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Koopman Operators Enable Discovery of
Predictive Models Directly From Data
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Traditional Methods for Learning Koopman Operators
Rely on Manual Dictionary Curation
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Yeung et al., Deep Neural Network Representations
for Koopman Operator Learning, 2017 arXiv/2018
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Traditional Methods for Learning Koopman Operators
Rely on Manual Dictionary Curation

Extended Dynamic Mode Decomposition
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Our Proposed Approach: Deep Dynamic Mode
Decomposition

Deep Dynamic Mode Decomposition
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Our Proposed Approach: Deep Dynamic Mode
Decomposition
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Deep Dynamic Mode Decomposition on the
Glycolytic Oscillator

Glycolysis example:

aS1 . k15156
o dt % 1+ (Sg/K1)T
measured dSs =9 k15156 — k955 (N — 55) — kS255,

—— = k3S3(A — Sg) — kaS455 — k(Ss — S7),

dt 1+ (SG/Kl)q
dSs
%_ E — k2S2(N — S5) — k3S3(A - Sﬁ))
I dSy

dt

s

d_; = kg So(N — S5) — k45455 — kgS2Ss,

dSs . klsISG

TR (Se/EK1)7 + sSa(d = 5i) = s
dS

d_t7 = ,LLKJ(S4 — 57) — kS7,

Yeung et al., Deep Neural Network Representations
for Koopman Operator Learning, 2017 arXiv/2018
ACC) eyeung@ucsb.edu
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Deep Dynamic Mode Decomposition on the
Glycolytic Oscillator

Glycolysis example:
o
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=8

dS1 . k15156
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Deep Dynamic Mode Decomposition on the

Glycolytic Oscillator

Glycolysis example:
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Deep Dynamic Mode Decomposition on the

Glycolytic Oscillator

Glycolysis example:
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The Appropriate Choice of Koopman
Observables Lends Insight to Stability

We seek

dy(x(1))
dt

min
Kg,pew

— /Cc;w(l’(t))H

such that we can learn about the stability of the underlying system.

gyeung@ucsb.edu
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The Appropriate Choice of Koopman
Observables Lends Insight to Stability

We seek

dy(x(1))
dt

min
Kg,pew

— /CGw(fE(t))H

such that we can learn the spectral properties of the system

Theorem 1: Suppose that X 1s a forward invariant com-
pact set and that the Koopman operator U! f = f o ©* admits
an eigenfunction ¢, € C°(X) with the eigenvalue R{\} < 0.

Then the zero level set (Mauroy & Mezic 2016)
Mo = {z € X|¢x(x) =0}

is forward invariant under ¢! and globally asymptotically stable.

The appropriate choice of observables can elucidate stability of the system.

gyeung@ucsb.edu 14



mailto:eyeung@ucsb.edu

Nuances to Constructing Koopman Observables

Not all liftings give insight into the underlying dynamical system’s stability.
Consider the following system
i = f(x)
with f~1 € £1]0,0)
Let ¢ € R be aconstant. Let the functions
{L1, Lo, ..., Lh|L; :R" > R4 €{1,2,...,n}}

be any bounded continuous function. Define the space of observables:

Johnson, Yeung, “A Class of Logistic Functions for
State-Inclusive Koopman Operators” Proceedings of
iEEE ACC (2017) eyeung@ucsb.edu
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Nuances to Constructing Koopman Observables

| et the observable functions be defined as

Ui(@)]  [e0)
Y(x) = E 5
U () eLn ()

Johnson, Yeung, “A Class of Logistic Functions for
State-Inclusive Koopman Operators” Proceedings of
iEEE ACC (2017) eyeung@ucsb.edu
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Nuances to Constructing Koopman Observables

| et the observable functions be defined as

Ui(@)] RO
P(z) = : = :
Yn (37)_ _eﬁn(m)_
It is straightforward to compute the Koopman operator for this choice of
observables: _ i _ i,
d d eﬁl(az) eﬁl(a})
) =—| + | =]  |cfH(2)f(z)
dt dt
_eﬁn (517)_ _eﬁn (x)_
_eﬁl(m)_
=cl = ng(x)
eﬁn (x)

Johnson, Yeung, “A Class of Logistic Functions for
State-Inclusive Koopman Operators” Proceedings of
iEEE ACC (2017) eyeung@ucsb.edu
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State-Inclusive Liftings Lend Insight into the
Stability of the System

When x is contained within the observable function, this guarantees the Koopman
generator and its associated Koopman semigroup describe the time-evolution of
observables and the system state.

Johnson, Yeung, “A Class of Logistic Functions for
State-Inclusive Koopman Operators” Proceedings of
iEEE ACC (2017) eyeung@ucsb.edu 18
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State-Inclusive Liftings Lend Insight into the
Stability of the System

When x is contained within the observable function, this guarantees the Koopman
generator and its associated Koopman semigroup describe the time-evolution of
observables and the system state.

D(x) = (11 (2), Y2(2), ooy oy (7))

¢j (517) = X for some j.

Johnson, Yeung, “A Class of Logistic Functions for
State-Inclusive Koopman Operators” Proceedings of
iEEE ACC (2017) eyeung@ucsb.edu 19
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State-Inclusive Liftings Lend Insight into the
Stability of the System

When x is contained within the observable function, this guarantees the Koopman

generator and its associated Koopman semigroup describe the time-evolution of
observables and the system state.

D(x) = (11 (2), Y2(2), ooy oy (7))
¢j (CB) —= X for some J.

When
dij(z)/dt = f(z) € span{th1, ..., Yn, }
di(z)/dt = Kgip(x)

we say the system has finite exact closure.

Johnson, Yeung, “A Class of Logistic Functions for
State-Inclusive Koopman Operators” Proceedings of
iEEE ACC (2017) eyeung@ucsb.edu 20
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State-Inclusive Liftings Lend Insight into the
Stability of the System

When x is contained within the observable function, this guarantees the Koopman

generator and its associated Koopman semigroup describe the time-evolution of
observables and the system state.

D(x) = (11 (2), Y2(2), ooy oy (7))
wj (Cl?) —= X for some J.

When
dipj(x)/dt = f(x) € span{ty, ..., ¢, }
dyp(z)/dt = Kgip(x)

we say the system has finite exact closure.

This property does not hold for many nonlinear candidate observable functions.

gyeung@ucsb.edu

21
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State-Inclusive Liftings Lend Insight into the
Stability of the System

Example [Non-Finite Closure]:
System of interest: i = f(z) = —x°

2nd-Degree Polynomial @D(ZU) _ (1, x, :132)

Lifting:
I 0 ] We would need to add an infinite
Non-Finite Closure: () = —)5(z) number of polynomials to achieve
by ()13 () convergence.

Johnson, Yeung, “A Class of Logistic Functions for
State-Inclusive Koopman Operators” Proceedings of
iEEE ACC (2017) eyeung@ucsb.edu 22
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Relaxing to Finite Approximate Closure

Since finite exact closure is hard, we consider a less stringent
learning requirement on our liftings:

Definition 1: Let ¥(x) : M — RNL where N; < oo.
We say ¥(x) achieves finite e-closure or finite approximate

closure with O(¢€) error if and only if there exists an g €
R™*"™ and e > 0 such that

% (¥(x)) = Lap(z) + e(x). (16)

What state-inclusive observable functions exhibit this property?

Johnson, Yeung, “A Class of Logistic Functions for

State-Inclusive Koopman Operators” Proceedings of
iEEE ACC (2017) eyeung@ucsb.edu

23
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What about the functions discovered by
deepDMD?

The dominant form is a logistic function:

Multivariate Logistic Function

0 iters.
~10 _5 0 5 10 | o e

Johnson, Yeung, “A Class of Logistic Functions for
State-Inclusive Koopman Operators” Proceedings of
iEEE ACC (2017) eyeung@ucsb.edu 24
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The SILL Observable Function:

Define the state inclusive logistic lifting (SILL) function:

° 1
Ay, () = H)‘“i (x;) where )\M(QJ) = S ey
1=1
ok
Y(r) = |z where A =1[A,,,Aq,,... ,A,UNL]T(:E)
A

Proposition: If there is a total order on the set of logistic functions

Avl(az)a cees AUNL (Q?)

Then the lifting @ (x) satisfies finite approximate closure.

Johnson, Yeung, “A Class of Logistic Functions for
State-Inclusive Koopman Operators” Proceedings of
iEEE ACC (2017) eyeung@ucsb.edu
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Finite Approximate Closure of the SILL
Observable Function:

[Sketch of Proof]

Logistic functions are universal function approximators, therefore,

flz) = Z wi A, (7)

The second property needed is closure w.r.t to differentiation and
multiplication:

1.0 -

WAL | /
3 a0l - Apwihg @A @) Wl

dt

1=1 k=1 1.0
n Ny, ] f
~Y > all =A@ wih, ap(@) ol — S e

1=1 k=1 A f— Product of the two. /
VUmaz (1, k) = (max{,ull,,u’f}, ...,max{yﬁl,,uﬁ}) o

-1.0 0.0 1.0 2.0

gyeung@ucsb.edu 26
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Sistable Dynamics

System model:

Ci?l — — 55131
1+ x5’

: %

Lo — Ny 5282
1+

X1 - @ repressor protein
that represses xo

X2 - a repressor protein
that represses X

Johnson, Yeung, “A Class of Logistic Functions for
State-Inclusive Koopman Operators” Proceedings of
iEEE ACC (2017)

lustrative Example: SILL Observables to Model

g ®

f,(x) estimate  f,(x) estimate

| 0.75
0.25

. -0.25
-0.75

gyeung@ucsb.edu 27
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lustrative Example: SILL Observables to Model
Sistable Dynamics

Prediction given x, Actual given x,

0.0 2.5 5.0 0.0 2.5 5.0
Time (hrs)
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Operational Envelopes Define When and How
—ngineered Systems Work
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Yeung and Egbert “Discovery of Operational 0
Envelopes for Synthetic Gene Networks” Winter
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Discovering a Genetic Circuit’s Operational Envelope Requires
Robustnhess Characterization with Variables Independent of
Design

IcaR
ca /\ 3 70 C X _
. Grp M9CA =

0, 100 mM [X]
0, 100 mM [Y]

-
%‘ In MG165521 _

Time

Broad Culturing Characterization of Operational

Proof-of-Concept Synthetic Design Specifications Envelope
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Discovering the Operational Envelope of
the Genetic Toggle Switch

[IPTG] > [aTc] = TetR (RFP) > Lacl (GFP)
Lacl
TetR [aTc] > [IPTG] = Lacl (GFP) > TetR (RFP)

The Genetic Toggle Switch Performance Specification

| — T

What are the conditions under which the toggle switch
meets this specification”?
- What temperatures”
- What range of input concentrations [IPTG], [aTc]?
- How soon and for how long (experimental time)?

33



Canonical Models for the Toggle Switch
Are Underfitted & Context-Dependent

dU 4 U

| acl dat 14 VvFe
TetR d_V __% _

da 1+ u”

The Genetic Toggle Switch Gardner-Collins Model
Pra. + Lacl Z;\ DNA:Lacl  pry + TetR Z:T DNATtR  § o) px(t) = ) = LB (X ()
Prac = Prac + Mran o St —Zv (Z%x EPX(H) =2 - ¢))
Mopen —5 Mrer + TetR My 5 Mpger + Lacl =
g 2 0 My 2 0 R :@).
TetR —2- () Lacl 2 ()

Chemical Master Equation
Bilinear Mass Action Model Model

34



What system variables determine the boundary of the
operational envelope for a synthetic gene circuit?

Yeung and Egbert “Discovery of Operational
Envelopes for Synthetic Gene Networks” Winter
qgBio Meeting, 2018

35



Pacific Northwest
NATIONAL LABORATORY

Input-Koopman Operators To Model The Effect of
Experimental Conditions on A Synthetic Gene Network

Consider a system of the form:

Tit4+1 = F($t, wt)

Assumptions:

1) F(x, W) is analytic,
2) wtare memoryless and independent of x;

Conclusion:
There exists an input-Koopman representation for the system of the form:

%(%H) — K:vwa:(mt) - Kuwu(ut)

where u: is a vector function consisting of univariate terms in w: and multivariate wt, x; terms.

Yeung, Liu, Kundu, Hodas. “A Koopman Operator
Approach for Computing and Balancing Gramians for
Discrete Time Systems” in the Proceedings of the 36

IEEE ACC (2017)

roudly Operated by Baftelle Since 1965
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Modeling the Action of Inputs: A Nonlinear
Master Equation Model for the Toggle Switch

Two-State Toggle Switch Model

P(z1(t), 22(t)) = AP(21(t), 22(t))

ai(zr =2.—&) ifdie{l,...m} st 2z, =2z, — &
Al =< —a;i(z = z.) if r=c

0 otherwise.

Toggle Switch Model with Inputs for Temperature & Chemical Inducers

P(X(t),U(t)) = A(0)P(X,U)

a;(zr = 2. —&;,0) ifdie{l,...m} s.t. z, = z. — &;
Al =1 —a;i(z. = z.,0) if r=c

0 otherwise.

Yeung and Egbert “Discovery of Operational
Envelopes for Synthetic Gene Networks” Winter

qgBio Meeting, 2018 37
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Modeling the Action of Inputs: A Nonlinear
Master Equation Model for the Toggle Switch

Toggle Switch Model with Inputs for Temperature & Chemical Inducers

P(X(t),U(t)) = A(0)P(X,U)

> (@) P = > (= )P(X,U)

(x,u)eX (x,u)eX

d
S EP |7 ()] = Ep, [v(z)A(0, 2)]

or more precisely ...

Yeung and Egbert “Discovery of Operational
Envelopes for Synthetic Gene Networks” Winter

qgBio Meeting, 2018 38
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Modeling the Action of Inputs: A Nonlinear
Master Equation Model for the Toggle Switch

Toggle Switch Moment-Based Model with Inputs for Temperature
& Chemical Inducers

d

“Ep, [1(x)] = Ep, [1(2)A (6, 2)

The input-Koopman equation is given by:

e (Ep, [y(2)(t +0t)]) = Koz (v(2(2))) + Kuthu(u(t), 0)

We aim to discover the distribution moment dynamics of the
form:

[(z) = (z1, 22, (21 — p1) (@2 — p2), (21 — )%, (22 — p2)?)

39
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Discovering the Operational Envelope of

the Genetic Toggle Switch
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the Genetic Toggle Switch
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Normalized GFP and RFP mean, vars, and covars

Normalized GFP and RFP mean, vars, and covars
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Deep Koopman Operators of Moment
Dynamics: Forecasting with Learned Models
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Proudly Operated by Batielle Since 1965
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