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of finite approximate closure and a class of state-inclusive
Koopman bases functions that satisfy finite approximate
closure. Section V derives error bounds for this special
Koopman basis and Section VI illustrates the accuracy of
these bases functions for learning the dynamics of two
nonlinear systems.

II. THE KOOPMAN GENERATOR LEARNING PROBLEM

Consider a nonlinear system with dynamics

ẋ = f(x) (1)

where x 2 M ⇢ Rn, f : Rn ! Rn is continuously
differentiable, time-invariant, and nonlinear in x. Let x0

denote the initial condition x(0) for the system and M denote
the state-space of the dynamical system. We introduce the
concepts of a Koopman generator and its associated multi-
variate Koopman semigroup, following the exposition of [2].

A. The Koopman Generator

For continuous nonlinear systems, the Koopman semi-
group is a semigroup Kt2R of linear but infinite dimensional
operators Kt that acts on a space of functions  : M ! R,
often referred to as observables. Each observable function
 2  , where  is a finite or infinite dimensional function
space. We thus say Kt :  !  is an operator for each
t � 0. The Koopman semigroup provides an alternative view
for evolving the state of a dynamical system:

Kt �  (x0) =  � �t(x0), (2)

where �t(x0) is the flow map of the dynamical system (1),
evolved forward up to time t, given the initial condition x0.

Instead of examining the evolution of the state of a
dynamical system, the Koopman semigroup allows us to
study the forward evolution of observables defined on the
state of a dynamical system [12].

The generator KG for the Koopman semigroup is defined
as

KG ⌘ lim
t!0

Kt �  

t
(3)

Lemma 1: The Koopman generator KG is a linear opera-
tor.

Proof: Notice that the transformation KG :  !  is
an operator, since each Kt is an operator on  . Moreover,
the algebraic limit theorem and the linearity of each Kt

guarantees linearity of KG, which implies it is a linear
operator. ⌅

In general, KG may not have a finite or countably infinite-
dimensional matrix representation, since the limit of the
spectrum of Kt�0 as t ! 0 may be continuous and therefore
uncountably infinite, see [5] for a thorough study of several
examples.

B. Problem Statement

We restrict our attention in this paper to systems with
finite or countably infinite dimensional Koopman generators
KG. Given such a continuous nonlinear dynamical system,
specifically f(x) and x from (1); we aim to learn  (x) and
Koopman generator KG to solve the optimization problem

min
KG , 2 

����
d (x(t))

dt
�KG (x(t))

���� (4)

This optimization problem is often non-convex, since the
form of  (x(t)) is unknown or parametrically undefined.
Both the Koopman generator and the basis functions must be
discovered simultaneously to minimize the above objective
function. This is true in data-driven formulations of the
problem where f(x) is completely unknown. Additionally, it
is true in learning problems where f is known but KG has
yet to be discovered.

A solution pair (KG, (x)) that achieves exactly zero
error is an exact realization of a Koopman generator and
its associated observable function. In general, there may be
multiple solutions that achieve exactly zero error. To see this,
note that if

d (x(t))

dt
= KG (x(t)) (5)

then a state transformation '(x(t)) = T
�1
 (x(t)) also

defines an exact solution pair (TKGT
�1

, T
�1
 (x(t))).

Solving for an exact solution pair (KG, (x)) in practice
may be difficult for at least three reasons. First, evaluating
d (x(t)))

dt requires numerical differentiation, which incurs a
certain degree of numerical error. Second, KG may be infinite
dimensional and the collection of observable functions  ⌘
{ 1, 2, ... nL}, nL  1 is unknown a priori.

We refer to any solution pair (KG, (x)) that results in a
non-zero error as an approximate solution. Note that, given
vector norm ||·||, the error for any approximate solution may
be specific to a particular ✏(t), of the form

✏(x) =

����
d (x(t))

dt
�KG (x(t))

���� (6)

and thus may vary as a function of x. We seek the best
approximation that minimizes ✏(x) over all x 2 Rn

.

The goal of Koopman generator learning is thus to obtain
a “lifted” linear representation of a nonlinear system, defined
on a set of observable functions, that enables direct appli-
cation of the rich body of techniques for analyzing linear
systems. Even if it is only possible to identify an approximate
solution that minimizes ✏(x) < M , for all x 2 P; spectral
analysis of the system can provide insight into the stability
of the underlying nonlinear system within the region P of
the phase space.

III. SELECTION OF KOOPMAN BASIS FUNCTIONS

The standard approach for learning KG and  is to first
postulate a set of dictionary functions that approximate and
span  or a subspace of  and second, estimate KG given
fixed  (x). This approach is known as extended dynamic
mode decomposition. The technique involves constructing a
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Proof: It follows from (6) that

U t
(
φk1
λ1

φk2
λ2

)
= U tφk1

λ1
U tφk2

λ2
=

(
U tφλ1

)k1
(
U tφλ2

)k2

= e(k1λ1+k2λ2)tφk1
λ1

φk2
λ2

.

!
Property 1 implies that, as soon as there is one, there is an

infinity of Koopman eigenfunctions (however, they could be
dependent). Also, it follows from Property 1 that the products
φki
λi
φ

kj

λj
, with ki = λj and kj = −λi, satisfy (6) with λ = 0 .

(They are eigenfunctions only if they belong to F .) These
functions are constant along the trajectories, so that their level
sets are invariant under ϕ. If one considers the non-degenerate
intersections of the level sets of N − 1 such (independent)
functions, we obtain a family of one-dimensional sets that
correspond to the orbits of the system. This property shows
that the Koopman eigenfunctions are directly related to the
dynamics of the systems. More precisely, knowing them is
equivalent to knowing the trajectories of the system.

The following property shows that the set of eigenfunctions
can be decomposed in two subsets. Only one of these subsets is
related to the stability properties of the system.

Property 2: Suppose that A is globally stable on X . If F ⊆
C0(X), the Koopman eigenfunctions φλ and their associated
eigenvalues λ satisfy

φλ ∈ FAc ⇔ ℜ{λ} < 0 (8)

φλ ̸∈ FAc ⇔ ℜ{λ} =0 . (9)

Moreover, if φλ ∈ FAc , then it is also an eigenfunction of
the restriction U t

Ac
, associated with the same eigenvalue. If

φλ ̸∈ FAc , then the restriction φλ|A of φλ to A is an eigen-
function of U t

A, associated with the same eigenvalue.
Proof: 1. φλ ∈ FAc ⇒ ℜ{λ} < 0 . The property directly

follows from Proposition 1.
2. ℜ{λ} < 0 ⇒ φλ ∈ FAc . Consider a point xω ∈ A. There

exists a state x ∈ X such that xω ∈ ω(x), or equivalently there
exists a sequence tk such that tk → ∞ and ϕtk(x) → xω as
k → ∞. Then, the continuity of φλ and (6) imply that

φλ(xω) = φλ

(
lim

n→∞
ϕtk(x)

)
= lim

k→∞
φλ

(
ϕtk(x)

)
= 0 . (10)

3. φλ ̸∈ FAc ⇔ ℜ{λ} = 0 . Suppose that there exists an
eigenfunction which satisfies ℜ{λ} > 0 . According to (6), we
have

φλ

(
lim
t→∞

ϕt(x)
)

= lim
t→∞

eλtφλ(x) = ∞

for some x such that φλ(x) ̸= 0 . The eigenfunction φλ is not
bounded on A, which contradicts the continuity assumption. It
follows that the eigenvalues always satisfy ℜ{λ} ≤ 0 , so that
(9) is equivalent to (8).

4. The fact that φλ ∈ FAc is an eigenfunction of U t
Ac

is
trivial since FAc is invariant under U t. The fact that φλ|A is an
eigenfunction of U t

A follows from U t
A(φλ|A) = (U tφλ)|A =

eλtφλ|A. !

The eigenfunctions φλ that do not belong to FAc are asso-
ciated with purely imaginary eigenvalues and provide no infor-
mation on stability. Instead, they are related to the dynamics
on the attractor A. More precisely, their restrictions φλ|A ∈
L2(A) are the eigenfunctions of UA, which is a unitary operator
describing the ergodic behavior of the trajectories on A. In
addition, the level sets of φλ are the sets of initial conditions
converging to the same trajectory on the attractor. They are
closely related to the notion of periodic invariant sets [15] and to
the isochrons defining phase coordinates on the state space [12].

In contrast, the eigenfunctions φλ that belong to FAc are
associated with eigenvalues ℜ{λ} ̸= 0 and capture the stability
properties of the system. They are also the eigenfunctions of
the restriction UAc , a property which is in agreement with the
results of Section II-B showing that UAc plays a key role for
stability analysis. The level sets of |φλ| are related to the notion
of isostables, i.e., the sets of initial conditions that converge
synchronously toward the attractor [14].

Remark 2 (Space of Observables): It has been shown re-
cently in [17] that an appropriate space of observables—for
which the Koopman operator admits a spectral expansion (in
the case of stable fixed points and limit cycles)—is (the com-
pletion of) a space of polynomials with indeterminates being
coordinates corresponding to stable directions of the attractor
and with coefficients being observables defined on the attractor.
For the sake of simplicity (and for practical reasons), we con-
sider in this paper more general spaces (e.g., C0(X), C1(X))
in which the operator might not admit a spectral expansion, but
which still ensure that the eigenfunctions capture the required
stability properties of the system. In addition, the results of [17]
motivate the choice of a polynomial basis for the numerical
simulations proposed in Section IV.

Remark 3 (Continuous and Regular Spectrum): For our
purpose, we only need to consider the point spectrum of the
Koopman operator. In well-chosen spaces of observables, the
continuous and residual parts of the spectrum are empty with
most of the types of hyperbolic attractors (fixed points, limit
cycles, quasiperiodic tori, see e.g., [5], [6], [14], [17]). For
chaotic systems, these parts correspond to the ergodic dynamics
on the strange attractor, therefore carrying no information on
stability. When the attractor is not hyperbolic, a non empty
continuous spectrum is also observed with the space of analytic
functions (see e.g., [5]). In this case, the associated (non-
analytic) generalized eigenfunctions can be used for stability
analysis (see also Remark 7).

B. Main Results

As suggested by Property 2, the eigenfunctions lying in FAc

(i.e., associated withℜ{λ} <0 ) can be used for the global stabil-
ity analysis of the attractor. We have the following general result.

Theorem 1: Suppose that X is a forward invariant com-
pact set and that the Koopman operator U tf = f ◦ϕt admits
an eigenfunction φλ ∈ C0(X) with the eigenvalue ℜ{λ} < 0 .
Then the zero level set

M0= {x ∈ X |φλ(x) = 0 }

is forward invariant underϕt and globally asymptotically stable.

The appropriate choice of observables can elucidate stability of the system.
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Not all liftings give insight into the underlying dynamical system’s stability.   

Consider the following system

Let 

set of dictionary functions  D = { 1, ..., ND}, evaluating
the dictionary over a time-shifted stack of state trajectories

Xp =
⇥
x(tn+1) . . . x(t0)

⇤
, Xf =

⇥
x(tn) . . . x(t1)

⇤

to obtain

 (Xf ) =

2

664

 (x(0)
n+1) . . .  (x(0)

1 )
...

. . .
...

 (x(p)
n+1) . . .  (x(p)

1 )

3

775

 (Xp) =

2

664

 (x(0)
n ) . . .  (x(0)

0 )
...

. . .
...

 (x(ND)
n ) . . .  (x(ND)

0 )

3

775 .

(7)

and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn

. Then the Koopman generator, KG

must satisfy:
d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:

Li(x) =

Z x

0
cf

�1(⌧)d⌧ (10)

Notice that the Koopman observable function  (x) defined
as

 (x) ⌘

2

64
 1(x)

...
 n(x)

3

75 ⌘

2

64
e
L1(x)

...
e
Ln(x)

3

75 (11)

has time-derivative that can be expressed in state-space form
as

d

dt
 (x(t)) =

d

dt

2

64
e
L1(x)

...
e
Ln(x)

3

75 =

2

64
e
L1(x)

...
e
Ln(x)

3

75 cf
�1(x)f(x)

= cI

2

64
e
L1(x)

...
e
Ln(x)

3

75 = KG (x)

(12)
where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).
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the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn

. Then the Koopman generator, KG

must satisfy:
d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).
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be any bounded continuous function. Define the space of observables:

of finite approximate closure and a class of state-inclusive
Koopman bases functions that satisfy finite approximate
closure. Section V derives error bounds for this special
Koopman basis and Section VI illustrates the accuracy of
these bases functions for learning the dynamics of two
nonlinear systems.

II. THE KOOPMAN GENERATOR LEARNING PROBLEM

Consider a nonlinear system with dynamics

ẋ = f(x) (1)

where x 2 M ⇢ Rn, f : Rn ! Rn is continuously
differentiable, time-invariant, and nonlinear in x. Let x0

denote the initial condition x(0) for the system and M denote
the state-space of the dynamical system. We introduce the
concepts of a Koopman generator and its associated multi-
variate Koopman semigroup, following the exposition of [2].

A. The Koopman Generator

For continuous nonlinear systems, the Koopman semi-
group is a semigroup Kt2R of linear but infinite dimensional
operators Kt that acts on a space of functions  : M ! R,
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 2  , where  is a finite or infinite dimensional function
space. We thus say Kt :  !  is an operator for each
t � 0. The Koopman semigroup provides an alternative view
for evolving the state of a dynamical system:

Kt �  (x0) =  � �t(x0), (2)

where �t(x0) is the flow map of the dynamical system (1),
evolved forward up to time t, given the initial condition x0.

Instead of examining the evolution of the state of a
dynamical system, the Koopman semigroup allows us to
study the forward evolution of observables defined on the
state of a dynamical system [12].

The generator KG for the Koopman semigroup is defined
as

KG ⌘ lim
t!0

Kt �  

t
(3)

Lemma 1: The Koopman generator KG is a linear opera-
tor.

Proof: Notice that the transformation KG :  !  is
an operator, since each Kt is an operator on  . Moreover,
the algebraic limit theorem and the linearity of each Kt

guarantees linearity of KG, which implies it is a linear
operator. ⌅

In general, KG may not have a finite or countably infinite-
dimensional matrix representation, since the limit of the
spectrum of Kt�0 as t ! 0 may be continuous and therefore
uncountably infinite, see [5] for a thorough study of several
examples.
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finite or countably infinite dimensional Koopman generators
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specifically f(x) and x from (1); we aim to learn  (x) and
Koopman generator KG to solve the optimization problem

min
KG , 2 

����
d (x(t))

dt
�KG (x(t))

���� (4)

This optimization problem is often non-convex, since the
form of  (x(t)) is unknown or parametrically undefined.
Both the Koopman generator and the basis functions must be
discovered simultaneously to minimize the above objective
function. This is true in data-driven formulations of the
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A solution pair (KG, (x)) that achieves exactly zero
error is an exact realization of a Koopman generator and
its associated observable function. In general, there may be
multiple solutions that achieve exactly zero error. To see this,
note that if

d (x(t))

dt
= KG (x(t)) (5)

then a state transformation '(x(t)) = T
�1
 (x(t)) also

defines an exact solution pair (TKGT
�1

, T
�1
 (x(t))).

Solving for an exact solution pair (KG, (x)) in practice
may be difficult for at least three reasons. First, evaluating
d (x(t)))

dt requires numerical differentiation, which incurs a
certain degree of numerical error. Second, KG may be infinite
dimensional and the collection of observable functions  ⌘
{ 1, 2, ... nL}, nL  1 is unknown a priori.

We refer to any solution pair (KG, (x)) that results in a
non-zero error as an approximate solution. Note that, given
vector norm ||·||, the error for any approximate solution may
be specific to a particular ✏(t), of the form

✏(x) =

����
d (x(t))

dt
�KG (x(t))

���� (6)

and thus may vary as a function of x. We seek the best
approximation that minimizes ✏(x) over all x 2 Rn

.

The goal of Koopman generator learning is thus to obtain
a “lifted” linear representation of a nonlinear system, defined
on a set of observable functions, that enables direct appli-
cation of the rich body of techniques for analyzing linear
systems. Even if it is only possible to identify an approximate
solution that minimizes ✏(x) < M , for all x 2 P; spectral
analysis of the system can provide insight into the stability
of the underlying nonlinear system within the region P of
the phase space.

III. SELECTION OF KOOPMAN BASIS FUNCTIONS

The standard approach for learning KG and  is to first
postulate a set of dictionary functions that approximate and
span  or a subspace of  and second, estimate KG given
fixed  (x). This approach is known as extended dynamic
mode decomposition. The technique involves constructing a
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set of dictionary functions  D = { 1, ..., ND}, evaluating
the dictionary over a time-shifted stack of state trajectories
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⇤
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:

d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:

Li(x) =

Z 1

0
cf
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Notice that the Koopman observable function  (x) defined
as
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:

d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:

Li(x) =

Z 1

0
cf

�1
i (x(⌧))d⌧ (10)

Notice that the Koopman observable function  (x) defined
as
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).

Johnson, Yeung, “A Class of Logistic Functions for 
State-Inclusive Koopman Operators”  Proceedings of 
iEEE ACC (2017)

mailto:eyeung@ucsb.edu


eyeung@ucsb.edu

Nuances to Constructing Koopman Observables

�16
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set of dictionary functions  D = { 1, ..., ND}, evaluating
the dictionary over a time-shifted stack of state trajectories
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
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This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:

d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:

d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:

Li(x) =
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0
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).

set of dictionary functions  D = { 1, ..., ND}, evaluating
the dictionary over a time-shifted stack of state trajectories

Xp =
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:

d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:

Li(x) =

Z 1

0
cf

�1
i (x(⌧))d⌧ (10)

Notice that the Koopman observable function  (x) defined
as

 (x) ⌘

2

64
 1(x)

...
 n(x)

3

75 ⌘

2

64
e
L1(x)

...
e
Ln(x)

3

75 (11)

has time-derivative that can be expressed in state-space form
as

d

dt
 (x(t)) =

d

dt

2

64
e
L1(x)

...
e
Ln(x)

3

75 =

2

64
e
L1(x)

...
e
Ln(x)

3

75 cf
�1(x)f(x)

= cI

2

64
e
L1(x)

...
e
Ln(x)

3

75 = KG (x)

(12)

where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).

It is straightforward to compute the Koopman operator for this choice of 
observables:
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observables and the system state.

set of dictionary functions  D = { 1, ..., ND}, evaluating
the dictionary over a time-shifted stack of state trajectories

Xp =
⇥
x(tn+1) . . . x(t0)

⇤
, Xf =
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x(tn) . . . x(t1)
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to obtain
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:

d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:

Li(x) =

Z 1

0
cf
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Notice that the Koopman observable function  (x) defined
as
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).

set of dictionary functions  D = { 1, ..., ND}, evaluating
the dictionary over a time-shifted stack of state trajectories
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:

d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:

Li(x) =

Z 1

0
cf
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Notice that the Koopman observable function  (x) defined
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).

for some j.
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When x is contained within the observable function, this guarantees the Koopman 
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observables and the system state.
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and approximating the Koopman operator by minimizing the
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where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.
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system, the matrix  (Xf ) must be replaced with a finite-
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So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
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Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative
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Not all Koopman observables (which we will refer to
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underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:
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dt
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Let c 2 R be an arbitrary constant. First, we choose a set of
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so that:
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:

d (x)
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= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
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so that:
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).
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operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
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the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.
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system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d
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function f(x) is known, but difficult to analyze using local
linearization methods.
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so that:

Li(x) =

Z 1

0
cf

�1
i (x(⌧))d⌧ (10)

Notice that the Koopman observable function  (x) defined
as

 (x) ⌘

2

64
 1(x)

...
 n(x)

3

75 ⌘

2

64
e
L1(x)

...
e
Ln(x)

3

75 (11)

has time-derivative that can be expressed in state-space form
as

d

dt
 (x(t)) =

d

dt

2

64
e
L1(x)

...
e
Ln(x)

3

75 =

2

64
e
L1(x)

...
e
Ln(x)

3

75 cf
�1(x)f(x)

= cI

2

64
e
L1(x)

...
e
Ln(x)

3

75 = KG (x)

(12)

where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability of
 (x), including  j(x). When

d j(x)/dt = f(x) 2 span{ 1, ..., nL}

and d (x)/dt = KG (x), we say the system has finite
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:

d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:

Li(x) =

Z 1

0
cf

�1
i (x(⌧))d⌧ (10)

Notice that the Koopman observable function  (x) defined
as

 (x) ⌘

2

64
 1(x)

...
 n(x)

3

75 ⌘

2

64
e
L1(x)

...
e
Ln(x)

3

75 (11)

has time-derivative that can be expressed in state-space form
as

d

dt
 (x(t)) =

d

dt

2

64
e
L1(x)

...
e
Ln(x)

3

75 =

2

64
e
L1(x)

...
e
Ln(x)

3

75 cf
�1(x)f(x)

= cI

2

64
e
L1(x)

...
e
Ln(x)

3

75 = KG (x)

(12)

where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability of
 (x), including  j(x). When

d j(x)/dt = f(x) 2 span{ 1, ..., nL}

and d (x)/dt = KG (x), we say the system has finite
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative
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which to construct the observable functions  (x(t)). Second,
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In this section we will discuss choices of Koopman
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underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
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the Koopman generator, KG must satisfy:
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).
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and approximating the Koopman operator by minimizing the
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where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.
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preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d
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So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.
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function f(x) is known, but difficult to analyze using local
linearization methods.
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that the underlying vector field f(x) is known.
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is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability
of  (x), including  j(x). When d j(x)/dt = f(x) 2
span{ 1, ..., nL} and d (x)/dt = KG (x), we say the
system has finite exact closure. That is, derivatives of the
full-state observable  j(x) = x and the rest of  i(x), i 6= j

can be described entirely in terms of the state vector  (x).

for some j.

set of dictionary functions  D = { 1, ..., ND}, evaluating
the dictionary over a time-shifted stack of state trajectories

Xp =
⇥
x(tn+1) . . . x(t0)
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:

d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:

Li(x) =
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Notice that the Koopman observable function  (x) defined
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has time-derivative that can be expressed in state-space form
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability of
 (x), including  j(x). When

d j(x)/dt = f(x) 2 span{ 1, ..., nL}

and d (x)/dt = KG (x), we say the system has finite
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and approximating the Koopman operator by minimizing the
(regularized) objective function

|| (Xf )�K (Xp)||2 + ⇣||K||2,1 (8)

where K is the finite approximation to the true Koopman
operator, K, for a discrete time system, and ||K||2,1 is the
1-norm of the vector of 2-norms of each column of K.

Note that ⇣ = 0 provides the classical formulation for
extended dynamic mode decomposition. As suggested by
the notation, this approach is most commonly applied in
the study of open-loop nonlinear discrete-time dynamical
systems, see [7], [12], [14] for several examples.

The Koopman generator learning problem is the con-
tinuous time analogue of minimizing (8). However, when
preforming Koopman learning in a continuous dynamical
system, the matrix  (Xf ) must be replaced with a finite-
difference approximation of the derivative matrix d

dt (Xf ).
So, in general, the accuracy of this estimate is sensitive to
the finite-difference approximation used.

The purpose of this paper is to study the quality of a class
of observable functions for estimating a Koopman generator
in finite dimensions. To this end, we restrict our attention to
Koopman generator learning problems where the underlying
function f(x) is known, but difficult to analyze using local
linearization methods.

Assumption 1: Given a nonlinear system (1), we suppose
that the underlying vector field f(x) is known.

This allows us to evaluate the quality of a class of
observable functions, independent of the error imposed by
any finite-difference scheme for estimating the derivative

d

dt
 (Xf ).

This leaves us with two challenges. First, identifying a
suitable dictionary of observables or lifting functions from
which to construct the observable functions  (x(t)). Second,
identifying or estimating KG, given f(x).

A. Understanding Stability with Koopman Observables

In this section we will discuss choices of Koopman
observables. Our discussion will not be all inclusive. Further
and similar insight may be found in [15]. Williams et al. also
discuss several choices of observables in [12].

Not all Koopman observables (which we will refer to
as Koopman liftings) yield insight into the stability of the
underlying system. For example, suppose that we are given
a nonlinear system of the form (1). Further suppose that f
is invertible on M ⇢ Rn and that f�1 2 L1 [0,1) . Then
the Koopman generator, KG must satisfy:

d (x)

dt
= KG (x) (9)

Let c 2 R be an arbitrary constant. First, we choose a set of
functions {L1,L2, . . . ,Ln|Li : Rn ! R, i 2 {1, 2, . . . , n}}
so that:

Li(x) =
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0
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as

 (x) ⌘

2

64
 1(x)

...
 n(x)

3

75 ⌘

2

64
e
L1(x)

...
e
Ln(x)

3

75 (11)
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where the Koopman generator is KG = cI. Since c is arbi-
trary, the system can be either stable or unstable, depending
on the sign of the choice of c.

Our choice of observable functions provides an exact
solution to the Koopman generator learning problem. The
spectral properties of KG are easy to explore as each eigen-
value is simply equal to c. However, this result is uninforma-
tive. The stability properties of the Koopman generator are
totally dependent on an arbitrary constant and are therefore
completely divorced from the vector field f .

The key property that is lacking in the above example
is the inclusion of the underlying state dynamics in the
observable function  (x). Whenever x is contained within
 , this guarantees that any Koopman generator KG and its
associated Koopman semigroup {K}t�0, not only describe
the time evolution of  (x) but also the underlying system.
Specifically, if  (x) = ( 1(x), 2(x), ..., nL(x)) contains a
 j(x) = x that is the so-called full state observable function,
then by definition,

d j(x)/dt = f(x).

Thus, the spectrum of KG will characterize the stability of
 (x), including  j(x). When

d j(x)/dt = f(x) 2 span{ 1, ..., nL}

and d (x)/dt = KG (x), we say the system has finite

exact closure. That is, derivatives of the full-state observable
we say the system has finite exact closure. 

This property does not hold for many nonlinear candidate observable functions.
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Example [Non-Finite Closure]:

 j(x) = x and the rest of  i(x), i 6= j can be described
entirely in terms of the state vector  (x). This property does
not hold for many nonlinear candidate observable functions.
We give an example:

Example 1: Consider a scalar nonlinear system of the
form

ẋ = f(x) = �x
2 (13)

First, consider a candidate observable function  (x) =�
1, x, x2

�
. We want to see if

 ̇(x) = KG (x) (14)

for some KG. Calculating explicitly, we get

 ̇(x) =

2

4
0

� 3(x)
�2 2(x) 3(x)

3

5 (15)

The issue is that including x in the state requires including
f(x) as part of the derivative. This implies that each time
x multiplies f(x), one obtains a cubic term which is not
included in  (x). Similarly, including cubic terms in  (x)
results in quartic terms and so on. This is an example
of a system where  (x) defined above, does not satisfy
finite exact closure. This is not to say that the system can
not be expressed with finite closure, but that our proposed
observable function  does not satisfy the finite exact closure
property.

B. Finite Approximate Closure

In general, systems that are not globally topologically
conjugate to a finite dimensional linear system, e.g. systems
with multiple fixed points, have no exact finite-dimensional
linear Koopman operator representation that includes the
state in the set of observables [7], [16]. However, it may be
possible to learn a Koopman observable function  (x) that
approximately satisfies finite closure, defined as follows:

Definition 1: Let  (x) : M ! RNL where NL < 1.
We say  (x) achieves finite ✏-closure or finite approximate

closure with O(✏) error if and only if there exists an KG 2
Rn⇥n and ✏ > 0 such that

d

dt
( (x)) = KG (x) + ✏(x). (16)

We say that  (x) achieves uniform finite approximate clo-
sure for some set P ⇢ M if and only if it achieves finite
approximate closure with |✏(x)| < B 2 R for all x 2 P.

Finite approximate closure is a desirable property since,
as ✏! 0, we may use KG to preform high fidelity stability,
observability and spectral analysis. For example, if ✏ is
small enough over all x(t) in M, one could study the target
trajectory of x(t) given x0 by studying the evolution of a
state-inclusive lifting of observable functions, or  ̇(x) =
KG (x). Projecting from  to x is trivial and it’s trajectory,
an approximation to x(t), may yield stability insights.

By a similar token we also may consider observability
analysis and state prediction problems [17], [18]. Given a
series of measurements with corruption in the model and
noise in the measurements, can one predict the state of the

Fig. 1. This graphic demonstrates an example of our a 2 variable product
of conjunctive logistic functions. This function would be an example of one
of the lifting functions in our proposed lifting scheme for a 2-state system.

system? Under the condition of finite approximate closure
and a sufficiently small ✏ the error of state estimation on the
state inclusive lifting of the system (evolving according to
the linear relation given by KG) should also be small. For
more extensive treatment in the use of Koopman operators
in the state prediction problem (in discrete time) see [17].

Finally we note that given a matrix A with a spectrum �A,
if one adds a perturbation matrix, P , where kPk < "1, there
are established limits on how the spectrum of A+P , �A+P ,
will vary from �A. For example, there are the bounds estab-
lished in the Hoffman-Wielandt theorem. So the spectrum of
a weakly perturbed matrix is weakly altered. Therefore, if
K⇤

G is a close approximation to the true Koopman generator
of a system, we can estimate the spectral distribution of
the true Koopman generator, including its principal modes
and eigenvalues [5]. Finite approximate closure of K⇤

G of
order ✏ guarantees bounded error between K⇤

G and an ideal
Koopman generator. Moreover, certain learning parameters
can be tuned to arbitrarily reduce the size of ✏.

IV. STATE INCLUSIVE LOGISTIC LIFTING (SILL)
FUNCTIONS AND FINITE APPROXIMATE CLOSURE

To develop an approximation to KG we introduce a new
class of conjunctive logistic functions. We do so for several
reasons. Firstly, logistic functions have well established
functional approximation properties [19]. Secondly, we now
show that sets of logistic functions in this class of models,
satisfying a total order, satisfy finite approximate closure.

We define a multivariate conjunctive logistic function as
follows:

⇤vl(x) ⌘
nY

i=1

�µi(xi) (17)

where x 2 Rn, v = (µl
1, ..., µ

l
n), and the logistic function

�µ(x) is defined as

�µ(x) ⌘
1

1 + e�↵(x�µ)
. (18)

The parameters µi define the centers or the point of activation
along dimension xi, i = 1, ..., n. The parameter ↵ is the
steepness parameter, or sensitivity parameter, and determines

 j(x) = x and the rest of  i(x), i 6= j can be described
entirely in terms of the state vector  (x). This property does
not hold for many nonlinear candidate observable functions.
We give an example:

Example 1: Consider a scalar nonlinear system of the
form

ẋ = f(x) = �x
2 (13)

First, consider a candidate observable function  (x) =�
1, x, x2
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. We want to see if
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The issue is that including x in the state requires including
f(x) as part of the derivative. This implies that each time
x multiplies f(x), one obtains a cubic term which is not
included in  (x). Similarly, including cubic terms in  (x)
results in quartic terms and so on. This is an example
of a system where  (x) defined above, does not satisfy
finite exact closure. This is not to say that the system can
not be expressed with finite closure, but that our proposed
observable function  does not satisfy the finite exact closure
property.

B. Finite Approximate Closure

In general, systems that are not globally topologically
conjugate to a finite dimensional linear system, e.g. systems
with multiple fixed points, have no exact finite-dimensional
linear Koopman operator representation that includes the
state in the set of observables [7], [16]. However, it may be
possible to learn a Koopman observable function  (x) that
approximately satisfies finite closure, defined as follows:

Definition 1: Let  (x) : M ! RNL where NL < 1.
We say  (x) achieves finite ✏-closure or finite approximate

closure with O(✏) error if and only if there exists an KG 2
Rn⇥n and ✏ > 0 such that

d

dt
( (x)) = KG (x) + ✏(x). (16)

We say that  (x) achieves uniform finite approximate clo-
sure for some set P ⇢ M if and only if it achieves finite
approximate closure with |✏(x)| < B 2 R for all x 2 P.

Finite approximate closure is a desirable property since,
as ✏! 0, we may use KG to preform high fidelity stability,
observability and spectral analysis. For example, if ✏ is
small enough over all x(t) in M, one could study the target
trajectory of x(t) given x0 by studying the evolution of a
state-inclusive lifting of observable functions, or  ̇(x) =
KG (x). Projecting from  to x is trivial and it’s trajectory,
an approximation to x(t), may yield stability insights.

By a similar token we also may consider observability
analysis and state prediction problems [17], [18]. Given a
series of measurements with corruption in the model and
noise in the measurements, can one predict the state of the
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of the lifting functions in our proposed lifting scheme for a 2-state system.

system? Under the condition of finite approximate closure
and a sufficiently small ✏ the error of state estimation on the
state inclusive lifting of the system (evolving according to
the linear relation given by KG) should also be small. For
more extensive treatment in the use of Koopman operators
in the state prediction problem (in discrete time) see [17].

Finally we note that given a matrix A with a spectrum �A,
if one adds a perturbation matrix, P , where kPk < "1, there
are established limits on how the spectrum of A+P , �A+P ,
will vary from �A. For example, there are the bounds estab-
lished in the Hoffman-Wielandt theorem. So the spectrum of
a weakly perturbed matrix is weakly altered. Therefore, if
K⇤

G is a close approximation to the true Koopman generator
of a system, we can estimate the spectral distribution of
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and eigenvalues [5]. Finite approximate closure of K⇤

G of
order ✏ guarantees bounded error between K⇤

G and an ideal
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class of conjunctive logistic functions. We do so for several
reasons. Firstly, logistic functions have well established
functional approximation properties [19]. Secondly, we now
show that sets of logistic functions in this class of models,
satisfying a total order, satisfy finite approximate closure.

We define a multivariate conjunctive logistic function as
follows:
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 j(x) = x and the rest of  i(x), i 6= j can be described
entirely in terms of the state vector  (x). This property does
not hold for many nonlinear candidate observable functions.
We give an example:
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The issue is that including x in the state requires including
f(x) as part of the derivative. This implies that each time
x multiplies f(x), one obtains a cubic term which is not
included in  (x). Similarly, including cubic terms in  (x)
results in quartic terms and so on. This is an example
of a system where  (x) defined above, does not satisfy
finite exact closure. This is not to say that the system can
not be expressed with finite closure, but that our proposed
observable function  does not satisfy the finite exact closure
property.

B. Finite Approximate Closure

In general, systems that are not globally topologically
conjugate to a finite dimensional linear system, e.g. systems
with multiple fixed points, have no exact finite-dimensional
linear Koopman operator representation that includes the
state in the set of observables [7], [16]. However, it may be
possible to learn a Koopman observable function  (x) that
approximately satisfies finite closure, defined as follows:

Definition 1: Let  (x) : M ! RNL where NL < 1.
We say  (x) achieves finite ✏-closure or finite approximate

closure with O(✏) error if and only if there exists an KG 2
Rn⇥n and ✏ > 0 such that

d

dt
( (x)) = KG (x) + ✏(x). (16)

We say that  (x) achieves uniform finite approximate clo-
sure for some set P ⇢ M if and only if it achieves finite
approximate closure with |✏(x)| < B 2 R for all x 2 P.

Finite approximate closure is a desirable property since,
as ✏! 0, we may use KG to preform high fidelity stability,
observability and spectral analysis. For example, if ✏ is
small enough over all x(t) in M, one could study the target
trajectory of x(t) given x0 by studying the evolution of a
state-inclusive lifting of observable functions, or  ̇(x) =
KG (x). Projecting from  to x is trivial and it’s trajectory,
an approximation to x(t), may yield stability insights.

By a similar token we also may consider observability
analysis and state prediction problems [17], [18]. Given a
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of the lifting functions in our proposed lifting scheme for a 2-state system.

series of measurements with corruption in the model and
noise in the measurements, can one predict the state of the
system? Under the condition of finite approximate closure
and a sufficiently small ✏ the error of state estimation on the
state inclusive lifting of the system (evolving according to
the linear relation given by KG) should also be small. For
more extensive treatment in the use of Koopman operators
in the state prediction problem (in discrete time) see [17].

Finally we note that given a matrix A with a spectrum �A,
if one adds a perturbation matrix, P , where kPk < "1, there
are established limits on how the spectrum of A+P , �A+P ,
will vary from �A. For example, there are the bounds estab-
lished in the Hoffman-Wielandt theorem. So the spectrum of
a weakly perturbed matrix is weakly altered. Therefore, if
K⇤

G is a close approximation to the true Koopman generator
of a system, we can estimate the spectral distribution of
the true Koopman generator, including its principal modes
and eigenvalues [5]. Finite approximate closure of K⇤

G of
order ✏ guarantees bounded error between K⇤

G and an ideal
Koopman generator. Moreover, certain learning parameters
can be tuned to arbitrarily reduce the size of ✏.

IV. STATE INCLUSIVE LOGISTIC LIFTING (SILL)
FUNCTIONS AND FINITE APPROXIMATE CLOSURE

To develop an approximation to KG we introduce a new
class of conjunctive logistic functions. We do so for several
reasons. Firstly, logistic functions have well established
functional approximation properties [19]. Secondly, we now
show that sets of logistic functions in this class of models,
satisfying a total order, satisfy finite approximate closure.

We define a multivariate conjunctive logistic function as
follows:

⇤vl(x) ⌘
nY

i=1

�µi(xi) (17)

where x 2 Rn, v = (µl
1, ..., µ

l
n), and the logistic function

�µ(x) is defined as
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1

1 + e�↵(x�µ)
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System of interest:

2nd-Degree Polynomial  
Lifting:

Non-Finite Closure:
We would need to add an infinite 
number of polynomials to achieve 
convergence.

Johnson, Yeung, “A Class of Logistic Functions for 
State-Inclusive Koopman Operators”  Proceedings of 
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Since finite exact closure is hard, we consider a less stringent  
learning requirement on our liftings:

 j(x) = x and the rest of  i(x), i 6= j can be described
entirely in terms of the state vector  (x). This property does
not hold for many nonlinear candidate observable functions.
We give an example:

Example 1: Consider a scalar nonlinear system of the
form

ẋ = f(x) = �x
2 (13)

First, consider a candidate observable function

 (x) =
�
1, x, x2

�

We want to see if

 ̇(x) = KG (x) (14)

for some KG. Calculating explicitly, we get

 ̇(x) =

2

4
0

� 3(x)
�2 2(x) 3(x)

3

5 (15)

The issue is that including x in the state requires including
f(x) as part of the derivative. This implies that each time
x multiplies f(x), one obtains a cubic term which is not
included in  (x). Similarly, including cubic terms in  (x)
results in quartic terms and so on. This is an example
of a system where  (x) defined above, does not satisfy
finite exact closure. This is not to say that the system can
not be expressed with finite closure, but that our proposed
observable function  does not satisfy the finite exact closure
property.

B. Finite Approximate Closure

In general, systems that are not globally topologically
conjugate to a finite dimensional linear system, e.g. systems
with multiple fixed points, have no exact finite-dimensional
linear Koopman operator representation that includes the
state in the set of observables [7], [16]. However, it may be
possible to learn a Koopman observable function  (x) that
approximately satisfies finite closure, defined as follows:

Definition 1: Let  (x) : M ! RNL where NL < 1.
We say  (x) achieves finite ✏-closure or finite approximate

closure with O(✏) error if and only if there exists an KG 2
Rn⇥n and ✏ > 0 such that

d

dt
( (x)) = KG (x) + ✏(x). (16)

We say that  (x) achieves uniform finite approximate clo-
sure for some set P ⇢ M if and only if it achieves finite
approximate closure with |✏(x)| < B 2 R for all x 2 P.

Finite approximate closure is a desirable property since,
as ✏! 0, we may use KG to preform high fidelity stability,
observability and spectral analysis. For example, if ✏ is
small enough over all x(t) in M, one could study the target
trajectory of x(t) given x0 by studying the evolution of a
state-inclusive lifting of observable functions, or  ̇(x) =
KG (x). Projecting from  to x is trivial and it’s trajectory,
an approximation to x(t), may yield stability insights.

By a similar token we also may consider observability
analysis and state prediction problems [17], [18]. Given a

Fig. 1. This graphic demonstrates an example of our a 2 variable product
of conjunctive logistic functions. This function would be an example of one
of the lifting functions in our proposed lifting scheme for a 2-state system.

series of measurements with corruption in the model and
noise in the measurements, can one predict the state of the
system? Under the condition of finite approximate closure
and a sufficiently small ✏ the error of state estimation on the
state inclusive lifting of the system (evolving according to
the linear relation given by KG) should also be small. For
more extensive treatment in the use of Koopman operators
in the state prediction problem (in discrete time) see [17].

Finally we note that given a matrix A with a spectrum �A,
if one adds a perturbation matrix, P , where kPk < "1, there
are established limits on how the spectrum of A+P , �A+P ,
will vary from �A. For example, there are the bounds estab-
lished in the Hoffman-Wielandt theorem. So the spectrum of
a weakly perturbed matrix is weakly altered. Therefore, if
K⇤

G is a close approximation to the true Koopman generator
of a system, we can estimate the spectral distribution of
the true Koopman generator, including its principal modes
and eigenvalues [5]. Finite approximate closure of K⇤

G of
order ✏ guarantees bounded error between K⇤

G and an ideal
Koopman generator. Moreover, certain learning parameters
can be tuned to arbitrarily reduce the size of ✏.

IV. STATE INCLUSIVE LOGISTIC LIFTING (SILL)
FUNCTIONS AND FINITE APPROXIMATE CLOSURE

To develop an approximation to KG we introduce a new
class of conjunctive logistic functions. We do so for several
reasons. Firstly, logistic functions have well established
functional approximation properties [19]. Secondly, we now
show that sets of logistic functions in this class of models,
satisfying a total order, satisfy finite approximate closure.

We define a multivariate conjunctive logistic function as
follows:

⇤vl(x) ⌘
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�µi(xi) (17)

where x 2 Rn, v = (µl
1, ..., µ

l
n), and the logistic function
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What state-inclusive observable functions exhibit this property?

Radial basis functions,  
Taylor/Legendre/Hermite polynomials,  
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What about the functions discovered by 
deepDMD?
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The dominant form is a logistic function:

 j(x) = x and the rest of  i(x), i 6= j can be described
entirely in terms of the state vector  (x). This property does
not hold for many nonlinear candidate observable functions.
We give an example:

Example 1: Consider a scalar nonlinear system of the
form

ẋ = f(x) = �x
2 (13)

First, consider a candidate observable function

 (x) =
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1, x, x2
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We want to see if

 ̇(x) = KG (x) (14)

for some KG. Calculating explicitly, we get
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The issue is that including x in the state requires including
f(x) as part of the derivative. This implies that each time
x multiplies f(x), one obtains a cubic term which is not
included in  (x). Similarly, including cubic terms in  (x)
results in quartic terms and so on. This is an example
of a system where  (x) defined above, does not satisfy
finite exact closure. This is not to say that the system can
not be expressed with finite closure, but that our proposed
observable function  does not satisfy the finite exact closure
property.

B. Finite Approximate Closure

In general, systems that are not globally topologically
conjugate to a finite dimensional linear system, e.g. systems
with multiple fixed points, have no exact finite-dimensional
linear Koopman operator representation that includes the
state in the set of observables [7], [16]. However, it may be
possible to learn a Koopman observable function  (x) that
approximately satisfies finite closure, defined as follows:

Definition 1: Let  (x) : M ! RNL where NL < 1.
We say  (x) achieves finite ✏-closure or finite approximate

closure with O(✏) error if and only if there exists an KG 2
Rn⇥n and ✏ > 0 such that

d

dt
( (x)) = KG (x) + ✏(x). (16)

We say that  (x) achieves uniform finite approximate clo-
sure for some set P ⇢ M if and only if it achieves finite
approximate closure with |✏(x)| < B 2 R for all x 2 P.

Finite approximate closure is a desirable property since,
as ✏! 0, we may use KG to preform high fidelity stability,
observability and spectral analysis. For example, if ✏ is
small enough over all x(t) in M, one could study the target
trajectory of x(t) given x0 by studying the evolution of a
state-inclusive lifting of observable functions, or  ̇(x) =
KG (x). Projecting from  to x is trivial and it’s trajectory,
an approximation to x(t), may yield stability insights.

By a similar token we also may consider observability
analysis and state prediction problems [17], [18]. Given a

Fig. 1. This graphic demonstrates an example of our a 2 variable product
of conjunctive logistic functions. This function would be an example of one
of the lifting functions in our proposed lifting scheme for a 2-state system.

series of measurements with corruption in the model and
noise in the measurements, can one predict the state of the
system? Under the condition of finite approximate closure
and a sufficiently small ✏ the error of state estimation on the
state inclusive lifting of the system (evolving according to
the linear relation given by KG) should also be small. For
more extensive treatment in the use of Koopman operators
in the state prediction problem (in discrete time) see [17].

Finally we note that given a matrix A with a spectrum �A,
if one adds a perturbation matrix, P , where kPk < "1, there
are established limits on how the spectrum of A+P , �A+P ,
will vary from �A. For example, there are the bounds estab-
lished in the Hoffman-Wielandt theorem. So the spectrum of
a weakly perturbed matrix is weakly altered. Therefore, if
K⇤

G is a close approximation to the true Koopman generator
of a system, we can estimate the spectral distribution of
the true Koopman generator, including its principal modes
and eigenvalues [5]. Finite approximate closure of K⇤

G of
order ✏ guarantees bounded error between K⇤

G and an ideal
Koopman generator. Moreover, certain learning parameters
can be tuned to arbitrarily reduce the size of ✏.

IV. STATE INCLUSIVE LOGISTIC LIFTING (SILL)
FUNCTIONS AND FINITE APPROXIMATE CLOSURE

To develop an approximation to KG we introduce a new
class of conjunctive logistic functions. We do so for several
reasons. Firstly, logistic functions have well established
functional approximation properties [19]. Secondly, we now
show that sets of logistic functions in this class of models,
satisfying a total order, satisfy finite approximate closure.

We define a multivariate conjunctive logistic function as
follows:

⇤vl(x) ⌘
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�µi(xi) (17)

where x 2 Rn, v = (µl
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The SILL Observable Function:

�25

Define the state inclusive logistic lifting (SILL) function:

 j(x) = x and the rest of  i(x), i 6= j can be described
entirely in terms of the state vector  (x). This property does
not hold for many nonlinear candidate observable functions.
We give an example:

Example 1: Consider a scalar nonlinear system of the
form

ẋ = f(x) = �x
2 (13)

First, consider a candidate observable function

 (x) =
�
1, x, x2

�

We want to see if

 ̇(x) = KG (x) (14)

for some KG. Calculating explicitly, we get
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The issue is that including x in the state requires including
f(x) as part of the derivative. This implies that each time
x multiplies f(x), one obtains a cubic term which is not
included in  (x). Similarly, including cubic terms in  (x)
results in quartic terms and so on. This is an example
of a system where  (x) defined above, does not satisfy
finite exact closure. This is not to say that the system can
not be expressed with finite closure, but that our proposed
observable function  does not satisfy the finite exact closure
property.

B. Finite Approximate Closure

In general, systems that are not globally topologically
conjugate to a finite dimensional linear system, e.g. systems
with multiple fixed points, have no exact finite-dimensional
linear Koopman operator representation that includes the
state in the set of observables [7], [16]. However, it may be
possible to learn a Koopman observable function  (x) that
approximately satisfies finite closure, defined as follows:

Definition 1: Let  (x) : M ! RNL where NL < 1.
We say  (x) achieves finite ✏-closure or finite approximate

closure with O(✏) error if and only if there exists an KG 2
Rn⇥n and ✏ > 0 such that

d

dt
( (x)) = KG (x) + ✏(x). (16)

We say that  (x) achieves uniform finite approximate clo-
sure for some set P ⇢ M if and only if it achieves finite
approximate closure with |✏(x)| < B 2 R for all x 2 P.

Finite approximate closure is a desirable property since,
as ✏! 0, we may use KG to preform high fidelity stability,
observability and spectral analysis. For example, if ✏ is
small enough over all x(t) in M, one could study the target
trajectory of x(t) given x0 by studying the evolution of a
state-inclusive lifting of observable functions, or  ̇(x) =
KG (x). Projecting from  to x is trivial and it’s trajectory,
an approximation to x(t), may yield stability insights.

By a similar token we also may consider observability
analysis and state prediction problems [17], [18]. Given a

Fig. 1. This graphic demonstrates an example of our a 2 variable product
of conjunctive logistic functions. This function would be an example of one
of the lifting functions in our proposed lifting scheme for a 2-state system.

series of measurements with corruption in the model and
noise in the measurements, can one predict the state of the
system? Under the condition of finite approximate closure
and a sufficiently small ✏ the error of state estimation on the
state inclusive lifting of the system (evolving according to
the linear relation given by KG) should also be small. For
more extensive treatment in the use of Koopman operators
in the state prediction problem (in discrete time) see [17].

Finally we note that given a matrix A with a spectrum �A,
if one adds a perturbation matrix, P , where kPk < "1, there
are established limits on how the spectrum of A+P , �A+P ,
will vary from �A. For example, there are the bounds estab-
lished in the Hoffman-Wielandt theorem. So the spectrum of
a weakly perturbed matrix is weakly altered. Therefore, if
K⇤

G is a close approximation to the true Koopman generator
of a system, we can estimate the spectral distribution of
the true Koopman generator, including its principal modes
and eigenvalues [5]. Finite approximate closure of K⇤

G of
order ✏ guarantees bounded error between K⇤

G and an ideal
Koopman generator. Moreover, certain learning parameters
can be tuned to arbitrarily reduce the size of ✏.

IV. STATE INCLUSIVE LOGISTIC LIFTING (SILL)
FUNCTIONS AND FINITE APPROXIMATE CLOSURE

To develop an approximation to KG we introduce a new
class of conjunctive logistic functions. We do so for several
reasons. Firstly, logistic functions have well established
functional approximation properties [19]. Secondly, we now
show that sets of logistic functions in this class of models,
satisfying a total order, satisfy finite approximate closure.

We define a multivariate conjunctive logistic function as
follows:

⇤vl(x) ⌘
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i=1

�µi(xi) (17)

where x 2 Rn, v = (µl
1, ..., µ
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n), and the logistic function

�µ(x) is defined as
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 j(x) = x and the rest of  i(x), i 6= j can be described
entirely in terms of the state vector  (x). This property does
not hold for many nonlinear candidate observable functions.
We give an example:

Example 1: Consider a scalar nonlinear system of the
form

ẋ = f(x) = �x
2 (13)

First, consider a candidate observable function
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The issue is that including x in the state requires including
f(x) as part of the derivative. This implies that each time
x multiplies f(x), one obtains a cubic term which is not
included in  (x). Similarly, including cubic terms in  (x)
results in quartic terms and so on. This is an example
of a system where  (x) defined above, does not satisfy
finite exact closure. This is not to say that the system can
not be expressed with finite closure, but that our proposed
observable function  does not satisfy the finite exact closure
property.

B. Finite Approximate Closure

In general, systems that are not globally topologically
conjugate to a finite dimensional linear system, e.g. systems
with multiple fixed points, have no exact finite-dimensional
linear Koopman operator representation that includes the
state in the set of observables [7], [16]. However, it may be
possible to learn a Koopman observable function  (x) that
approximately satisfies finite closure, defined as follows:

Definition 1: Let  (x) : M ! RNL where NL < 1.
We say  (x) achieves finite ✏-closure or finite approximate

closure with O(✏) error if and only if there exists an KG 2
Rn⇥n and ✏ > 0 such that

d

dt
( (x)) = KG (x) + ✏(x). (16)

We say that  (x) achieves uniform finite approximate clo-
sure for some set P ⇢ M if and only if it achieves finite
approximate closure with |✏(x)| < B 2 R for all x 2 P.

Finite approximate closure is a desirable property since,
as ✏! 0, we may use KG to preform high fidelity stability,
observability and spectral analysis. For example, if ✏ is
small enough over all x(t) in M, one could study the target
trajectory of x(t) given x0 by studying the evolution of a
state-inclusive lifting of observable functions, or  ̇(x) =
KG (x). Projecting from  to x is trivial and it’s trajectory,
an approximation to x(t), may yield stability insights.

By a similar token we also may consider observability
analysis and state prediction problems [17], [18]. Given a

Fig. 1. This graphic demonstrates an example of our a 2 variable product
of conjunctive logistic functions. This function would be an example of one
of the lifting functions in our proposed lifting scheme for a 2-state system.

series of measurements with corruption in the model and
noise in the measurements, can one predict the state of the
system? Under the condition of finite approximate closure
and a sufficiently small ✏ the error of state estimation on the
state inclusive lifting of the system (evolving according to
the linear relation given by KG) should also be small. For
more extensive treatment in the use of Koopman operators
in the state prediction problem (in discrete time) see [17].

Finally we note that given a matrix A with a spectrum �A,
if one adds a perturbation matrix, P , where kPk < "1, there
are established limits on how the spectrum of A+P , �A+P ,
will vary from �A. For example, there are the bounds estab-
lished in the Hoffman-Wielandt theorem. So the spectrum of
a weakly perturbed matrix is weakly altered. Therefore, if
K⇤

G is a close approximation to the true Koopman generator
of a system, we can estimate the spectral distribution of
the true Koopman generator, including its principal modes
and eigenvalues [5]. Finite approximate closure of K⇤

G of
order ✏ guarantees bounded error between K⇤

G and an ideal
Koopman generator. Moreover, certain learning parameters
can be tuned to arbitrarily reduce the size of ✏.

IV. STATE INCLUSIVE LOGISTIC LIFTING (SILL)
FUNCTIONS AND FINITE APPROXIMATE CLOSURE

To develop an approximation to KG we introduce a new
class of conjunctive logistic functions. We do so for several
reasons. Firstly, logistic functions have well established
functional approximation properties [19]. Secondly, we now
show that sets of logistic functions in this class of models,
satisfying a total order, satisfy finite approximate closure.

We define a multivariate conjunctive logistic function as
follows:

⇤vl(x) ⌘
nY

i=1

�µi(xi) (17)

where x 2 Rn, v = (µl
1, ..., µ
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n), and the logistic function

�µ(x) is defined as
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1

1 + e�↵(x�µ)
. (18)where

where

The parameters µi define the centers or the point of activation
along dimension xi, i = 1, ..., n. The parameter ↵ is the
steepness parameter, or sensitivity parameter, and determines
the steepness of the logistic curve. Given NL multivariate
logistic functions, we then define a state inclusive logistic

lifting function as  : Rn ! R1+n+NL so that:

 (x) ⌘
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⇤

3

5 (19)

where ⇤ = [⇤v1 ,⇤v2 , . . . ,⇤vNL
]T (x). We then have that

KG 2 R1+n+NL⇥1+n+NL . We first suppose there exists
vectors {wi 2 RNL |i 2 {1, 2, . . . , NL}}, so that f can be
well approximated by logistic functions [19], as follows:

f(x) u
NLX

l=1

wl⇤vl(x). (20)

This is a fair assumption since the number of logistic
functions can be increased until the accuracy of (20) is
satisfactory. This accuracy depends on a mesh resolution
parameter, which we refer to as ✏. This is also generally
true of any candidate dictionary for generating Koopman
observable functions, e.g. Hermite polynomials, Legendre
polynomials, radial basis functions, etc.

The critical property that enables a high fidelity finite
approximate Koopman operator is finite approximate closure.
We must show that the time-derivative of these functions can
be expressed (approximately) recursively. The derivative of
this multivariate logistic function ⇤vl(x) 2 R is given as

⇤̇vl(x) = (rx⇤vl(x))
T @x

@t
= (rx⇤vl(x))

T
f(x) (21)

where the i
th term of the gradient of ⇤vl(x) is expressed as
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(xi)
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Notice that the time-derivative of ⇤vl can be expressed as
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(23)

Thus, we have that the derivative of our multivariate logistic
function is a sum of products of logistic functions with
a number of predetermined centers. There is one critical
property that must be satisfied to achieve finite approximate
closure:

Assumption 2: There exists an total order on the set of
conjunctive logistic functions ⇤v1(x), ...,⇤vNL

(x), induced
by the positive orthant Rn

+, where v
l & v

k whenever v
k �

v
l 2 Rn

+.

Fig. 2. This graphic demonstrates how a product of logistic functions may
be approximated by the logistic function with the rightmost center.

This assumption is satisfied whenever the conjunctive
logistic functions are constructed from a evenly spaced mesh
grid of points v1, ..., vNL . For the purposes of this paper,
we will consider evenly spaced mesh grids.

Since we have imposed a total order on our logistic basis
functions µl . µk whenever l  k, we have that the
derivative of ⇤vmax(l,k) is the derivative of ⇤vk . Thus we
can write

d⇤µl

dt
=

nX

i=1

NLX

k=1

↵(1� �µl
i
(xi))wik⇤vl(x)⇤vk(x)

u
nX

i=1

NLX

k=1

↵(1� �µl
i
(xi))wik⇤vmax(l,k)(x)

(24)
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k
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n, µ
k
n}

�
. (25)

Thus SILL functions satisfy finite approximate closure.

V. CONVERGENCE AND ERROR BOUNDS

Even if SILL functions satisfy finite approximate closure,
it is necessary to evaluate the fidelity of their approximation.
We first show that fidelity of the approximation increases
with the steepness parameter ↵ and derive a global error
bound.

A. Convergence in ↵

Without loss of generality we let vl & v
k. Then the dif-

ference between each of the n⇥NL terms in the summation

The parameters µi define the centers or the point of activation
along dimension xi, i = 1, ..., n. The parameter ↵ is the
steepness parameter, or sensitivity parameter, and determines
the steepness of the logistic curve. Given NL multivariate
logistic functions, we then define a state inclusive logistic

lifting function as  : Rn ! R1+n+NL so that:
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where
⇤ = [⇤v1 ,⇤v2 , . . . ,⇤vNL
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Thus, we have that the derivative of our multivariate logistic
function is a sum of products of logistic functions with
a number of predetermined centers. There is one critical
property that must be satisfied to achieve finite approximate
closure:

Assumption 2: There exists an total order on the set of
conjunctive logistic functions ⇤v1(x), ...,⇤vNL
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Even if SILL functions satisfy finite approximate closure,
it is necessary to evaluate the fidelity of their approximation.
We first show that fidelity of the approximation increases
with the steepness parameter ↵ and derive a global error
bound.
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Proposition: If there is a total order on the set of logistic functions 

The parameters µi define the centers or the point of activation
along dimension xi, i = 1, ..., n. The parameter ↵ is the
steepness parameter, or sensitivity parameter, and determines
the steepness of the logistic curve. Given NL multivariate
logistic functions, we then define a state inclusive logistic

lifting function as  : Rn ! R1+n+NL so that:
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where
⇤ = [⇤v1 ,⇤v2 , . . . ,⇤vNL

]T (x)

. We then have that KG 2 R1+n+NL⇥1+n+NL . We first sup-
pose there exists vectors {wi 2 RNL |i 2 {1, 2, . . . , NL}},
so that f can be well approximated by logistic functions [?],
as follows:

f(x) u
NLX

l=1

wl⇤vl(x). (20)

This is a fair assumption since the number of logistic
functions can be increased until the accuracy of (??) is
satisfactory. This accuracy depends on a mesh resolution
parameter, which we refer to as ✏. This is also generally
true of any candidate dictionary for generating Koopman
observable functions, e.g. Hermite polynomials, Legendre
polynomials, radial basis functions, etc.

The critical property that enables a high fidelity finite
approximate Koopman operator is finite approximate closure.
We must show that the time-derivative of these functions can
be expressed (approximately) recursively. The derivative of
this multivariate logistic function ⇤vl(x) 2 R is given as

⇤̇vl(x) = (rx⇤vl(x))
T @x

@t
= (rx⇤vl(x))

T
f(x) (21)

where the i
th term of the gradient of ⇤vl(x) is expressed as
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Notice that the time-derivative of ⇤vl can be expressed as
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Thus, we have that the derivative of our multivariate logistic
function is a sum of products of logistic functions with
a number of predetermined centers. There is one critical
property that must be satisfied to achieve finite approximate
closure:

Assumption 2: There exists an total order on the set of
conjunctive logistic functions ⇤v1(x), ...,⇤vNL

(x), induced

Fig. 2. This graphic demonstrates how a product of logistic functions may
be approximated by the logistic function with the rightmost center.

by the positive orthant Rn
+, where v

l & v
k whenever v

k �
v
l 2 Rn

+.
This assumption is satisfied whenever the conjunctive

logistic functions are constructed from a evenly spaced mesh
grid of points v1, ..., vNL . For the purposes of this paper,
we will consider evenly spaced mesh grids.

Since we have imposed a total order on our logistic basis
functions µl . µk whenever l  k, we have that the
derivative of ⇤vmax(l,k) is the derivative of ⇤vk . Thus we
can write
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dt
=
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Thus SILL functions satisfy finite approximate closure.

V. CONVERGENCE AND ERROR BOUNDS

Even if SILL functions satisfy finite approximate closure,
it is necessary to evaluate the fidelity of their approximation.
We first show that fidelity of the approximation increases
with the steepness parameter ↵ and derive a global error
bound.

A. Convergence in ↵

Without loss of generality we let vl & v
k. Then the dif-

ference between each of the n⇥NL terms in the summation

Then the lifting 

The parameters µi define the centers or the point of activation
along dimension xi, i = 1, ..., n. The parameter ↵ is the
steepness parameter, or sensitivity parameter, and determines
the steepness of the logistic curve. Given NL multivariate
logistic functions, we then define a state inclusive logistic

lifting function as  : Rn ! R1+n+NL so that:
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where ⇤ = [⇤v1 ,⇤v2 , . . . ,⇤vNL
]T (x). We then have that

KG 2 R1+n+NL⇥1+n+NL . We first suppose there exists
vectors {wi 2 RNL |i 2 {1, 2, . . . , NL}}, so that f can be
well approximated by logistic functions [19], as follows:

f(x) u
NLX

l=1

wl⇤vl(x). (20)

This is a fair assumption since the number of logistic
functions can be increased until the accuracy of (20) is
satisfactory. This accuracy depends on a mesh resolution
parameter, which we refer to as ✏. This is also generally
true of any candidate dictionary for generating Koopman
observable functions, e.g. Hermite polynomials, Legendre
polynomials, radial basis functions, etc.

The critical property that enables a high fidelity finite
approximate Koopman operator is finite approximate closure.
We must show that the time-derivative of these functions can
be expressed (approximately) recursively. The derivative of
this multivariate logistic function ⇤vl(x) 2 R is given as
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Thus, we have that the derivative of our multivariate logistic
function is a sum of products of logistic functions with
a number of predetermined centers. There is one critical
property that must be satisfied to achieve finite approximate
closure:

Assumption 2: There exists an total order on the set of
conjunctive logistic functions ⇤v1(x), ...,⇤vNL

(x), induced
by the positive orthant Rn

+, where v
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+.

Fig. 2. This graphic demonstrates how a product of logistic functions may
be approximated by the logistic function with the rightmost center.

This assumption is satisfied whenever the conjunctive
logistic functions are constructed from a evenly spaced mesh
grid of points v1, ..., vNL . For the purposes of this paper,
we will consider evenly spaced mesh grids.

Since we have imposed a total order on our logistic basis
functions µl . µk whenever l  k, we have that the
derivative of ⇤vmax(l,k) is the derivative of ⇤vk . Thus we
can write

d⇤µl

dt
=
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where
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Thus SILL functions satisfy finite approximate closure.

V. CONVERGENCE AND ERROR BOUNDS

Even if SILL functions satisfy finite approximate closure,
it is necessary to evaluate the fidelity of their approximation.
We first show that fidelity of the approximation increases
with the steepness parameter ↵ and derive a global error
bound.

A. Convergence in ↵

Without loss of generality we let vl & v
k. Then the dif-

ference between each of the n⇥NL terms in the summation

satisfies finite approximate closure.
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The parameters µi define the centers or the point of activation
along dimension xi, i = 1, ..., n. The parameter ↵ is the
steepness parameter, or sensitivity parameter, and determines
the steepness of the logistic curve. Given NL multivariate
logistic functions, we then define a state inclusive logistic

lifting function as  : Rn ! R1+n+NL so that:
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where
⇤ = [⇤v1 ,⇤v2 , . . . ,⇤vNL

]T (x)

. We then have that KG 2 R1+n+NL⇥1+n+NL . We first sup-
pose there exists vectors {wi 2 RNL |i 2 {1, 2, . . . , NL}},
so that f can be well approximated by logistic functions [?],
as follows:

f(x) u
NLX

l=1

wl⇤vl(x). (20)

This is a fair assumption since the number of logistic
functions can be increased until the accuracy of (??) is
satisfactory. This accuracy depends on a mesh resolution
parameter, which we refer to as ✏. This is also generally
true of any candidate dictionary for generating Koopman
observable functions, e.g. Hermite polynomials, Legendre
polynomials, radial basis functions, etc.

The critical property that enables a high fidelity finite
approximate Koopman operator is finite approximate closure.
We must show that the time-derivative of these functions can
be expressed (approximately) recursively. The derivative of
this multivariate logistic function ⇤vl(x) 2 R is given as

⇤̇vl(x) = (rx⇤vl(x))
T @x

@t
= (rx⇤vl(x))

T
f(x) (21)
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th term of the gradient of ⇤vl(x) is expressed as
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Notice that the time-derivative of ⇤vl can be expressed as
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Thus, we have that the derivative of our multivariate logistic
function is a sum of products of logistic functions with
a number of predetermined centers. There is one critical
property that must be satisfied to achieve finite approximate
closure:

Assumption 2: There exists an total order on the set of
conjunctive logistic functions ⇤v1(x), ...,⇤vNL

(x), induced

Fig. 2. This graphic demonstrates how a product of logistic functions may
be approximated by the logistic function with the rightmost center.

by the positive orthant Rn
+, where v

l & v
k whenever v

k �
v
l 2 Rn

+.
This assumption is satisfied whenever the conjunctive

logistic functions are constructed from a evenly spaced mesh
grid of points v1, ..., vNL . For the purposes of this paper,
we will consider evenly spaced mesh grids.

Since we have imposed a total order on our logistic basis
functions µl . µk whenever l  k, we have that the
derivative of ⇤vmax(l,k) is the derivative of ⇤vk . Thus we
can write

d⇤µl

dt
=

nX
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where
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Thus SILL functions satisfy finite approximate closure.

V. CONVERGENCE AND ERROR BOUNDS

Even if SILL functions satisfy finite approximate closure,
it is necessary to evaluate the fidelity of their approximation.
We first show that fidelity of the approximation increases
with the steepness parameter ↵ and derive a global error
bound.

A. Convergence in ↵

Without loss of generality we let vl & v
k. Then the dif-

ference between each of the n⇥NL terms in the summation

Logistic functions are universal function approximators, therefore,

The second property needed is closure w.r.t to differentiation and 
multiplication:

[Sketch of Proof]

The parameters µi define the centers or the point of activation
along dimension xi, i = 1, ..., n. The parameter ↵ is the
steepness parameter, or sensitivity parameter, and determines
the steepness of the logistic curve. Given NL multivariate
logistic functions, we then define a state inclusive logistic

lifting function as  : Rn ! R1+n+NL so that:
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where
⇤ = [⇤v1 ,⇤v2 , . . . ,⇤vNL

]T (x)

. We then have that KG 2 R1+n+NL⇥1+n+NL . We first sup-
pose there exists vectors {wi 2 RNL |i 2 {1, 2, . . . , NL}},
so that f can be well approximated by logistic functions [?],
as follows:
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wl⇤vl(x). (20)

This is a fair assumption since the number of logistic
functions can be increased until the accuracy of (??) is
satisfactory. This accuracy depends on a mesh resolution
parameter, which we refer to as ✏. This is also generally
true of any candidate dictionary for generating Koopman
observable functions, e.g. Hermite polynomials, Legendre
polynomials, radial basis functions, etc.

The critical property that enables a high fidelity finite
approximate Koopman operator is finite approximate closure.
We must show that the time-derivative of these functions can
be expressed (approximately) recursively. The derivative of
this multivariate logistic function ⇤vl(x) 2 R is given as
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Notice that the time-derivative of ⇤vl can be expressed as
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Thus, we have that the derivative of our multivariate logistic
function is a sum of products of logistic functions with
a number of predetermined centers. There is one critical
property that must be satisfied to achieve finite approximate
closure:

Assumption 2: There exists an total order on the set of
conjunctive logistic functions ⇤v1(x), ...,⇤vNL

(x), induced

Fig. 2. This graphic demonstrates how a product of logistic functions may
be approximated by the logistic function with the rightmost center.
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This assumption is satisfied whenever the conjunctive

logistic functions are constructed from a evenly spaced mesh
grid of points v1, ..., vNL . For the purposes of this paper,
we will consider evenly spaced mesh grids.

Since we have imposed a total order on our logistic basis
functions µl . µk whenever l  k, we have that the
derivative of ⇤vmax(l,k) is the derivative of ⇤vk . Thus we
can write

d⇤µl

dt
=
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Thus SILL functions satisfy finite approximate closure.

V. CONVERGENCE AND ERROR BOUNDS

Even if SILL functions satisfy finite approximate closure,
it is necessary to evaluate the fidelity of their approximation.
We first show that fidelity of the approximation increases
with the steepness parameter ↵ and derive a global error
bound.

A. Convergence in ↵

Without loss of generality we let vl & v
k. Then the dif-

ference between each of the n⇥NL terms in the summation

The parameters µi define the centers or the point of activation
along dimension xi, i = 1, ..., n. The parameter ↵ is the
steepness parameter, or sensitivity parameter, and determines
the steepness of the logistic curve. Given NL multivariate
logistic functions, we then define a state inclusive logistic

lifting function as  : Rn ! R1+n+NL so that:
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where
⇤ = [⇤v1 ,⇤v2 , . . . ,⇤vNL

]T (x)

. We then have that KG 2 R1+n+NL⇥1+n+NL . We first sup-
pose there exists vectors {wi 2 RNL |i 2 {1, 2, . . . , NL}},
so that f can be well approximated by logistic functions [?],
as follows:
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wl⇤vl(x). (20)

This is a fair assumption since the number of logistic
functions can be increased until the accuracy of (??) is
satisfactory. This accuracy depends on a mesh resolution
parameter, which we refer to as ✏. This is also generally
true of any candidate dictionary for generating Koopman
observable functions, e.g. Hermite polynomials, Legendre
polynomials, radial basis functions, etc.

The critical property that enables a high fidelity finite
approximate Koopman operator is finite approximate closure.
We must show that the time-derivative of these functions can
be expressed (approximately) recursively. The derivative of
this multivariate logistic function ⇤vl(x) 2 R is given as
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Thus, we have that the derivative of our multivariate logistic
function is a sum of products of logistic functions with
a number of predetermined centers. There is one critical
property that must be satisfied to achieve finite approximate
closure:

Assumption 2: There exists an total order on the set of
conjunctive logistic functions ⇤v1(x), ...,⇤vNL

(x), induced

Fig. 2. This graphic demonstrates how a product of logistic functions may
be approximated by the logistic function with the rightmost center.

by the positive orthant Rn
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This assumption is satisfied whenever the conjunctive

logistic functions are constructed from a evenly spaced mesh
grid of points v1, ..., vNL . For the purposes of this paper,
we will consider evenly spaced mesh grids.

Since we have imposed a total order on our logistic basis
functions µl . µk whenever l  k, we have that the
derivative of ⇤vmax(l,k) is the derivative of ⇤vk . Thus we
can write

d⇤µl

dt
=
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Thus SILL functions satisfy finite approximate closure.

V. CONVERGENCE AND ERROR BOUNDS

Even if SILL functions satisfy finite approximate closure,
it is necessary to evaluate the fidelity of their approximation.
We first show that fidelity of the approximation increases
with the steepness parameter ↵ and derive a global error
bound.

A. Convergence in ↵

Without loss of generality we let vl & v
k. Then the dif-

ference between each of the n⇥NL terms in the summation

The parameters µi define the centers or the point of activation
along dimension xi, i = 1, ..., n. The parameter ↵ is the
steepness parameter, or sensitivity parameter, and determines
the steepness of the logistic curve. Given NL multivariate
logistic functions, we then define a state inclusive logistic

lifting function as  : Rn ! R1+n+NL so that:
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where
⇤ = [⇤v1 ,⇤v2 , . . . ,⇤vNL

]T (x)

. We then have that KG 2 R1+n+NL⇥1+n+NL . We first sup-
pose there exists vectors {wi 2 RNL |i 2 {1, 2, . . . , NL}},
so that f can be well approximated by logistic functions [?],
as follows:
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This is a fair assumption since the number of logistic
functions can be increased until the accuracy of (??) is
satisfactory. This accuracy depends on a mesh resolution
parameter, which we refer to as ✏. This is also generally
true of any candidate dictionary for generating Koopman
observable functions, e.g. Hermite polynomials, Legendre
polynomials, radial basis functions, etc.

The critical property that enables a high fidelity finite
approximate Koopman operator is finite approximate closure.
We must show that the time-derivative of these functions can
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Thus, we have that the derivative of our multivariate logistic
function is a sum of products of logistic functions with
a number of predetermined centers. There is one critical
property that must be satisfied to achieve finite approximate
closure:

Assumption 2: There exists an total order on the set of
conjunctive logistic functions ⇤v1(x), ...,⇤vNL
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Fig. 2. This graphic demonstrates how a product of logistic functions may
be approximated by the logistic function with the rightmost center.
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This assumption is satisfied whenever the conjunctive

logistic functions are constructed from a evenly spaced mesh
grid of points v1, ..., vNL . For the purposes of this paper,
we will consider evenly spaced mesh grids.

Since we have imposed a total order on our logistic basis
functions µl . µk whenever l  k, we have that the
derivative of ⇤vmax(l,k) is the derivative of ⇤vk . Thus we
can write
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Thus SILL functions satisfy finite approximate closure.

V. CONVERGENCE AND ERROR BOUNDS

Even if SILL functions satisfy finite approximate closure,
it is necessary to evaluate the fidelity of their approximation.
We first show that fidelity of the approximation increases
with the steepness parameter ↵ and derive a global error
bound.

A. Convergence in ↵

Without loss of generality we let vl & v
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Illustrative Example: SILL Observables to Model 
Bistable Dynamics
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Fig. 4. (A) A diagram showing the mutual repressing architecture of the
toggle switch from [?]. (B) The estimates for the vector field f1(x) and
f2(x) generated by SILL basis of order 36. The error in approximation was
less than 1% for both f1(x) and f2(x). (C) Forward prediction of x1(t)
and x2(t) given a distribution of initial conditions x0.

Given constants: n1, n2,↵1,↵2, � 2 R, the simplest model
is a two state repression model [?] of the form

ẋ1 =
↵1

1 + x
n1
2

� �x1

ẋ2 =
↵2

1 + x
n2
1

� �x2

(38)

where x1, x2 are the concentrations of the respective proteins
1 and 2. We note that given the proper parameters, and under
a wide range of initial conditions, our SILL functions and
their associated approximate Koopman generator correctly
indicate the tendency of nearly every set of initial protein
concentrations. In our approximation, the 2-norm of the
difference between the vector field and the corresponding
row of the approximate Koopman generator acting on an
evenly spaced grid was less than 1% for both f1(x) and
f2(x).

VII. CONCLUSIONS

We set out to find finite dimensional approximations to
Koopman generators for nonlinear systems. We introduced
a class of state-inclusive observable functions comprised of
products of logistic functions that confer an approximate
finite closure property. We derived error bounds for their

approximation, in terms of a steepness ↵ and a mesh reso-
lution parameter ✏. In particular, we show that introduction
of SILL observable functions does not introduce unbounded
error in the Koopman generator approximation, since a mesh
dictionary of SILL functions satisfies a total order property.
Further, the error bound can be reduced by modifying the
learning parameters ↵ and ✏.

Recall that neural networks applied to the EDMD can
learn smooth dictionaries consisting primarily of observables
with a sigmoidal response profile, for example see [?].
We hope these results clarified how it is reasonable that
sigmoidal basis functions could arise in automated learning
of approximate Koopman operators.

In future work, we will study the use of structured
regularization or structured sparse compressive sensing may
result in a more efficient and concise set of Koopman
dictionary functions. It further remains to characterize the
success of SILL observable functions in the presence of noisy
measurements.

There are many scenarios where snapshots of the un-
derlying system from different observers may each yield a
scalable Koopman generator. The process of synthesizing
or integrating these Koopman operators to obtain a global
Koopman operator (coinciding with global measurements),
is a subject of ongoing research.
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[4] Igor Mezić. Analysis of fluid flows via spectral properties of the
koopman operator. Annual Review of Fluid Mechanics, 45:357–378,
2013.
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Fig. 4. (A) A diagram showing the mutual repressing architecture of the
toggle switch from [?]. (B) The estimates for the vector field f1(x) and
f2(x) generated by SILL basis of order 36. The error in approximation was
less than 1% for both f1(x) and f2(x). (C) Forward prediction of x1(t)
and x2(t) given a distribution of initial conditions x0.
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where x1, x2 are the concentrations of the respective proteins
1 and 2. We note that given the proper parameters, and under
a wide range of initial conditions, our SILL functions and
their associated approximate Koopman generator correctly
indicate the tendency of nearly every set of initial protein
concentrations. In our approximation, the 2-norm of the
difference between the vector field and the corresponding
row of the approximate Koopman generator acting on an
evenly spaced grid was less than 1% for both f1(x) and
f2(x).

VII. CONCLUSIONS

We set out to find finite dimensional approximations to
Koopman generators for nonlinear systems. We introduced
a class of state-inclusive observable functions comprised of
products of logistic functions that confer an approximate
finite closure property. We derived error bounds for their

approximation, in terms of a steepness ↵ and a mesh reso-
lution parameter ✏. In particular, we show that introduction
of SILL observable functions does not introduce unbounded
error in the Koopman generator approximation, since a mesh
dictionary of SILL functions satisfies a total order property.
Further, the error bound can be reduced by modifying the
learning parameters ↵ and ✏.

Recall that neural networks applied to the EDMD can
learn smooth dictionaries consisting primarily of observables
with a sigmoidal response profile, for example see [?].
We hope these results clarified how it is reasonable that
sigmoidal basis functions could arise in automated learning
of approximate Koopman operators.

In future work, we will study the use of structured
regularization or structured sparse compressive sensing may
result in a more efficient and concise set of Koopman
dictionary functions. It further remains to characterize the
success of SILL observable functions in the presence of noisy
measurements.

There are many scenarios where snapshots of the un-
derlying system from different observers may each yield a
scalable Koopman generator. The process of synthesizing
or integrating these Koopman operators to obtain a global
Koopman operator (coinciding with global measurements),
is a subject of ongoing research.
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[1] Hassan Arbabi and Igor Mezić. Ergodic theory, dynamic mode
decomposition and computation of spectral properties of the koopman
operator. arXiv preprint arXiv:1611.06664, 2016.

[2] Marko Budišić, Ryan Mohr, and Igor Mezić. Applied koopman-
ism a. Chaos: An Interdisciplinary Journal of Nonlinear Science,
22(4):047510, 2012.

[3] Jonathan H Tu, Clarence W Rowley, Dirk M Luchtenburg, Steven L
Brunton, and J Nathan Kutz. On dynamic mode decomposition: theory
and applications. arXiv preprint arXiv:1312.0041, 2013.

[4] Igor Mezić. Analysis of fluid flows via spectral properties of the
koopman operator. Annual Review of Fluid Mechanics, 45:357–378,
2013.
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System model:

x1 - a repressor protein 
that represses x2

x2 - a repressor protein 
that represses x1

Johnson, Yeung, “A Class of Logistic Functions for 
State-Inclusive Koopman Operators”  Proceedings of 
iEEE ACC (2017)
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Illustrative Example: SILL Observables to Model 
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�28

Fig. 4. (A) A diagram showing the mutual repressing architecture of the
toggle switch from [?]. (B) The estimates for the vector field f1(x) and
f2(x) generated by SILL basis of order 36. The error in approximation was
less than 1% for both f1(x) and f2(x). (C) Forward prediction of x1(t)
and x2(t) given a distribution of initial conditions x0.

Given constants: n1, n2,↵1,↵2, � 2 R, the simplest model
is a two state repression model [?] of the form

ẋ1 =
↵1

1 + x
n1
2

� �x1

ẋ2 =
↵2

1 + x
n2
1

� �x2

(38)

where x1, x2 are the concentrations of the respective proteins
1 and 2. We note that given the proper parameters, and under
a wide range of initial conditions, our SILL functions and
their associated approximate Koopman generator correctly
indicate the tendency of nearly every set of initial protein
concentrations. In our approximation, the 2-norm of the
difference between the vector field and the corresponding
row of the approximate Koopman generator acting on an
evenly spaced grid was less than 1% for both f1(x) and
f2(x).

VII. CONCLUSIONS

We set out to find finite dimensional approximations to
Koopman generators for nonlinear systems. We introduced
a class of state-inclusive observable functions comprised of
products of logistic functions that confer an approximate
finite closure property. We derived error bounds for their

approximation, in terms of a steepness ↵ and a mesh reso-
lution parameter ✏. In particular, we show that introduction
of SILL observable functions does not introduce unbounded
error in the Koopman generator approximation, since a mesh
dictionary of SILL functions satisfies a total order property.
Further, the error bound can be reduced by modifying the
learning parameters ↵ and ✏.

Recall that neural networks applied to the EDMD can
learn smooth dictionaries consisting primarily of observables
with a sigmoidal response profile, for example see [?].
We hope these results clarified how it is reasonable that
sigmoidal basis functions could arise in automated learning
of approximate Koopman operators.

In future work, we will study the use of structured
regularization or structured sparse compressive sensing may
result in a more efficient and concise set of Koopman
dictionary functions. It further remains to characterize the
success of SILL observable functions in the presence of noisy
measurements.

There are many scenarios where snapshots of the un-
derlying system from different observers may each yield a
scalable Koopman generator. The process of synthesizing
or integrating these Koopman operators to obtain a global
Koopman operator (coinciding with global measurements),
is a subject of ongoing research.
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Fig. 4. (A) A diagram showing the mutual repressing architecture of the
toggle switch from [?]. (B) The estimates for the vector field f1(x) and
f2(x) generated by SILL basis of order 36. The error in approximation was
less than 1% for both f1(x) and f2(x). (C) Forward prediction of x1(t)
and x2(t) given a distribution of initial conditions x0.

Given constants: n1, n2,↵1,↵2, � 2 R, the simplest model
is a two state repression model [?] of the form
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ẋ2 =
↵2

1 + x
n2
1

� �x2

(38)

where x1, x2 are the concentrations of the respective proteins
1 and 2. We note that given the proper parameters, and under
a wide range of initial conditions, our SILL functions and
their associated approximate Koopman generator correctly
indicate the tendency of nearly every set of initial protein
concentrations. In our approximation, the 2-norm of the
difference between the vector field and the corresponding
row of the approximate Koopman generator acting on an
evenly spaced grid was less than 1% for both f1(x) and
f2(x).

VII. CONCLUSIONS

We set out to find finite dimensional approximations to
Koopman generators for nonlinear systems. We introduced
a class of state-inclusive observable functions comprised of
products of logistic functions that confer an approximate
finite closure property. We derived error bounds for their

approximation, in terms of a steepness ↵ and a mesh reso-
lution parameter ✏. In particular, we show that introduction
of SILL observable functions does not introduce unbounded
error in the Koopman generator approximation, since a mesh
dictionary of SILL functions satisfies a total order property.
Further, the error bound can be reduced by modifying the
learning parameters ↵ and ✏.

Recall that neural networks applied to the EDMD can
learn smooth dictionaries consisting primarily of observables
with a sigmoidal response profile, for example see [?].
We hope these results clarified how it is reasonable that
sigmoidal basis functions could arise in automated learning
of approximate Koopman operators.

In future work, we will study the use of structured
regularization or structured sparse compressive sensing may
result in a more efficient and concise set of Koopman
dictionary functions. It further remains to characterize the
success of SILL observable functions in the presence of noisy
measurements.

There are many scenarios where snapshots of the un-
derlying system from different observers may each yield a
scalable Koopman generator. The process of synthesizing
or integrating these Koopman operators to obtain a global
Koopman operator (coinciding with global measurements),
is a subject of ongoing research.
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[4] Igor Mezić. Analysis of fluid flows via spectral properties of the
koopman operator. Annual Review of Fluid Mechanics, 45:357–378,
2013.
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Operational Envelopes Define When and How 
Engineered Systems Work  

• The outline of the envelope defines the limits of 
performance 

• The design point is the target operational point for the 
airplane (well-insulated from the boundaries). 

• Defined operational envelopes enable: 
A. Precise metrics for performance,  
B. Index for improved design,  
C. Specialization of design to different 

applications.

�29

Yeung and Egbert “Discovery of Operational 
Envelopes for Synthetic Gene Networks”  Winter 
qBio Meeting, 2018
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Synthetic Biology Lacks Formal Methods for 
Defining and Characterizing Operational Envelopes
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Yeung and Egbert “Discovery of Operational 
Envelopes for Synthetic Gene Networks”  Winter 
qBio Meeting, 2018
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Candidate Synthetic Design Restricted Culturing 
Specifications

Functional Characterization of a  
Narrow Operating Condition

Engineering Novel Biological Function Involves 
Singleton Characterization (for a Nature paper)

AGCTAACCGGAACC
IcaR

SrpR

LacI

37oC 
M9CA 

0, 100 mM [X]  
0, 100 mM [Y] 
in MG1655Z1

X

Y

+X +Y-X/Y +X/Y
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Broad Culturing 
Specifications

Characterization of Operational 
Envelope

Discovering a Genetic Circuit’s Operational Envelope Requires 
Robustness Characterization with Variables Independent of 
Design

37oC 
M9CA 

0, 100 mM [X]  
0, 100 mM [Y] 
In MG1655Z1

X

Y

[Y]

LacI

IcaR

SrpR

LacI

GFP

TetR

Proof-of-Concept Synthetic Design

[X]

Time

Temp



Discovering the Operational Envelope of 
the Genetic Toggle Switch
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LacI
TetR

The Genetic Toggle Switch

[IPTG] > [aTc]           TetR (RFP) > LacI (GFP)  

[aTc] > [IPTG]           LacI (GFP) > TetR (RFP) 

Performance Specification

What are the conditions under which the toggle switch 
meets this specification?   

• What temperatures? 
• What range of input concentrations [IPTG], [aTc]? 
• How soon and for how long (experimental time)?



Canonical Models for the Toggle Switch 
Are Underfitted & Context-Dependent
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LacI
TetR

The Genetic Toggle Switch Gardner-Collins Model

Bilinear Mass Action Model
Chemical Master Equation  

Model



What system variables determine the boundary of the 
operational envelope for a synthetic gene circuit? 
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Yeung and Egbert “Discovery of Operational 
Envelopes for Synthetic Gene Networks”  Winter 
qBio Meeting, 2018



Input-Koopman Operators To Model The Effect of 
Experimental Conditions on A Synthetic Gene Network
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1) F(xt,wt) is analytic,   
2) wt are memoryless and independent of xt 

Assumptions:

Consider a system of the form:

Conclusion:
There exists an input-Koopman representation for the system of the form: 

where ut is a vector function consisting of univariate terms in wt and multivariate wt, xt terms.

Yeung, Liu, Kundu, Hodas. “A Koopman Operator 
Approach for Computing and Balancing Gramians for 
Discrete Time Systems”  in the Proceedings of the 
IEEE ACC (2017)



Modeling the Action of Inputs: A Nonlinear 
Master Equation Model for the Toggle Switch
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Two-State Toggle Switch Model

Toggle Switch Model with Inputs for Temperature & Chemical Inducers

Yeung and Egbert “Discovery of Operational 
Envelopes for Synthetic Gene Networks”  Winter 
qBio Meeting, 2018



Modeling the Action of Inputs: A Nonlinear 
Master Equation Model for the Toggle Switch
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Toggle Switch Model with Inputs for Temperature & Chemical Inducers

or more precisely  . . . 

Yeung and Egbert “Discovery of Operational 
Envelopes for Synthetic Gene Networks”  Winter 
qBio Meeting, 2018



Modeling the Action of Inputs: A Nonlinear 
Master Equation Model for the Toggle Switch
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Toggle Switch Moment-Based Model with Inputs for Temperature 
& Chemical Inducers

The input-Koopman equation is given by:

We aim to discover the distribution moment dynamics of the 
form:



Discovering the Operational Envelope of 
the Genetic Toggle Switch
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Glycerol stock of 
optimized toggle switch 

Overnight  
recovery (37 C) 

Diluted to and maintained at OD 0.02 
across 64 conditions, for 12 doubling 

times, for 3 different temperatures

Cell quenching and 
storage at 4C

Flow cytometry 
analysis

Time series data of 10,000 
flow events x 3 different 
temperatures x 64 IPTG 
and aTc concentrations



Discovering the Operational Envelope of 
the Genetic Toggle Switch
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Discovering the Operational Envelope of 
the Genetic Toggle Switch

(50%) 
Test 
Data

(50%) 
Training  

Data
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Deep Koopman Operators of Moment 
Dynamics: Forecasting with Learned Models 
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Discovering the Operational Envelope of the 
Genetic Toggle Switch (Training & Test Data)

Predicted Actual

Functional 2428 2440

Dysfunctional 644 632
�44

Predicted Actual

Time from Induction Start (Doubling 

Time from Induction Start (Doubling 



Deep Koopman Operators of Moment Dynamics: 
Discovery of High-Noise and State Flipping Modes  
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Discovering & Defining Operational Envelopes in 
Synthetic Biology
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