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Mathematical Setting AlMdyninc.
XCR" Compact, connected
. X—->X Discrete time map, invertible
M Borel probability measure on X

V6 > 0,inf{u(Bs(w)) : w € X} >0

Koopman (composition) operator
F Function space invariant
under the dynamics

C@IF%F

(Cof)(x) = (fo®)(x)= f(P(x)) Composition operator



Diffusion Maps

¥

a: X XX—R
a(z,y) = a(y, r)
a(z,y) >0

AlMdyninc.

Function space invariant
under the diffusion below

Similarity (affinity) kernel
(e.g.) a gaussian function

“mass” at x
Diffusion kernel

Diffusion operator



Integral approximations of the Koopman Operator AlMdyninc.

* Goal: Approximate the Koopman operator with an integral operator
* Take inspiration from Diffusion Maps

9o (x,y) = exp(—||z — y||*/0*) Similarity (affinity) kernel
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Integral approximations of the Koopman Operator AlMdyninc

* Goal: Approximate the Koopman operator with an integral operator
* Take inspiration from Diffusion Maps

9o (x,y) = exp(—||z — y||*/0*) Similarity (affinity) kernel
9o (®(2),y)
bolary) = 20 ma(@(@) = | 97(2(@). 9)dily)

Koopman kernel

(A f)(z) = / b0 (2, y)f (v)du(y)

Integral Koopman /%
Aside: A, : L2(,u) > LQ(/L) (I)(ZC)

Is a Hilbert-Schmidt integral operator £




Reproducing Kernel Hilbert Space AMdyninc

* Function space has been unspecified so far
 We care about pointwise evaluations of functions
* RKHS with gaussian kernel

(90 (2,+), 95 (Y, ")) = 9o (T, )

 The Hilbert space is the closure of the vector space spanned by



How do we tell if a function is in the RKHS? AlMdyninc

Def: A function K(x,y) is positive semidefinite if for any n and every choice of n distinct points
X1, ... , Xn, the matrix (K(x;, x;)) is positive semidefinite.

BX%y)ZO<¢©—E:}:&RgKﬂmﬁq)ZO

i=1 j=1

Theorem 3.1 ([2], Theorem 3.11). Let H be an RKHS with a kernel K. If f : X — C, then the following are

equivalent:
(i) feH,

(ii) there exists a constant ¢ > 0 such that for every finite subset F = {wy,...,w,} C X, there exists a
function h € H with ||h||,, <cand f(w;)) =h(w;), i=1,...,n;

(iii) there exists a constant ¢ > 0, such that the function M (x,y) = c*K(x,y) — f(x) f(y) is a kernel function.

Theorem 5.7 (Pull-back theorem). Let X and S be sets, let ¢ : S — X be a
function and let K : X x X — C be a kernel function. Then H(K o ¢) =
{f oo f € H(K)}, and foru € H(K o ¢) we have that ||ul|yxop) =

min{|| fllpx) : u = f o @}.

(K op)(z,y) = K(p(z),»(y))

[2] Vern I Paulsen and Mrinal Raghupathi. An Introduction to the Theory of Reproducing Kernel Hilbert Spaces.
Cambridge University Press, Cambridge, 2016.



RKHS invariance under Koopman AIMdyninc.

Ca(H(gs)) € H(go)

The idea is to let the dynamics induce a new kernel function and then show that this
kernel function defines the same space as the original kernel function.

J € H(ga)) — f(33) (y) < go(%?ﬁ (positive semidefinite)

= [(2(2))f(®(y)) < 9o (P(z), B(y))

— fo® € H(g, 0o P)

Since & is a bijection, the spaces spanned by the sets of functions
{hy() = 95(P(y), () : y € X} {k2() = 9o (") 1 @ € X}
are the same. ™

*Needs a proof



RKHS invariance under integral Koopman AIMdyninc

As(H(g5)) C H(gs)

Idea: Show h = A, f isin H(g, o ®), then use the same equivalence argument.

Find c such that: Y 7iz; [sz(xz',x]') _h(xi)h(xj)] >0 where J(x,y) = go(P(x),D(y))
ij=1
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_ [ 8c(P(xi),y) :

Vo > 0,inf{u(Bs(w)) : w € X} > 0



RKHS invariance under integral Koopman AIMdyninc

As(H(g5)) C H(gs)

Idea: Show h = A, f isin H(g, o ®), then use the same equivalence argument.

Find c such that: Y 7iz; [sz(xz',x]') _h(xi)h(xj)] >0 where J(x,y) = go(P(x),D(y))
ij=1

n n n 5
1 Y m (x) = (Y akon » X Fkeq, ) = || Y ko,
i,j=1 i=1 j=1 i=1
: N I e " gl 2
_ = . — gG Xi 7y 2 — .
2 iJZﬂaah(x»h(x»— Yahte)| =13 / o)) | WO <FLa [ kot ko) IR

2

3: Y Zzh(a)h(x)) < (BIIfllp (X))’

i,j=1

) Zkax)
i=1
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Convergence to the Koopman operator AlMdyninc.

Definition 3.3. A family of maps {ss : X x X — R |0 > 0} is called a summability kernel if for all x € X
(1) Vo >0, [xso(x,y)du(y) =1, and
(2) 3K > 0,Yo >0, [x|ss(x,y)|du(y) <K.

(3) Vo6 >0,

lim se(x,y)du(y) =0. (3.20)
00 JX—B5(®(x))

where Bs(x) = {y € X| |x—yl, < 5.




Convergence to the Koopman operator AlMdyninc

Definition 3.3. A family of maps {ss : X x X — R |0 > 0} is called a summability kernel if for all x € X
(1) Vo >0, [xse(x,y)du(y) =1, and
(2) 3K >0,V0 >0, [x[so(x,y)|du(y) < K.

(3) Vo6 >0,

lim se(x,y)du(y) =0. (3.20)
00 JX—B5(®(x))

where B (x) = {y € X[[lx—yl[, <d}.

Lemma 3.4. If u satisfies (2.1), then {¢s| 0 > 0}, where @s is given by (3.7), is a summability kernel.
Furthermore, the convergence

lim 9o (x,y)dit(y) = 0 (3.21)
0=0./X—B;(®(x))

is uniform in x.

Proof requires (2.1): V§ > 0,inf{u(Bs(w)) : w € X} > 0
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Convergence to the Koopman operator AlMdyninc.

Pointwise convergence on continuous functions

Lemma 3.5 (Pointwise convergence). For any continuous f : X — C

lim | (46./)(x) = (Caf) ()| = 0

c—0

uniformly in x € X.




Convergence to the Koopman operator AlMdyninc.

Pointwise convergence on continuous functions

Lemma 3.5 (Pointwise convergence). For any continuous f : X — C

lim| (Af) (x) — (Caf) (x)| =0

c—0

uniformly in x € X.

[ oatsnrant) - i)

Bound using summability kernel Bound using continuity of f
property



Partial Dynamics AIMdyninc.

* Assume that the dynamics are only known for
Xon = {1, ., Tm}

* Goal: Define a transition kernel pgm()s : X x X — [0,%0) such that
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* Assume that the dynamics are only known for
Xon = {1, ., Tm}

* Goal: Define a transition kernel pgm()s : X x X — [0,%0) such that

m)
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Partial Dynamics AIMdyninc.

* Assume that the dynamics are only known for

Xon =421, .., T}

* Goal: Define a transition kernel pgm()s : X x X — [0,%0) such that

m)

(1) if w € Xis such that ®(w) is known, then lim,,_,,, pg 5(u,y) = ¢s(w,y), the Koopman kernel
(m)

(2) if there is no w € X for which ®(w) is known, then p s ~ d;, the pure diffusion kernel



Partial Dynamics AIMdyninc.

* Assume that the dynamics are only known for

Xon =421, .., T}

* Goal: Define a transition kernel pgm()s : X x X — [0,%0) such that

m)

(1) if w € Xis such that ®(w) is known, then lim,,_,,, pg 5(u,y) = ¢s(w,y), the Koopman kernel

(2) if there is no w € X for which ®(w) is known, then pgm()s ~ ds, the pure diffusion kernel
(3) as the set of w’s for which ®(w) is known becomes dense in X, the operator defined via pgmg will

converge to A for any appropriately chosen decreasing sequence of §’s.



Continuous extension of known dynamics

Xon =421, .., T }
Choose delta such that the gaussians satisfy

gs(zi,xi) =0, Vr,x;€Xy,

Transition kernel

pf,"f%(u,ylxm) = Y o5(ux)p!

xeXy,

m)

,5(l/t7y|)€)

AlMdyninc.



Continuous extension of known dynamics

Xon =421, .., T }
Choose delta such that the gaussians satisfy

gs(zi,xi) =0, Vr,x;€Xy,

Transition kernel

Py Xm) = ¥ ot (u,x) s (1, y1x)

xeXy,

g(g(u,x)

os(u,x) =
5(u X) Zx’eXm gg(u,x’)

p(m) (l/t ylx) _ {dﬁ(uay> , M = 0
o0 (1 —g5(u,x))ds(u,y) + 85, x) 95 (x,y) ,m >0

AlMdyninc.

Mixed kernel



Continuous extension of known dynamics AlMdyninc.

m) dG(uay) ,m=0 " (Zero knowledge)
D (U, y]x) =
! (1—gs(u,x gs(u,X) ,m>0  (Some knowledge)

Pure diffusion kernel Koopman kernel

g5(°,ZL‘)



. L . Y
Arbitrary approximation of known dynamics AlMdyninc.

Lemma 4.1. Foranym >0, 6 >0, and x € X,,,

lim p'3 (4, 1¥) = 0o (x,3).

P, y1x) — 90 (x,)| = (1 — g5 (1,%)) (do (u,y) — 9o (x,7))]




Arbitrary approximation of known dynamics AlMdyninc.

Lemma 4.2. Fix x € X,,,. For any m > 0 and € > 0, there exists a 8 > 0 such that

Iim
Uu—Xx

ng(u YIXon) — %(X,Y)‘ =0(e

(m) (m)

lim po"3 (1, Y1X) = Py (6, 3[%om) = a5 (x,x) plyy (x,31%) + Y, a5 (x,8) pr g (x, 1)
u—x £ |
(m ) go6\X x) (m) /
(1+ZX’7&xg5 -x .x ) 6’6 x’y|X)+ Z <1+ZX”7Exg5( ”)) pG,S(x7y|x)

\ i

Uniformly bounded




Arbitrary approximation of known dynamics

AlMdyninc.

Lemma 4.2. Fix x € X,,,. For any m > 0 and € > 0, there exists a 8 > 0 such that

Iim
Uu—Xx

ng(u YIXon) — %(X,y)‘ =0(e

) eyl + Y as(xa ) pl

x'#x

(m) gs(x,x) ) (m)
: +
(1 + Zx/#x gs(x,x") ) p675(x ylx) x;’x (1 + an#xg(g(x,x”) Ps.5

Lim p") (1, y[Xn) = pUrg (6, |Xon) = a5 (x,x) x,y|x)

u—Xx

Zx’%xg(S (xax/)

g5(x,x)

— iiil}c‘pgn%(uﬂ‘xm) - <Po(x,y)‘ <Cs

1+ Zx’#xg5 (x,x’)

1 +Zx”7éxg5(



Arbitrary approximation of known dynamics

AlMdyninc.

Lemma 4.2. Fix x € X,,,. For any m > 0 and € > 0, there exists a 8 > 0 such that

Iim
Uu—Xx

ng(u YIXon) — %(X,Y)‘ =0(e

" eyl + Y as(xa ) pl

x'#x

(m) 85(x,x')
p X, y|X) + ( ) x , V|X
(1+Zx’7éxg5 x x ) 076( | ) éx 1+Zx”7éxg5 |

Lim p") (1, y[Xn) = pUrg (6, |Xon) = a5 (x,x) X,y

u—Xx

Zx’ .' 5

g ’#ng

— iﬂl}c‘p%(“’y‘xm) - <Po(x,y)) <Cs

L+ Yoie 855, X)




The pure diffusion limit

AlMdynInc.

Lemma 4.4. Fixu & X,,,. Then

lim pos (4,31 Xm) = do(u, )

L (m) _
lim p 5 (u, ylx) = do (u,y)

m do (i,
pﬁ,,();(u,yIX)={ o(1:7)

ym=0

(1 _gé(uax)>d6(uay) +g5(uvx)¢6(x7y) ,m>0

95('7373')

do (u,

95('7 xk)
'>-L




The pure diffusion limit

AlMdynInc.

Lemma 4.4. Fixu & X,,,. Then

. (m) _
lim pos (4,31 Xm) = do(u, )

L (m) _
lim p 5 (u, ylx) = do (u,y)

m do(,y
pU (. ylx) = {(f(




Partial dynamics integral operator AIMdyninc.

(Ao s£)(x) = [ p3yI%) () dR()

Proposition 4.5. Fix € > 0. For any X,,, there exists a 8(€,X,,) > 0 such that for any continuous f and any
x € X,

(A 5f)(x) — (Acf)(x)| = OC(e). (4.41)

Recall  (4e/)(¥) = [ 9a(x.)fO)du0)

(57)0)~ (a0 = | [ (P01~ 00(6)) SO))

< []pI3ealn) = 6o ()| L£ ) du ()
< Coe|/fl).




Unscrambling Time

Given: TBI Study

Control patients
e 1visit, 2 sampling protocols
e HFWB : blood drawn ever 2h over 28h
* LFWB : blood draw ever 4h over 12h
TBI patients
* 3visits (0, 2, 6 months)
* LFWB protocol
Gene expression levels (RNAseq) in each blood
sample supplied

AlMdyninc.

* The time stamps of the blood samples were not

given

* Each patients’ blood samples were permuted

differently

Goal

Find the true time stamp on a 24h clock of each
blood sample

Assumptions

* The circadian rhythm is the dominant driving
force of the gene expression levels

« HFWB and LFWB samples for control patients

treated as separate data sets
* Note: this is different to how the NU team treated
them. We are losing information with this assumption.



Unscrambling Time AIMdyninc.
Gene expression time Data given
series for circadian genes

Map from time manifold Time Gene expression levels

— to gene expression levels —> L1,L92,... ] — blind —» . .
(higher dimensional space) ’ ’ data for circadian genes

Time manifold -[ oy Wiy Wy - ]'

(interval or circle) I

|
Use Diffusion Maps to find
coordinates 6, (time stamp or phase)
(1 eigenfunction to time interval)
(2 eigenfunctions to compute
a phase for circular time manifold)

o 0:, 05,
ceny, Wiy Wyy e w

Map diffusion coordinate
to time of day

|

ot .
ceey Wiy Wyy . e
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Unscrambling Time AlMdyninc.

Control patients

0 2 4 6 8 1012 14 16 18 20 22 24
True time stamp

. Control patients HFWB

0 2 4 6 8 1012 14 16 18 20 22 24
True time stamp

36 36 36
32| 32t 32t
o o o
£ 28| T £ 28| T £ 28|
b S ]
% 24| " % 24 | A % 24| o
<1> [0} _ e
£ 20t ml |- £ 20t n | £ 20 -
5 167 ) 5 161 17 5 161 -
-iq—') Pl 2 ol -oq-?l -
3 %] g = 2 12| ‘mm L S 12} E//
£ gl . . L
5 8 . 5 B . £ 8 -
S o4t W S 4 W B o ar 7
o 47 © 47 G e
c O0Fr c 0rf c O0rf
5 g ¢
> 4 e -4 S 4}
e 8-+ 8l
12 -12 12

Control patients LFWB

0 2 4 6 8 1012 14 16 18 20 22 24
True time stamp



Summary AlMdyninc.

 We introduced an integral approximation of the Koopman operator in
terms of asymmetric similarity kernels
* We constructed a “homotopy” between the Diffusion Maps operator
and the integral Koopman operator, where the homotopy was
parameterized by the amount of knowledge we had about the
dynamics
* No knowledge = Diffusion Maps
* Full knowledge = Integral Koopman operator
* We presented results on the “unscrambling problem” of time series of
blood samples where the goal was to correctly order time-blinded and
shuffled time series data



a /ﬂ
AlMdyninc.

Thank youl!



