might be concluded that there is
an amplitude change in the system and that even at some time moments frequencies
stay at the value ±π (Fig. 4(d)), and then real parts of the principal eigenvalues split
into two different values (Fig. 4(c)). All of this is completely erroneous.
The results obtained using Algorithm 2 are in accordance with the exact
computations. In Fig. 4 (a) and (c), we see that the real parts of both the dynamical
system matrix and the principal Koopman operator eigenvalues stay equal to zero at
all times. Imaginary parts of dynamical system matrix eigenvalues (Fig. 4(b)) and the
principal Koopman operator eigenvalues (Fig. 4(d)) computed with Algorithm 2 show
the correct time-dependency.
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Example of a nonautonomous system with continuous frequency change
and noise (3)

Figure: Dynamical system with continuous frequency change (37) and added relative uniform noise

of order 10−4: (a) and (b) dynamical system matrix eigenvalues, (c) and (d) principal Koopman
operator eigenvalues (Exact values are computed without noise and offset to improve visibility.)
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Skew product flow

Let (P, dP) be a metric state space and T a time set. Let θ : T× P → P be a
continuous mapping such that family θt = θ(t, ·), t ∈ T forms a group of
bi-continuous mappings and satisfies the cocycle property

θ0 = idP and θt+s = θs ◦ θt for t, s ∈ T. (40)

Let (X , dX ) be a metric state space and let S : T+
0 × P × X → X be a continuous

mapping such that the two-parameter family St,p = S(t, p, ·), t ∈ T, p ∈ P satisfies
the cocycle property over θt

S0,p = idX and St+s,p = Ss,θt (p) ◦ St,p, for t, s ∈ T+
0 , p ∈ P. (41)

The mapping pair (θ,S) is called the nonautonomous dynamical system and θ its
driving dynamical system. Furthermore, the mapping Ss : T+

0 × P × X → P × X
defined by

Ss(t, (p, x)) = (θ(t, p),S(t, p, x)) (42)

forms an autonomous semi-dynamical system on P × X . The family St
s = Ss(t, ·),

t ∈ T is called the skew product flow associated with the nonautonomous dynamical
system (θ,S).
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Skew product flow formulation of the nonautonomous Koopman operator

Definition

Let St,p0 be a nonautonomous flow and Ut,p0 an operator family defined on the space
of observables, i.e., scalar valued functions f : X → C by

Ut,p0 f = f ◦ St,p0 . (43)

Then Ut,p0 is called the nonautonomous Koopman operator family. If λt,p0 ∈ C and
observable φλt,p0 : X → C are such that

Ut,p0φλt,p0 = eλ
t,p0

φλt,p0 , (44)

they are called the nonautonomous Koopman eigenvalue and eigenfunction.
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Koopman mode decomposition for the linear nonautonomous dynamical
system (skew product flow formulation)

Proposition

If A : Rm → Rd×d is continuous, and θ : R× Rm → Rm satisfies the conditions for the
driving dynamical system, then linear nonautonomous differential equation

ẋ = A(θ(t, p0))x (45)

generates a linear nonautonomous flow St,p0 : Rd → Rd satisfying

St,p0x = x +

∫ t

0
A(θ(τ, p0))Sτ,p0x dτ. (46)

If St,p0 is diagonalizable, with simple eigenvalues µt,p0
j = e

λ
t,p0
j and left and right

eigenvectors wt,p0
j , v

t,p0
j , j = 1, . . . , d , then φt,p0

j (x) = 〈x,wt,p0
j 〉, j = 1, . . . , d ,are the

eigenfunctions of the nonautonomous Koopman operator Ut,p0 with the corresponding
eigenvalues λt,p0

j , j = 1, . . . , d . Furthermore, vt,p0
j , j = 1, . . . , d are the Koopman

modes of the full-state observable and the following expansion is valid

Ut,p0x0 =
d∑

j=1

〈x0,w
t,p0
j 〉eλ

t,p0
j vt,p0

j . (47)

Senka Maćešić (joint work with Nelida Črnjarić-Žic and Igor Mezić) Data-driven algorithms for nonautonomous Koopman operator



Data-driven algorithms and Hankel matrix (1)

An observable f : X → C of the nonautonomous dynamical system can be
reinterpreted as an observable of the skew product flow, i.e., g : P × X → C with the
definition

g(y(t, y0)) = f (x(t, p0, x0)), (48)

where y = (p, x) ∈ P × X . In that sense, propagation in time of such observable can
be covered by the nonautonomous Koopman operator (3), but it can also be covered
by the autonomous Koopman operator of the skew product flow

Utg = g ◦ St
s . (49)

Now, let us consider what the data-driven algorithms can give us on the
nonautonomous Koopman operator family. If we apply the cocycle property to the
time t = k∆t, then for the autonomous Koopman operator (of the skew product flow)
we get

Uk∆t
S = (U∆t

S )k . (50)

However, if we apply the same in the case of the nonautonomous Koopman operator
family in the process formulation we obtain

Ut0+k∆t,t0 = Ut0+k∆t,t0+(k−1)∆t ◦ Ut0+(k−1)∆t,t0(k−2)k∆t ◦ · · · ◦ Ut0+∆t,t0 . (51)

Similarly, if we apply the same in the case of the nonautonomous Koopman operator
family in the skew product formulation we obtain

Uk∆t,p0 = U∆t,θ(k−1)∆t (p0) ◦ U∆t,θ(k−2)∆t (p0) ◦ · · · ◦ U∆t,p0 . (52)
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Data-driven algorithms and Hankel matrix (2)

For a chosen vector observable f = (f1, . . . , fN)T : X → CN we can form the Hankel
matrix H

H =


f0 f1 · · · fmH−1 fmH

f1 f2 · · · fmH fmH+1

...
...

. . .
...

fnH−1 fnH · · · fnH+mH−2 fnH+mH−1

 . (53)

for r = 1, . . . ,N, i = 0, . . . , nH − 1, j = 0, . . . ,mH . After that, we can apply the
Vandermonde-Cauchy algorithm (Z. Drmač). The Vandermonde-Cauchy algorithm
has the data snapshots as the input, and as the output it provides us with a set of Ritz
values and vectors

(µj ,Rj ), j = 1, 2, ...,mH . (54)

Observe that the Ritz vectors are of dimension nH · N, which is the number of rows of
the Hankel matrix, and that each Ritz vector is an approximation of the corresponding
eigenfunction evaluation at f0 multiplied with the related Koopman mode of the
vector observable. From Ritz values we approximate the Koopman operator
eigenvalues λj , j = 1, 2, ...,mH

eλj∆t = µj , j = 1, 2, ...,mH . (55)

Finally, we use the expression

f̃(t) =

mH∑
j=1

µ
t−t0

∆t
j Rj (56)
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Data-driven algorithms and Hankel matrix (3)

as an algorithm-given approximation of the observable. This expression corresponds
with the decomposition in Proposition 2 and Proposition 1.
As we already commented, the Hankel matrix can be understood as created by the
action of the autonomous Koopman operator (of the skew product flow) on the
observable (48)

HN·i+r,j+1 = U
(i+j)∆t
S gr (y0) = (U∆t

S )(i+j)gr (y0). (57)

In this interpretation, the result from [1] might be applicable. In particular, if the
autonomous skew product flow is ergodic and if observables are in an invariant
subspace of the Koopman operator, the eigenvalues and eigenvectors obtained by the
DMD algorithm used on the Hankel matrix, converge to the true Koopman
eigenvalues and eigenfunctions of the considered system.
On the other hand, if we have the ambition to compute the eigenvalues and
eigenfunctions of the nonautonomous Koopman operator family, we can interpret the
same Hankel matrix in the process formulation

HN·i+r,j+1 = Ut0+(i+j)∆t,t0 fr (x0), (58)

or in the skew product flow formulation

HN·i+r,j+1 = U(i+j)∆t,p0 fr (x0). (59)
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Example of an oscillator with the driven amplitude (1)

We consider a nonautonomous differential equation of the form(
ẋ1

ẋ2

)
=

(
(σ0 + Ad cos(ωd t) + Bd sin(ωd t))x1 + ω0x2

−ω0x1 + (σ0 + Ad cos(ωd t) + Bd sin(ωd t))x2

)
. (60)

Alternatively, we can set an autonomous differential equation that corresponds to the
driving parameter (

ṗ1

ṗ2

)
=

(
ωdp2

−ωdp1

)
, (61)

and then reformulate (60) into(
ẋ1

ẋ2

)
=

(
(σ0 + p1)x1 + ω0x2

−ω0x1 + (σ0 + p1)x2

)
(62)

Observe that the process formulation (60) satisfies conditions of the Proposition 1,
while the skew product formulation (61)-(62) satisfies conditions of the Proposition 2.
We concentrate on just one observable - the first component of the full-state
observable, i.e., f = x1. For that observable, we form a Hankel matrix (53, N = 1).
The time we cover with the snapshot span we present as the Hankel matrix time span
TH = (nH + mH + 1)∆t. In all computations we apply the Vandermonde-Cauchy
algorithm ([2, 3]).
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Example of an oscillator with the driven amplitude (2)

To investigate different settings of the skew product flow, we perform the
computations for different periods of the driving parameter (Td = 2π/ωd ) and of the
non-driven oscillator (T0 = 2π/ω0). In Fig. 7, subfigures (a) and (b) correspond to
the intrinsic period larger then the driven T0 > Td , subfigures (c) and (d) correspond
to equal intrinsic and driven period T0 = Td , while subfigures (e) and (f) correspond
to the intrinsic period smaller then the driven period T0 < Td . Also, all presented
computations are performed with Ad = Bd = 1, i.e., the initial state of the parameter
p0 = (1, 1).
Our first goal is to compute the nonautonomous Koopman operator eigenvalues and
eigenfunctions. In hope to catch these local eigenvalues and eigenfunctions, we use
Hankel matrix with a relatively small snapshot span. The corresponding results are
presented in Fig. 7, subfigures (a), (c), and (e).
Our second goal is to see if we can, through that one observable, discover the
eigenvalues and eigenfunctions of the related skew product flow which is an
autonomous dynamical system. In that case we use Hankel matrix with a large
snapshot span (see [1]). The corresponding results are presented in Fig. 7, subfigures
(b), (d), and (f).
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Example of an oscillator with the driven amplitude (3)
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(a) T0 = π/2, Td = π/15, TH = π/10
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(b) T0 = π/2, Td = π/15, TH = π

Figure: Oscillator with the driven amplitude: computations obtained with the
Vandermonde-Cauchy algorithm on the Hankel matrix for single observable f = x1
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Example of an oscillator with the driven amplitude (4)
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(c) T0 = π/2, Td = π/2, TH = π/10
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(d) T0 = π/2, Td = π/2, TH = π

Figure: Oscillator with the driven amplitude: computations obtained with the
Vandermonde-Cauchy algorithm on the Hankel matrix for single observable f = x1

Senka Maćešić (joint work with Nelida Črnjarić-Žic and Igor Mezić) Data-driven algorithms for nonautonomous Koopman operator



Example of an oscillator with the driven amplitude (5)
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(e) T0 = π/6, Td = π/3, TH = π/10
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(f) T0 = π/6, Td = π/3, TH = π

Figure: Oscillator with the driven amplitude: computations obtained with the
Vandermonde-Cauchy algorithm on the Hankel matrix for single observable f = x1
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