

The Koopman Operator, Diffusion Maps, and Partially Known Dynamics

UCLA IPAM

Workshop: Operator Theoretic Methods in Dynamical Data Analysis and Control 02/11/2019

Ryan Mohr, Igor Mezic

Outline

- 1. Mathematical background
 - 1. The Koopman operator
 - 2. Diffusion Maps
- 2. Integral operator approximations to Koopman
 - 1. RKHS
 - 2. Invariance
- 3. Converge to the Koopman operator
 - 1. mu-sumability
 - 2. Pointwise convergence
- 4. Partial dynamics
- 5. The unscrambling problem

Mathematical Setting

 $\mathbb{X} \subset \mathbb{R}^n$

 $\Phi: \mathbb{X} \to \mathbb{X}$

 μ

 $\forall \delta > 0, \inf \{ \mu(B_{\delta}(w)) : w \in \mathbb{X} \} > 0$

Compact, connected

Discrete time map, invertible

Borel probability measure on X

Mathematical Setting

$$\mathbb{X} \subset \mathbb{R}^n$$

$$\Phi: \mathbb{X} \to \mathbb{X}$$

 μ

$$\forall \delta > 0, \inf \{ \mu(B_{\delta}(w)) : w \in \mathbb{X} \} > 0$$

Compact, connected

Discrete time map, invertible

Borel probability measure on X

Koopman (composition) operator

 \mathbb{F}

Function space invariant under the dynamics

$$C_{\Phi}: \mathbb{F} \to \mathbb{F}$$

$$(C_{\Phi}f)(x) = (f \circ \Phi)(x) = f(\Phi(x))$$

Composition operator

Diffusion Maps

 \mathbb{F}

 $a: \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ a(x,y) = a(y,x) $a(x,y) \ge 0$

Function space invariant under the diffusion below

Similarity (affinity) kernel (e.g.) a gaussian function

 $m(x) = \int_{\mathbb{X}} a(x, y) d\mu(u)$

"mass" at x

 $d(x,y) = \frac{a(x,y)}{m(x)}$

Diffusion kernel

 $(Df)(x) = \int_{\mathbb{X}} d(x, y) f(y) d\mu(y)$

Diffusion operator

Integral approximations of the Koopman Operator

- Goal: Approximate the Koopman operator with an integral operator
- Take inspiration from Diffusion Maps

$$g_{\sigma}(x,y) = \exp(-\|x - y\|^2/\sigma^2)$$

Similarity (affinity) kernel

Integral approximations of the Koopman Operator

- Goal: Approximate the Koopman operator with an integral operator
- Take inspiration from Diffusion Maps

$$g_{\sigma}(x,y) = \exp(-\|x-y\|^2/\sigma^2)$$
 Similarity (affinity) kernel $\phi_{\sigma}(x,y) = \frac{g_{\sigma}(\Phi(x),y)}{m_{\sigma}(\Phi(x))}$ $m_{\sigma}(\Phi(x)) = \int_{\mathbb{X}} g_{\sigma}(\Phi(x),y) d\mu(y)$

Asymmetric gaussian

Integral approximations of the Koopman Operator

- Goal: Approximate the Koopman operator with an integral operator
- Take inspiration from Diffusion Maps

$$g_{\sigma}(x,y) = \exp(-\|x - y\|^2/\sigma^2)$$

Similarity (affinity) kernel

$$\phi_{\sigma}(x,y) = \frac{g_{\sigma}(\Phi(x),y)}{m_{\sigma}(\Phi(x))}$$

$$m_{\sigma}(\Phi(x)) = \int_{\mathbb{X}} g_{\sigma}(\Phi(x), y) d\mu(y)$$

$$(A_{\sigma}f)(x) = \int_{\mathbb{X}} \phi_{\sigma}(x, y) f(y) d\mu(y)$$

Integral Koopman

Aside: $A_{\sigma}:L^2(\mu)\to L^2(\mu)$

Is a Hilbert-Schmidt integral operator

Reproducing Kernel Hilbert Space

- Function space has been unspecified so far
- We care about pointwise evaluations of functions
 - RKHS with gaussian kernel

$$\langle g_{\sigma}(x,\cdot), g_{\sigma}(y,\cdot) \rangle := g_{\sigma}(x,y)$$

The Hilbert space is the closure of the vector space spanned by

$$\{k_x(\cdot) = g_\sigma(x, \cdot) : x \in \mathbb{X}\}\$$

$$f = \sum_{i=1}^{m} \alpha_i k_{x_i}$$

How do we tell if a function is in the RKHS?

Def: A function K(x,y) is positive semidefinite if for any n and every choice of n distinct points $x_1, ..., x_n$, the matrix $(K(x_i, x_i))$ is positive semidefinite.

$$K(x,y) \ge 0 \iff \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{\alpha_i} \alpha_j K(x_i, x_j) \ge 0$$

Theorem 3.1 ([2], Theorem 3.11). Let \mathcal{H} be an RKHS with a kernel K. If $f : \mathbb{X} \to \mathbb{C}$, then the following are equivalent:

- (i) $f \in \mathcal{H}$;
- (ii) there exists a constant c > 0 such that for every finite subset $F = \{w_1, \ldots, w_n\} \subset \mathbb{X}$, there exists a function $h \in \mathcal{H}$ with $||h||_{\mathcal{H}} \leq c$ and $f(w_i) = h(w_i)$, $i = 1, \ldots, n$;
- (iii) there exists a constant c > 0, such that the function $M(x,y) = c^2 K(x,y) f(x) \overline{f(y)}$ is a kernel function.

Theorem 5.7 (Pull-back theorem). Let X and S be sets, let $\varphi: S \to X$ be a function and let $K: X \times X \to \mathbb{C}$ be a kernel function. Then $\mathcal{H}(K \circ \varphi) = \{f \circ \varphi: f \in \mathcal{H}(K)\}$, and for $u \in \mathcal{H}(K \circ \varphi)$ we have that $\|u\|_{\mathcal{H}(K \circ \varphi)} = \min\{\|f\|_{\mathcal{H}(K)}: u = f \circ \varphi\}$.

$$(K \circ \varphi)(x, y) := K(\varphi(x), \varphi(y))$$

RKHS invariance under Koopman

$$C_{\Phi}(\mathcal{H}(g_{\sigma})) \subset \mathcal{H}(g_{\sigma})$$

The idea is to let the dynamics induce a new kernel function and then show that this kernel function defines the same space as the original kernel function.

$$f \in \mathcal{H}(g_{\sigma})) \implies f(x)\overline{f(y)} \leq g_{\sigma}(x,y)$$
 (positive semidefinite)
$$\implies f(\Phi(x))\overline{f(\Phi(y))} \leq g_{\sigma}(\Phi(x),\Phi(y))$$

$$\implies f \circ \Phi \in \mathcal{H}(g_{\sigma} \circ \Phi)$$
 $C_{\Phi}: \mathcal{H}(g_{\sigma}) \to \mathcal{H}(g_{\sigma} \circ \Phi)$

Since Φ is a bijection, the spaces spanned by the sets of functions

$$\{h_y(\cdot) = g_\sigma(\Phi(y), \Phi(\cdot)) : y \in \mathbb{X}\} \qquad \{k_x(\cdot) = g_\sigma(x, \cdot) : x \in \mathbb{X}\}$$

are the same.*

RKHS invariance under integral Koopman

$$A_{\sigma}(\mathcal{H}(g_{\sigma})) \subset \mathcal{H}(g_{\sigma})$$

Idea: Show $h=A_{\sigma}f$ is in $\mathcal{H}(g_{\sigma}\circ\Phi)$, then use the same equivalence argument.

Find c such that:
$$\sum_{i,j=1}^{n} \overline{z_i} z_j \left[c^2 J(x_i, x_j) - h(x_i) \overline{h(x_j)} \right] \ge 0 \quad \text{where} \quad J(x, y) = g_{\sigma}(\Phi(x), \Phi(y))$$

1:
$$\sum_{i,j=1}^{n} \overline{z_i} z_j c^2 J(x_i, x_j) = c^2 \left\langle \sum_{i=1}^{n} \overline{z_i} k_{\Phi(x_i)}, \sum_{j=1}^{n} \overline{z_j} k_{\Phi(x_j)} \right\rangle = c^2 \left\| \sum_{i=1}^{n} \overline{z_i} k_{\Phi(x_i)} \right\|^2$$

2:
$$\sum_{i,j=1}^{n} \overline{z_i} z_j h(x_i) \overline{h(x_j)} = \left| \sum_{i=1}^{n} \overline{z_i} h(x_i) \right|^2 = \left| \sum_{i=1}^{n} \overline{z_i} \int \frac{g_{\sigma}(\Phi(x_i), y)}{m_{\sigma}(\Phi(x_i))} f(y) d\mu(y) \right|^2$$

RKHS invariance under integral Koopman

$$A_{\sigma}(\mathcal{H}(g_{\sigma})) \subset \mathcal{H}(g_{\sigma})$$

Idea: Show $h=A_{\sigma}f$ is in $\mathcal{H}(g_{\sigma}\circ\Phi)$, then use the same equivalence argument.

Find c such that:
$$\sum_{i,j=1}^{n} \overline{z_i} z_j \left[c^2 J(x_i, x_j) - h(x_i) \overline{h(x_j)} \right] \ge 0 \quad \text{where} \quad J(x, y) = g_{\sigma}(\Phi(x), \Phi(y))$$

1:
$$\sum_{i,j=1}^{n} \overline{z_i} z_j c^2 J(x_i, x_j) = c^2 \left\langle \sum_{i=1}^{n} \overline{z_i} k_{\Phi(x_i)}, \sum_{j=1}^{n} \overline{z_j} k_{\Phi(x_j)} \right\rangle = c^2 \left\| \sum_{i=1}^{n} \overline{z_i} k_{\Phi(x_i)} \right\|^2$$

$$2: \sum_{i,j=1}^{n} \overline{z_i} z_j h(x_i) \overline{h(x_j)} = \left| \sum_{i=1}^{n} \overline{z_i} h(x_i) \right|^2 = \left| \sum_{i=1}^{n} \overline{z_i} \int \frac{g_{\sigma}(\Phi(x_i), y)}{m_{\sigma}(\Phi(x_i))} f(y) d\mu(y) \right|^2 \le \beta^2 \left| \sum_{i=1}^{n} \overline{z_i} \int \langle k_{\Phi(x_i)}, k_y \rangle f(y) d\mu(y) \right|^2$$

$$\forall \delta > 0, \inf \{ \mu(B_{\delta}(w)) : w \in \mathbb{X} \} > 0$$

RKHS invariance under integral Koopman

$$A_{\sigma}(\mathcal{H}(g_{\sigma})) \subset \mathcal{H}(g_{\sigma})$$

Idea: Show $h=A_{\sigma}f$ is in $\mathcal{H}(g_{\sigma}\circ\Phi)$, then use the same equivalence argument.

Find c such that:
$$\sum_{i,j=1}^{n} \overline{z_i} z_j \left[c^2 J(x_i, x_j) - h(x_i) \overline{h(x_j)} \right] \ge 0 \quad \text{where} \quad J(x, y) = g_{\sigma}(\Phi(x), \Phi(y))$$

1:
$$\sum_{i,j=1}^{n} \overline{z_i} z_j c^2 J(x_i, x_j) = c^2 \left\langle \sum_{i=1}^{n} \overline{z_i} k_{\Phi(x_i)}, \sum_{j=1}^{n} \overline{z_j} k_{\Phi(x_j)} \right\rangle = c^2 \left\| \sum_{i=1}^{n} \overline{z_i} k_{\Phi(x_i)} \right\|^2$$

$$2: \sum_{i,j=1}^{n} \overline{z_i} z_j h(x_i) \overline{h(x_j)} = \left| \sum_{i=1}^{n} \overline{z_i} h(x_i) \right|^2 = \left| \sum_{i=1}^{n} \overline{z_i} \int \frac{g_{\sigma}(\Phi(x_i), y)}{m_{\sigma}(\Phi(x_i))} f(y) d\mu(y) \right|^2 \le \beta^2 \left| \sum_{i=1}^{n} \overline{z_i} \int \langle k_{\Phi(x_i)}, k_y \rangle f(y) d\mu(y) \right|^2$$

3:
$$\sum_{i,j=1}^{n} \overline{z_i} z_j h(x_i) \overline{h(x_j)} \leq (\beta \|f\|_{\infty} \mu(\mathbb{X}))^2 \left\| \sum_{i=1}^{n} \overline{z_i} k_{\Phi(x_i)} \right\|^2$$

Definition 3.3. A family of maps $\{s_{\sigma}: \mathbb{X} \times \mathbb{X} \to \mathbb{R} \mid \sigma > 0\}$ is called a summability kernel if for all $x \in \mathbb{X}$

(1)
$$\forall \sigma > 0$$
, $\int_{\mathbb{X}} s_{\sigma}(x, y) d\mu(y) = 1$, and

(2)
$$\exists K > 0, \forall \sigma > 0, \int_{\mathbb{X}} |s_{\sigma}(x, y)| d\mu(y) \leq K.$$

(3)
$$\forall \delta > 0$$
,

$$\lim_{\sigma \to 0} \int_{\mathbb{X} - B_{\delta}(\Phi(x))} s_{\sigma}(x, y) d\mu(y) = 0. \tag{3.20}$$

where
$$B_{\delta}(x) = \{ y \in \mathbb{X} \mid ||x - y||_2 < \delta \}.$$

Definition 3.3. A family of maps $\{s_{\sigma}: \mathbb{X} \times \mathbb{X} \to \mathbb{R} \mid \sigma > 0\}$ is called a summability kernel if for all $x \in \mathbb{X}$

- (1) $\forall \sigma > 0$, $\int_{\mathbb{X}} s_{\sigma}(x, y) d\mu(y) = 1$, and
- (2) $\exists K > 0, \forall \sigma > 0, \int_{\mathbb{X}} |s_{\sigma}(x, y)| d\mu(y) \leq K$.
- (3) $\forall \delta > 0$,

$$\lim_{\sigma \to 0} \int_{\mathbb{X} - B_{\delta}(\Phi(x))} s_{\sigma}(x, y) d\mu(y) = 0. \tag{3.20}$$

where $B_{\delta}(x) = \{ y \in \mathbb{X} | ||x - y||_2 < \delta \}.$

Lemma 3.4. If μ satisfies (2.1), then $\{\phi_{\sigma} | \sigma > 0\}$, where ϕ_{σ} is given by (3.7), is a summability kernel. Furthermore, the convergence

$$\lim_{\sigma \to 0} \int_{\mathbb{X} - B_{\delta}(\Phi(x))} \phi_{\sigma}(x, y) d\mu(y) = 0$$
(3.21)

is uniform in x.

Proof requires (2.1): $\forall \delta > 0, \inf \{ \mu(B_{\delta}(w)) : w \in \mathbb{X} \} > 0$

Pointwise convergence on continuous functions

Lemma 3.5 (Pointwise convergence). *For any continuous* $f : \mathbb{X} \to \mathbb{C}$

$$\lim_{\sigma \to 0} \left| (A_{\sigma} f)(x) - (C_{\Phi} f)(x) \right| = 0$$

uniformly in $x \in \mathbb{X}$ *.*

Pointwise convergence on continuous functions

Lemma 3.5 (Pointwise convergence). *For any continuous* $f : \mathbb{X} \to \mathbb{C}$

$$\lim_{\sigma \to 0} \left| (A_{\sigma} f)(x) - (C_{\Phi} f)(x) \right| = 0$$

uniformly in $x \in \mathbb{X}$.

$$\left| \int \phi_{\sigma}(x,y) f(y) d\mu(y) - f(\Phi(x)) \right| = \left| \int \phi_{\sigma}(x,y) [f(y) - f(\Phi(x))] d\mu(y) \right|$$

$$\leq 2 ||f||_{\mathcal{L}} \int_{\mathbb{X} - B_{\delta}(\Phi(x))} \phi_{\sigma}(x,y) d\mu(y) + \int_{B_{\delta}(\Phi(x))} \phi_{\sigma}(x,y) [f(y) - f(\Phi(x))] d\mu(y)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \int_{B_{\delta}(\Phi(x))} \phi_{\sigma}(x,y) d\mu(y)$$

$$< \varepsilon.$$

Bound using summability kernel property

Bound using continuity of f

Assume that the dynamics are only known for

$$\mathbb{X}_m = \{x_1, \dots, x_m\}$$

• **Goal**: Define a transition kernel $\;p_{\sigma,\delta}^{(m)}: \mathbb{X} imes \mathbb{X} o [0,\infty)\;$ such that

Assume that the dynamics are only known for

$$\mathbb{X}_m = \{x_1, \dots, x_m\}$$

• **Goal**: Define a transition kernel $p_{\sigma,\delta}^{(m)}: \mathbb{X} imes \mathbb{X} o [0,\infty)$ such that

(1) if $w \in \mathbb{X}$ is such that $\Phi(w)$ is known, then $\lim_{u \to w} p_{\sigma, \delta}^{(m)}(u, y) \approx \phi_{\sigma}(w, y)$, the Koopman kernel

Assume that the dynamics are only known for

$$\mathbb{X}_m = \{x_1, \dots, x_m\}$$

- **Goal**: Define a transition kernel $p_{\sigma,\delta}^{(m)}: \mathbb{X} imes \mathbb{X} o [0,\infty)$ such that
- (1) if $w \in \mathbb{X}$ is such that $\Phi(w)$ is known, then $\lim_{u \to w} p_{\sigma, \delta}^{(m)}(u, y) \approx \phi_{\sigma}(w, y)$, the Koopman kernel
- (2) if there is no $w \in \mathbb{X}$ for which $\Phi(w)$ is known, then $p_{\sigma,\delta}^{(m)} \approx d_{\sigma}$, the pure diffusion kernel

Assume that the dynamics are only known for

$$\mathbb{X}_m = \{x_1, \dots, x_m\}$$

- **Goal**: Define a transition kernel $\;p_{\sigma.\delta}^{(m)}: \mathbb{X} imes \mathbb{X} o [0, \infty)\;$ such that
- (1) if $w \in \mathbb{X}$ is such that $\Phi(w)$ is known, then $\lim_{u \to w} p_{\sigma, \delta}^{(m)}(u, y) \approx \phi_{\sigma}(w, y)$, the Koopman kernel
- (2) if there is no $w \in \mathbb{X}$ for which $\Phi(w)$ is known, then $p_{\sigma,\delta}^{(m)} \approx d_{\sigma}$, the pure diffusion kernel
- (3) as the set of w's for which $\Phi(w)$ is known becomes dense in \mathbb{X} , the operator defined via $p_{\sigma,\delta}^{(m)}$ will converge to A_{σ} for any appropriately chosen decreasing sequence of δ 's.

Continuous extension of known dynamics

$$\mathbb{X}_m = \{x_1, \dots, x_m\}$$

Choose delta such that the gaussians satisfy

$$g_{\delta}(x_i, x_j) \approx 0, \quad \forall x_i, x_j \in \mathbb{X}_m$$

Transition kernel

$$p_{\sigma,\delta}^{(m)}(u,y|\mathbb{X}_m) = \sum_{x \in \mathbb{X}_m} \alpha_{\delta}(u,x) p_{\sigma,\delta}^{(m)}(u,y|x)$$

Continuous extension of known dynamics

$$\mathbb{X}_m = \{x_1, \dots, x_m\}$$

Choose delta such that the gaussians satisfy

$$g_{\delta}(x_i, x_j) \approx 0, \quad \forall x_i, x_j \in \mathbb{X}_m$$

Transition kernel

$$p_{\sigma,\delta}^{(m)}(u,y|\mathbb{X}_m) = \sum_{x \in \mathbb{X}_m} \alpha_{\delta}(u,x) p_{\sigma,\delta}^{(m)}(u,y|x)$$

$$\alpha_{\delta}(u,x) = \frac{g_{\delta}(u,x)}{\sum_{x' \in \mathbb{X}_m} g_{\delta}(u,x')}$$

$$p_{\sigma,\delta}^{(m)}(u,y|x) = \begin{cases} d_{\sigma}(u,y) &, m = 0\\ (1 - g_{\delta}(u,x))d_{\sigma}(u,y) + g_{\delta}(u,x)\phi_{\sigma}(x,y) &, m > 0 \end{cases}$$

Mixed kernel

Continuous extension of known dynamics

$$\mathbb{X}_m = \{x_1, \dots, x_m\}$$

$$p_{\sigma,\delta}^{(m)}(u,y|x) = \begin{cases} d_{\sigma}(u,y) & , m=0 \\ (1-g_{\delta}(u,x))d_{\sigma}(u,y) + g_{\delta}(u,x)\phi_{\sigma}(x,y) & , m>0 \end{cases} \text{ (Zero knowledge)}$$
 Pure diffusion kernel

Lemma 4.1. For any m > 0, $\delta > 0$, and $x \in \mathbb{X}_m$,

$$\lim_{u\to x} p_{\sigma,\delta}^{(m)}(u,y|x) = \phi_{\sigma}(x,y).$$

$$\left| p_{\sigma,\delta}^{(m)}(u,y|x) - \phi_{\sigma}(x,y) \right| = \left| (1 - g_{\delta}(u,x))(d_{\sigma}(u,y) - \phi_{\sigma}(x,y)) \right|$$

Lemma 4.2. Fix $x \in \mathbb{X}_m$. For any m > 0 and $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$\lim_{u\to x}\left|p_{\sigma,\delta}^{(m)}(u,y|\mathbb{X}_m)-\phi_{\sigma}(x,y)\right|=O(\varepsilon).$$

$$\lim_{u \to x} p_{\sigma,\delta}^{(m)}(u,y|\mathbb{X}_m) = p_{\sigma,\delta}^{(m)}(x,y|\mathbb{X}_m) = a_{\delta}(x,x)p_{\sigma,\delta}^{(m)}(x,y|x) + \sum_{x' \neq x} a_{\delta}(x,x')p_{\sigma,\delta}^{(m)}(x,y|x')$$

$$= \left(\frac{1}{1 + \sum_{x' \neq x} g_{\delta}(x,x')}\right)p_{\sigma,\delta}^{(m)}(x,y|x) + \sum_{x' \neq x} \left(\frac{g_{\delta}(x,x')}{1 + \sum_{x' \neq x} g_{\delta}(x,x'')}\right)p_{\sigma,\delta}^{(m)}(x,y|x')$$
Uniformly bounded

Lemma 4.2. Fix $x \in \mathbb{X}_m$. For any m > 0 and $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$\lim_{u\to x}\left|p_{\sigma,\delta}^{(m)}(u,y|\mathbb{X}_m)-\phi_{\sigma}(x,y)\right|=O(\varepsilon).$$

$$\lim_{u \to x} p_{\sigma,\delta}^{(m)}(u, y | \mathbb{X}_m) = p_{\sigma,\delta}^{(m)}(x, y | \mathbb{X}_m) = a_{\delta}(x, x) p_{\sigma,\delta}^{(m)}(x, y | x) + \sum_{x' \neq x} a_{\delta}(x, x') p_{\sigma,\delta}^{(m)}(x, y | x')$$

$$= \left(\frac{1}{1 + \sum_{x' \neq x} g_{\delta}(x, x')}\right) p_{\sigma,\delta}^{(m)}(x, y | x) + \sum_{x' \neq x} \left(\frac{g_{\delta}(x, x')}{1 + \sum_{x' \neq x} g_{\delta}(x, x'')}\right) p_{\sigma,\delta}^{(m)}(x, y | x')$$

$$\implies \lim_{u \to x} \left| p_{\sigma, \delta}^{(m)}(u, y | \mathbb{X}_m) - \phi_{\sigma}(x, y) \right| \le C_{\sigma} \left| \frac{\sum_{x' \neq x} g_{\delta}(x, x')}{1 + \sum_{x' \neq x} g_{\delta}(x, x')} \right| + C_{\sigma} \sum_{x' \neq x} \left| \frac{g_{\delta}(x, x')}{1 + \sum_{x'' \neq x} g_{\delta}(x, x'')} \right|$$

Lemma 4.2. Fix $x \in \mathbb{X}_m$. For any m > 0 and $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$\lim_{u\to x}\left|p_{\sigma,\delta}^{(m)}(u,y|\mathbb{X}_m)-\phi_{\sigma}(x,y)\right|=O(\varepsilon).$$

$$\lim_{u \to x} p_{\sigma,\delta}^{(m)}(u,y|\mathbb{X}_m) = p_{\sigma,\delta}^{(m)}(x,y|\mathbb{X}_m) = a_{\delta}(x,x)p_{\sigma,\delta}^{(m)}(x,y|x) + \sum_{x' \neq x} a_{\delta}(x,x')p_{\sigma,\delta}^{(m)}(x,y|x')$$

$$= \left(\frac{1}{1 + \sum_{x' \neq x} g_{\delta}(x,x')}\right)p_{\sigma,\delta}^{(m)}(x,y|x) + \sum_{x' \neq x} \left(\frac{g_{\delta}(x,x')}{1 + \sum_{x' \neq x} g_{\delta}(x,x'')}\right)p_{\sigma,\delta}^{(m)}(x,y|x')$$

$$\implies \lim_{u \to x} \left| p_{\sigma, \delta}^{(m)}(u, y | \mathbb{X}_m) - \phi_{\sigma}(x, y) \right| \leq C_{\sigma} \left| \frac{\sum_{x' \neq x} g_{\delta}(x, x')}{1 + \sum_{x' \neq x} g_{\delta}(x, x')} \right| + C_{\sigma} \sum_{x' \neq x} \left| \frac{g_{\delta}(x, x')}{1 + \sum_{x'' \neq x} g_{\delta}(x, x'')} \right|$$

The pure diffusion limit

Lemma 4.4. Fix $u \notin \mathbb{X}_m$. Then

$$\lim_{\delta \to 0} p_{\sigma,\delta}^{(m)}(u,y|\mathbb{X}_m) = d_{\sigma}(u,y)$$

$$\lim_{\delta \to 0} p_{\sigma,\delta}^{(m)}(u,y|x) = d_{\sigma}(u,y)$$

$$p_{\sigma,\delta}^{(m)}(u,y|x) = \begin{cases} d_{\sigma}(u,y) &, m = 0\\ (1 - g_{\delta}(u,x))d_{\sigma}(u,y) + g_{\delta}(u,x)\phi_{\sigma}(x,y) &, m > 0 \end{cases}$$

The pure diffusion limit

Lemma 4.4. Fix $u \notin \mathbb{X}_m$. Then

$$\lim_{\delta \to 0} p_{\sigma,\delta}^{(m)}(u,y|\mathbb{X}_m) = d_{\sigma}(u,y)$$

$$\lim_{\delta \to 0} p_{\sigma,\delta}^{(m)}(u,y|x) = d_{\sigma}(u,y)$$

$$p_{\sigma,\delta}^{(m)}(u,y|x) = \begin{cases} d_{\sigma}(u,y) & \mathbf{0} & , m = 0\\ (1 - g_{\delta}(u,x)) d_{\sigma}(u,y) + g_{\delta}(u,x) \phi_{\sigma}(x,y) & , m > 0 \end{cases}$$

Partial dynamics integral operator

$$(A_{\sigma,\delta}f)(x) = \int p_{\sigma,\delta}^{(m)}(x,y|\mathbb{X}_m)f(y)d\mu(y)$$

Proposition 4.5. Fix $\varepsilon > 0$. For any \mathbb{X}_m , there exists a $\delta(\varepsilon, \mathbb{X}_m) > 0$ such that for any continuous f and any $x \in \mathbb{X}_m$,

$$\left| (A_{\sigma,\delta}f)(x) - (A_{\sigma}f)(x) \right| = O(\varepsilon). \tag{4.41}$$

Recall
$$(A_{\sigma}f)(x) = \int \phi_{\sigma}(x,y)f(y)d\mu(y)$$

$$\begin{aligned} \left| (A_{\sigma,\delta} f)(x) - (A_{\sigma} f)(x) \right| &= \left| \int \left(p_{\sigma,\delta}^{(m)}(x,y|\mathbb{X}_m) - \phi_{\sigma}(x,y) \right) f(y) d\mu(y) \right| \\ &\leq \int \left| p_{\sigma,\delta}^{(m)}(x,y|\mathbb{X}_m) - \phi_{\sigma}(x,y) \right| |f(y)| d\mu(y) \\ &\leq C_{\sigma} \varepsilon ||f||_{1}. \end{aligned}$$

Unscrambling Time

Given: TBI Study

- Control patients
 - 1 visit, 2 sampling protocols
 - HFWB: blood drawn ever 2h over 28h
 - LFWB: blood draw ever 4h over 12h
- TBI patients
 - 3 visits (0, 2, 6 months)
 - LFWB protocol
- Gene expression levels (RNAseq) in each blood sample supplied

Problem

- The time stamps of the blood samples were not given
- Each patients' blood samples were permuted differently

Goal

 Find the true time stamp on a 24h clock of each blood sample

Assumptions

- The circadian rhythm is the dominant driving force of the gene expression levels
- HFWB and LFWB samples for control patients treated as separate data sets
 - Note: this is different to how the NU team treated them. We are losing information with this assumption.

Unscrambling Time

Unscrambling Time

Summary

- We introduced an integral approximation of the Koopman operator in terms of asymmetric similarity kernels
- We constructed a "homotopy" between the Diffusion Maps operator and the integral Koopman operator, where the homotopy was parameterized by the amount of knowledge we had about the dynamics
 - No knowledge = Diffusion Maps
 - Full knowledge = Integral Koopman operator
- We presented results on the "unscrambling problem" of time series of blood samples where the goal was to correctly order time-blinded and shuffled time series data

Thank you!