
The Maslov index and the spectrum of differential
operators

Yuri Latushkin

The University of Missouri

2019

1



Co-authors:

Margaret Beck, Boston University

Graham Cox, Memorial University in St John’s, Newfoundland

Chris Jones, UNC Chapel Hill

2



Co-authors:

Peter Howard, Texas A&M

Robby Marangell, The University of Sydney

Kelly McQuighan, Boston Univeristy

3



Co-authors:

Alim Sukhtayev, Miami University

Selim Sukhtaiev, Rice University

4



1 A short introduction: how to prove instability of pulses using the Maslov index

2 A Longer Introduction: the Evolution of the Sturm Theorem

3 Morse and Maslov Indices for Partial Differential Operators

4 Hadmard-type Formulas for the Derivative of Eigenvalues

5 Proofs: Pulses are unstable

6 Maslov Index: the Definition

5



A short introduction: how to prove instability of pulses using the Maslov index

A short introduction:
how to prove instability of

pulses
using the Maslov index

6



A short introduction: how to prove instability of pulses using the Maslov index

The motivating problem

A PDE with a steady state/ traveling wave/ rotating pattern φ

ut = ∆u − f (u), −∆φ+ f (φ) = 0, φ = φ(x), x ∈ Rd , f : Rn → Rn,

ut = ∆u − c∂xu − f (u), −∆φ+ c∂xφ+ f (φ) = 0,

φ = φ(x), (x , y) ∈ R× Rd−1.

Want to understand which geometric properties of φ lead to stability conclusions,
whether φ is stable or unstable in the PDE

Linearized operator Lu = −∆u + c∂xu + f ′(φ(·))u

Want to understand the spectral properties of L induced by geometric properties
of φ
Several results: (1) In gradient systems, pulses are unstable;
(2) A very general formula equating the Morse and Maslov indices for PDE
(3) Hadamard-type formula and (Maslov) crossing form
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A short introduction: how to prove instability of pulses using the Maslov index

The simplest old result

Theorem (An application of the Sturm Theorem)

Pulses are unstable in scalar reaction diffusion equations.

One dimension d = 1 scalar n = 1 steady state example

ut = ∂2
xu − f (u), −∂2

xφ+ f (φ) = 0,

f : R→ R, f (0) = 0, φ = φ(x), x ∈ R,
Lφ′ = −∂2

xφ
′ + f ′(φ)φ′ = 0,

the pulse φ satisfies limx→−∞ φ(x) = limx→+∞ φ(x) = 0 exponentially.
Then 0 ∈ Sp(L) and φ′ is an eigenfunction.
There exists a conjugate point x0 such that φ′(x0) = 0.
By Sturm Theorem there exists a negative (unstable) eigenvalue.
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A short introduction: how to prove instability of pulses using the Maslov index

The simplest old result

The existence of a conjugate point implies the existence of a negative eigenvalue
because the tangent vector to the homoclinic turns over and therefore must
intersect the vertical line (the Dirichlet subspace)
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Figure: Sturm Oscillating Theorem: n-th eigenfunction has (n − 1) interior zeros.
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A short introduction: how to prove instability of pulses using the Maslov index

The simplest new result

Theorem (Beck,Cox,Jones,YL,McQuighan, A.Sukhtayev)

Pulses are unstable in gradient systems of reaction diffusion equations

One dimension d = 1 system n > 1 steady state example

ut = ∂2
xu − f (u), −∂2

xφ+ f (φ) = 0,

f : Rn → Rn, f (0) = 0, φ = φ(x) ∈ Rn, x ∈ R,
assuming gradient structure : f (u) = ∇g(u), g : Rn → R,

Lφ′ = −∂2
xφ
′ +∇2g(φ)φ′ = 0,

the pulse φ satisfies limx→−∞ φ(x) = limx→+∞ φ(x) = 0 exponentially,

Theorem (Beck,Cox,Jones,YL,McQuighan, A.Sukhtayev)

provided φ is even symmetric about some point x0, that is, φ(x0 + x) = φ(x0 − x)
for all x ∈ R, so that φ′(x0) = 0.
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A short introduction: how to prove instability of pulses using the Maslov index

The simplest new result (comments)

This is called the Gradient Conjecture by Arnd Scheel.

Also works for ut = D∂2
xu −∇g(u) with a diagonal diffusion matrix D with

positive entries.

”Provided” part is generic as it holds as soon as (φ, φ′)> is the only solution
to (u, u′)′ = (u′, f (u)) contained in the intersection Ws(x) ∩Wu(x) of the
stable and unstable manifolds at zero for the ODE corresponding to the
steady-state equation.

There exists a conjugate point x0 such that φ′(x0) = 0.

Therefore, by the Morse-Maslov Square Theorem (Morse=Maslov, to be
mentioned later) there exists a negative (unstable) eigenvalue.

Proof: The exponential dichotomy subspace Eu
−(x , 0) ⊂ R2n for the system

∂xp = A(x , λ)p (which is equivalent to Lu = λu, p = (u, u′)>)
at λ = 0 is Eu

−(x , 0) = span{(φ′, φ′′)>,p2, . . . ,pn}, p = (p, q)> ∈ R2n.
Eu
−(x , 0) intersects the Dirichlet subspace D = {(0, q)> : q ∈ Rn} since

det(φ′ | p2 | . . . | pn) = 0 at x = x0. Hence, the Maslov index of the path
x 7→ Eu

−(x , 0) is nonzero, and thus the Morse index is nonzero.
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A short introduction: how to prove instability of pulses using the Maslov index

The simplest new result (proofs)

The proof has two steps:

Maslov=Morse

Consider matrix Schrödinger operator L = −∂2
x + V (x) in L2(R)n assuming

V (x)→ V± as x → ±∞. Then the Morse index of L (the number of negative
isolated eigenvalues counting multiplicities) is equal to the Maslov index (the
number of conjugate points counting multiplicities).

We prove this first for the operator La in L2((−∞, a])n on the half line and then
let a→∞.

An application: Maslov index is positive

For the linearization L = −D∂2
x −∇2F (φ(x)) of ut = Duxx + (∇F )(u), u ∈ Rn

about a generic pulse φ the Maslov index is nonzero, and therefore the pulse is
unstable.
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A short introduction: how to prove instability of pulses using the Maslov index

The magic square
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Figure: Illustrating the proof of Morse=Maslov Theorem: When λ∞ is large enough,
there are no crossings on Γ1,a and Γ4,a, and the Morse index equals the number of
crossings on Γ3,a. By homotopy invariance, the Morse index is equal to the number of
crossings on Γ2,a; these are precisely the conjugate points in (−∞, a).
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A short introduction: how to prove instability of pulses using the Maslov index

What is the Maslov index?

Let G be a Lagrangian subspace of an Hilbert space, I = [α, β], and
Υ ∈ C 1(I,FΛ(G)), where FΛ(G) is the set of Lagrangian subspaces that form
with G a Fredholm pair.
(i) We call s∗ ∈ I a conjugate point or crossing if Υ(s∗) ∩ G 6= {0}.
There exists a neighbourhood I0 of s∗ and a family
Rs ∈ C 1(I0,B(Υ(s∗),Υ(s∗)

⊥)), such that (a lemma)

Υ(s) = {u + Rsu
∣∣u ∈ Υ(s∗)}, for s ∈ I0.

(ii) The finite dimensional form is called the crossing form at the crossing s∗:

ms∗,G(u, v) :=
d

ds
ω(u,Rsv)

∣∣
s=s∗

= ω(u, Ṙs=s∗v), for u, v ∈ Υ(s∗) ∩ G.

(iii) The crossing s∗ is called regular if the form ms∗,Z is non-degenerate, positive
if ms∗,Z is positive definite, and negative if ms∗,Z is negative definite.
Definition. If all crossings are regular then they are isolated, and one defines the
Maslov index as

Mas (Υ,G) = −n−(ma,G) +
∑

a<s<b

sign(ms,G) + n+(mb,G),

where n+, n− are the numbers of positive and negative squares, sign = n+ − n−. 14



A Longer Introduction: the Evolution of the Sturm Theorem

A Longer Introduction: the
Evolution of the Sturm

Theorem
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A Longer Introduction: the Evolution of the Sturm Theorem

My favorite evolution T-shirt
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A Longer Introduction: the Evolution of the Sturm Theorem

And evolution of my favorite theorem
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A Longer Introduction: the Evolution of the Sturm Theorem

Evolution of the Sturm Theorem: Sturm square
(Dirichlet boundary conditions)

Ls = −∂2
x + V (x) in L2([0, s]), Dirichlet boundary conditions, s ∈ [τ, 1].

When s changes the eigenvalues change.
Sturm Theorem: The number of negative eigenvalues (the Morse Index) is equal
to the number of zeros of the eigenfunction corresponding to the zero eigenvalue
(the conjugate points, the Maslov index).
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Figure: Dirichlet Sturm-Morse-Maslov square: - Morse index for s = 1 (3 eigenvalues) is
equal to Maslov index for λ = 0 (3 conjugate points of negative signature)
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A Longer Introduction: the Evolution of the Sturm Theorem

Evolution of Sturm Theorem: Morse Square

Consider L = −∂2
x + V (x) in L2([0, 1])n with Dirichlet boundary conditions where

V (x) is a symmetric (n × n) matrix. Consider Ls = −∂2
x + V (x) in L2([0, s])n,

Dirichlet boundary conditions, s ∈ [τ, 1].
Morse Index Theorem: The number of negative eigenvalues of L (the Morse
index) is equal to the number of the conjugate points s (the Maslov index), that
is, the points where the operator Ls has a nontrivial kernel.
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Figure: Dirichlet -Morse-Maslov square: - Morse index for s = 1 (3 eigenvalues) is equal
to Maslov index for λ = 0 (3 conjugate points of negative signature)
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A Longer Introduction: the Evolution of the Sturm Theorem

Evolution of Sturm Theorem: Morse-Smale Square

Consider a family of elliptic second order differential operators Ls in L2(Ωs), where
Ωs is a family of manifolds, “shrinking” from the largest Ω = Ω1 to the smallest
Ωτ , s ∈ [τ, 1].
Morse-Smale Index Theorem: The number of negative eigenvalues of L1 (the
Morse index) is equal to the number of the conjugate points s (the Maslov index),
that is, the points where the operator Ls has a nontrivial kernel.
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A Longer Introduction: the Evolution of the Sturm Theorem

Sturm square (Neumann boundary conditions)
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Figure: Neumann Sturm-Morse-Maslov diagramm: Morse index for s = τ (1 eigenvalue)
- Morse index for s = 1 (3 eigenvalues) is equal to Maslov index for λ = 0 (2 conjugate
points with negative signature)
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A Longer Introduction: the Evolution of the Sturm Theorem

Even more complicated Sturm squares
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Figure: Neumann counting function-Maslov diagramm: number of eigenvalues smaller
than λ0 for s = τ (1 eigenvalue) - number of eigenvalues smaller than λ0 for s = 1 (3
eigenvalue) is equal to Maslov index for λ = λ0 (3 conjugate points with negative
signature and 1 conjugate point with positive signature)

See Peter Howard and Alim Sukhtayev JDE 2016 for more stunning pictures, they
covered all possible boundary conditions on [0, 1]

22



A Longer Introduction: the Evolution of the Sturm Theorem

Evolution of Sturm Theorem: Eigenvalue counting
function and spectral flow

Let λ0 ∈ R, s ∈ [τ1, τ2] ⊂ (0, 1].
Define the eigenvalue counting function

N(λ0, s) =
∑

λ∈Sp(Ls ),λ<λ0

dim ker(Ls − λ) = card {λ ∈ Sp(Ls) : λ < λ0}

so that the Morse index Mor(Ls) = N(0, s)
Define the spectral flow through λ0 of the family {Ls}s∈[τ1,τ2] by

sfλ0 ({Ls}s∈[τ1,τ2]) = N(λ0, τ1)− N(λ0, τ2)

as the net count of the eigenvalues of Ls passing through λ0 in the positive
minus negative direction when s changes from τ1 to τ2.
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A Longer Introduction: the Evolution of the Sturm Theorem

Evolution of Sturm Theorem: Morse, Maslov and
the spectral flow

Spectral Flow Theorem

Maslov index = spectral flow= difference of Morse indices

[Booß-Bavnbek/Furutani, Cappell/Lee/Miller,
Portaluri/Waterstraat,Robin/Salamon] and many more, [Arnold, Bott, Smale,
Cox/Jones/Latushkin/A.Sukhtayev, Cox/Marzuola, Cox/Jones/Marzuola (2),
Dalbono/Portaluri, Deng/Jones, Howard/A.Sukhtayev,
Jones/Latushkin/Marangell, Jones/Latushkin/S.Sukhtaiev,
Latushkin/A.Sukhtayev/S.Sukhtaiev] and many more.

Hadamard-type Formula

Derivative of the eigenvalue at the crossing point = the value of the Maslov
crossing form

[Robin/Salamon,Cappell/Lee/Miller,Latushkin/A.Sukhtayev]
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Morse and Maslov Indices for Partial Differential Operators

Morse and Maslov Indices
for

Partial Differential Operators
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Morse and Maslov Indices for Partial Differential Operators

Multidimensional Partial Differential Operators

We will now formulate the Sturm-Morse-Maslov-Arnold-Smale-Robbin-Salamon
Theorem for general multidimensional differential operators. Let Ω ⊂ Rn, n ≥ 2,
be a bounded open set with smooth boundary. Assume that a = a, aj , ajk = akj
are contained in C∞(Ω), and that {ajk}nj,k=1 is uniformly elliptic. Consider a
formally self-adjoint differential expression

L := −
n∑

j,k=1

∂jajk∂k +
n∑

j=1

aj∂j − ∂jaj + a. (1)

Proposition: The linear operator defined by Lf := Lf , f ∈ dom(L) := C∞0 (Ω),
and considered in L2(Ω) is closable. Its closure Lmin is densely defined symmetric
operator in L2(Ω). Moreover, the linear operator acting in L2(Ω) and given by
Lmaxu := Lu, u ∈ dom(Lmax) := {u ∈ L2(Ω) : Lu ∈ L2(Ω)}, is adjoint to Lmin,
i.e., (Lmin)∗ = Lmax .
Assumption: We assume that the deficiency indices of Lmin are equal:

dim ker(Lmin − i) = dim ker(Lmin + i).

Note: Can do for matrix a’s and Lip Ω.
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Morse and Maslov Indices for Partial Differential Operators

Trace Operators, Green’s Identity

The differential expression L is associated with two trace maps γ
D,∂Ω

and γL
N,∂Ω

such that the second Green’s identity holds

〈Lu, v〉L2(Ω) − 〈u,Lv〉L2(Ω) = 〈γL
N,∂Ω

v , γ
D,∂Ω

u〉
−1/2

− 〈γL
N,∂Ω

u, γ
D,∂Ω

v〉−1/2. (2)

The Dirichlet trace map

γ
D,∂Ω
∈ B(H1(Ω),H1/2(∂Ω)), γDu = u|∂Ω

, u ∈ C (Ω). (3)

The conormal derivative is defined by

γL
N,∂Ω

u :=
n∑

j,k=1

ajkνjγD,∂Ω
(∂ku) +

n∑
j=1

ajνjγD,∂Ω
u, u ∈ H2(Ω), (4)

with ν = (ν1, · · · , νn) denoting the outward unit normal on ∂Ω. It is further
extended to a bounded operator γL

N,∂Ω
∈ B(D1

L(Ω),H−1/2(∂Ω)).
Note: we need

D1
L(Ω) := {u ∈ H1(Ω) : Lu ∈ L2(Ω)}.

to be dense in the domain dom(Lmax) = {u ∈ L2(Ω) : Lu ∈ L2(Ω)}
27



Morse and Maslov Indices for Partial Differential Operators

Symplectic Form

Let us introduce the following complex symplectic bilinear form

ω : [H1/2(∂Ω)× H−1/2(∂Ω)]2 → C,

ω((f1, g1), (f2, g2)) = 〈g2, f1〉−1/2 − 〈g1, f2〉−1/2,

(f1, g1), (f2, g2) ∈ H1/2(∂Ω)× H−1/2(∂Ω).

Then the second Green’s identity reads as follows

〈Lu, v〉L2(Ω) − 〈u,Lv〉L2(Ω) = ω
(

(γ
D,∂Ω

u, γL
N,∂Ω

u), (γ
D,∂Ω

v , γL
N,∂Ω

v)
)
,

for all u, v ∈ D1
L(Ω). We denote TrL u := (γ

D,∂Ω
u, γL

N,∂Ω
u).

We need ran TrL to be dense in H1/2(∂Ω)× H−1/2(∂Ω).
The annihilator of F ⊂ H1/2(∂Ω)× H−1/2(∂Ω) is defined by

F◦ := {(f , g) ∈ H1/2(∂Ω)× H−1/2(∂Ω)|
ω((f , g), (φ, ψ)) = 0, for all (φ, ψ) ∈ F}.

The subspace F is called Lagrangian if F◦ = F
28



Morse and Maslov Indices for Partial Differential Operators

One-to-one Correspondence Between Self-Adjoint
Operators and Lagrangian Planes

Recall
D1
L(Ω) := {u ∈ H1(Ω) : Lu ∈ L2(Ω)}.

Theorem [S. Sukhtaiev/YL]

The self-adjoint extensions of Lmin whose domains are contained in H1(Ω) are
in one-to-one correspondence with Lagrangian planes in H1/2(∂Ω)×H−1/2(∂Ω),
that is, the following two assertions hold.
1) Let D ⊂ D1

L(Ω), and let LD be the linear operator acting in L2(Ω) and given
by the formula

LD f := Lmax f , f ∈ dom(LD) := D .

If LD is self-adjoint then the set

GD := TrL(D)
H1/2(∂Ω)×H−1/2(∂Ω)

is a Lagrangian plane in H1/2(∂Ω)× H−1/2(∂Ω), with respect to form ω.
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Morse and Maslov Indices for Partial Differential Operators

One-to-one Correspondence Between Self-Adjoint
Operators and Lagrangian Planes, contd.

Theorem [S. Sukhtaiev/YL], contd.

2) A Lagrangian plane G ⊂ H1/2(∂Ω)× H−1/2(∂Ω) defines a self-adjoint
extension of Lmin. Namely, the linear operator LTr−1

L (G) acting in L2(Ω) and given

by the formula

LTr−1
L (G)f := Lmax f , f ∈ dom

(
LTr−1

L (G)

)
:= Tr−1

L (G),

is essentially self-adjoint; here Tr−1
L (G) denotes the preimage of G.

Examples:
The operator −∆D,Ω is associated with the Lagrangian plane
{0} × H−1/2(∂Ω)
The operator −∆N,Ω is associated with the Lagrangian plane H1/2(∂Ω)×{0}
1-D θ-periodic Laplacian is associated with

{(e iθα, α, e iθβ, β, )> : α, β ∈ C}.
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Morse and Maslov Indices for Partial Differential Operators

Examples, contd. (a popular way of defining PDE
operators)

• Let X be a closed subspace in H1(Ω). Assume H1
0 (Ω) ⊂ X ⊂ H1(Ω). Suppose

that the form l : L2(Ω)× L2(Ω)→ C, dom(l) := X × X is closed and bounded
from below in L2(Ω).
• Then there exists a unique self-adjoint operator LX acting in L2(Ω) such that
l[u, v ] = 〈LXu, v〉L2(Ω) for all v ∈ X and u ∈ dom(LX ) :=

{
u ∈ X :

there exists w ∈ L2(Ω) such that 〈w , v〉L2(Ω) = l[u, v ] for all v ∈ X
}

.

Proposition [S. Sukhtaiev/YL]

The subspace GX := {(f , g) ∈ H1/2(∂Ω)× H−1/2(∂Ω) :
f ∈ γ

D,∂Ω
(X ), 〈g , γ

D,∂Ω
w〉−1/2 = 0 for all w ∈ X}

is Lagrangian in H1/2(∂Ω)× H−1/2(∂Ω). Moreover, Tr−1
L (GX ) is a core of LX .

• Thus LX above is associated with GX as indicated in the theorem; e.g.,
X = H1

0 (Ω) and GX = {0} × H−1/2(∂Ω) produce the operator with the Dirichlet
while X = H1(Ω) and GX = H−1/2(∂Ω)× 0 with Neumann boundary conditions
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Morse and Maslov Indices for Partial Differential Operators

Lagrangian planes and self-adjoint operators: proofs/ideas

• If LD is self-adjoint then GD ⊂ G◦D is isotropic by Green’s identity

〈Lu, v〉L2(Ω) − 〈u,Lv〉L2(Ω) = ω
(

(γ
D,∂Ω

u, γL
N,∂Ω

u), (γ
D,∂Ω

v , γL
N,∂Ω

v)
)

.

Co-isotropic G◦D ⊂ GD because G◦D ∩TrL(D1
L(Ω)) ⊂ GD using Green’s identity and

because TrL(D1
L(Ω)) is dense in H1/2(∂Ω)× H−1/2(∂Ω); here

D1
L(Ω) := {u ∈ H1(Ω) : Lu ∈ L2(Ω)}.
• If G is Lagrangian then the following lemma holds (inspired by
[Booss-Bavnbek/Furutani]):
Lemma. The graph-norm closure of the subspace
[Tr−1
L (G)] =

{
[x ] : x ∈ Tr−1

L (G)
}

is Lagrangian in domLmax/ domLmin with [·]
being the quotient map and ω̃([x ], [y ]) = 〈Lmaxx , y〉L2(Ω) − 〈x ,Lmaxy〉L2(Ω).

• Then the closure of Lmax

∣∣
Tr−1
L (G)

is self-adjoint by the classical theory

[Birman-Krein-Vishik-Alonso-Simon]
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Morse and Maslov Indices for Partial Differential Operators

Family of Differential Operators

Let us consider a family of differential expressions

Lt := −
n∑

j,k=1

∂ja
t
jk∂k +

n∑
j=1

atj ∂j − ∂jatj + at , t ∈ I := [α, β],

ajk : t 7→ atjk , ajk ∈ C 1(I, L∞(Ω)), atjk(x) = atkj(x), 1 ≤ j ≤ n, x ∈ Ω,

atjk(x)ξkξj ≥ c
n∑

j=1

|ξj |2 for all x ∈ Ω, ξ = (ξj)
n
j=1 ∈ Cn, t ∈ I; for some c > 0,

aj : t 7→ atj , aj ∈ C 1(I, L∞(Ω)), 1 ≤ j ≤ n,

a : t 7→ at , a ∈ C 1(I, L∞(Ω)), at(x) ∈ R, x ∈ Ω, t ∈ I.
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Morse and Maslov Indices for Partial Differential Operators

Minimal and Maximal Operators, Weak Solutions

The minimal and maximal operators are defined as follows

Lt
minf = Lt f , f ∈ dom(Lt

min) := H2
0 (Ω).

Lt
maxu := Ltu, u ∈ dom(Lt

max) := {u ∈ L2(Ω) : Ltu ∈ L2(Ω)}.

Kλ,t := (γD , γ
Lt

N )
({

w ∈ H1(Ω) : Ltw − λw = 0 weakly
})
, is Lagrangian in

H1/2(∂Ω)× H−1/2(∂Ω),

the path s 7→ Kλ(s),t(s) is continuous (we pick some s 7→ λ(s), t(s))

Define Lt
Dt
u := Ltu, u ∈ dom

(
Lt

Dt

)
:= Dt ,. If Lt

Dt
− λ is Fredholm operator

then the pair (Kλ,t ,Gt) is Fredholm, where Gt := TrLt (Dt)

dim (Kλ,t ∩ Gt) = dim ker
(
Lt

Dt
− λ
)
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Morse and Maslov Indices for Partial Differential Operators

Main Result

Theorem (YL, S. Sukhtaiev)

Let Dt ⊂ D1
Lt (Ω), t ∈ I, and assume that the linear operator Lt

Dt
acting in L2(Ω)

and given by
Lt

Dt
u := Ltu, u ∈ dom

(
Lt

Dt

)
:= Dt ,

is self-adjoint with the property Spess

(
Lt

Dt

)
∩ (−∞, 0] = ∅, for all t ∈ I. Assume

further that there exists λ∞ < 0, such that

ker
(
Lt

Dt
− λ
)

= {0}, for all λ ≤ λ∞, t ∈ I.

Suppose, finally, that the path t 7→ Gt := TrLt

(
Dt

)
, t ∈ I, is contained in

C
(
I,Λ

(
H1/2(∂Ω)× H−1/2(∂Ω)

))
.

Then
Mor

(
LαDα

)
−Mor

(
LβDβ

)
= Mas ((K0,t ,Gt)|t∈I) ,

where Kλ,t := (γD , γ
Lt

N )
({

w ∈ H1(Ω) : Ltw − λw = 0 weakly
})
, t ∈ I.
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Morse and Maslov Indices for Partial Differential Operators

Illustrations
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1D θ−periodic Schrödinger operator with matrix-valued potential on a
bounded interval. Variation of θ.

multidimensional ~θ−periodic Schrödinger operator on a cube. Scaling the
cube.

Schrödinger operator with Robin-type boundary conditions on one-parameter
family of domains Ωt ⊂ Rn. Variation of t.

Maslov index for operators on graphs.
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Morse and Maslov Indices for Partial Differential Operators

Maslov=Morse: ideas of the proofs

• The main new point: [BB/F, BB/Zhu] used abstract traces in
domLmax/ domLmin of strong solutions; needed domLt

Dt
⊂ H2(Ω).

We are using PDE traces of weak solutions; need domLt
Dt
⊂ H1(Ω).

• The main part of the proof: Mas(Kα,λ
∣∣
λ∈Γ1

,Gα) = −MorLαDα
and similarly for Γ3 because there are no conjugate points on Γ4.
• To prove the main part, fix a conjugate point λ(s∗) ∈ (λ∞, 0) such that
Kλ(s∗),α ∩Gα 6= {0}. We know [Cox/Jones/Marzuola] that s 7→ Kλ(s),α is smooth;

pick a smooth Rs+s∗ : Kλ(s∗),α → (Kλ(s∗),α)⊥ for small s with Rs∗ = 0 so that

Kλ(s),α =
{

(φ, ψ) + Rs+s∗(φ, ψ) : (φ, ψ) ∈ Kλ(s∗),α

}
. Let u0 be the eigenfunction

of LαDα so that LαDαu0 = λ(s∗)u0 and let (φs , ψs) = TrLα u0 + Rs+s∗ TrLα u0

Lemma. There is a continuous s 7→ us ∈ H1(Ω) such that LαDαus = λ(s)us
weakly, TrLα us = (φs , ψs) for small |s| and

‖us − u0‖H1(Ω) ≤ c‖TrLα(us − u0)‖H1/2(∂Ω)×H−1/2(∂Ω).

• Using Green’s identity: ω((φ0, ψ0),Rs+s∗(φ0, ψ0)) = −〈u0, sus〉L2(Ω)

Then (Maslov) crossing form ms∗((φ0, ψ0), (φ0, ψ0)) =
d
ds

∣∣
s=0

ω((φ0, ψ0),Rs+s∗(φ0, ψ0)) = lim−s−1〈u0, sus〉L2(Ω) = −‖u0‖2
L2(Ω). BINGO!
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Hadmard-type Formulas for the Derivative of Eigenvalues

Hadmard-type Formulas for
the Derivatives of Eigenvalues
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Hadmard-type Formulas for the Derivative of Eigenvalues

Derivatives of the eigenvalues

A general question: Given a family of differential operators, how would the
eigenvalues change with s? How do they cross through a fixed point λ0 when the
parameter changes?
• Given a family {Ls}s∈[a,b] of differential operators with an eigenvalue λ0 = λ(s0)

at a conjugate point s0 ∈ [a, b] we compute dλ(s0)
ds .

• If dλ(s0)
ds > 0, respectively, dλ(s0)

ds < 0 then the eigenvalue crosses λ0 in the
positive, respectively, negative direction as s changes from a to b.

• One can relate dλ(s0)
ds and the value of the (Maslov) crossing form. This

eventually leads to the formula “Maslov Index=Spectral Flow”.
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Hadmard-type Formulas for the Derivative of Eigenvalues

Hadamard’s formula for the eigenvalues

• Ls are elliptic multidimensional operators on domains Ωs ⊂ Rd depending on a
parameter. If λ1(s), λ2(s), . . . are the eigenvalues, how to compute

dλj

ds ?

• Finding
dλj

ds is a classical problem: [Rayleigh1894], [Hadamard1908],
[Garabedian/Schiffer1952], [Henry2005], [Burenkov/Lamberti/deCristotoris],
[Grinfeld].
• We consider the case of star-shaped domains centered at zero.

Ω

y ∈ ∂Ω

x = sy ∈ ∂Ωs , Ls is −∆ + V restricted to Ωs

Ωs =
{
x = σy ∈ Ω : σ ∈ [0, s), y ∈ ∂Ω

}
, s ∈ [τ, 1], τ ∈ (0, 1)
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Hadmard-type Formulas for the Derivative of Eigenvalues

Maslov versus Hadamard

We computed the Hadamard derivatives
dλj

ds via the (Maslov) crossing form. It
implies the “Maslov index=Spectral Flow” formula as follows.
• Suppose λ0 = λ(s0) is an eigenvalues of the differential operator Ls0 of
multiplicity m = m(s0). Then λ0 ∈ Sp(Ls0 ) if and only if Υ(s0) ∩ G 6= {0} for a
given Lagrangian subspace G responsible for the boundary conditions and a
C 1-path Υ : [a, b]→ FΛ(G) taking values in the set of Lagrangian planes forming
with G Fredholm pairs; Υ(s) = Trs

(
{u : (Ls − λ(s))u = 0}

)(
= Trs

(
Kλ,s

))
.

• One considers the (Maslov) crossing form ms0 on the finite dimensional subspace
Υ(s0) ∩ G. Pick a basis {qj}mj=1 in Υ(s0) ∩ G.
• Let λj(s), j = 1, . . . ,m, be the eigenvalues of Ls for s near s0.
[A. Sukhtayev/YL] proved the “Hadamard vs Maslov” derivative formula

dλj(s0)

ds
= ms0 (qj , qj), j = 1, . . . ,m.

• If s0 is the only conjugate point in [a, b] and the form ms0 is non degenerate and
has n+(ms0 ) positive and n−(ms0 ) negative squares, then the spectral flow is

sfλ0 ({Ls}s∈[a,b]) = n+(ms0 )− n−(ms0 ) = Mas(Υ(·)|[a,b],G)

since n+ eigenvalues move through λ0 to the right and n− to the left as s increases
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Hadmard-type Formulas for the Derivative of Eigenvalues

Maslov vs Hadamard: simple Dirichlet eigenvalues

Ω is a star-shaped domain;

Ωs =
{
x = σy ∈ Ω : σ ∈ [0, s), y ∈ ∂Ω

}
, s ∈ [τ, 1], τ ∈ (0, 1)

L := −∆ + V in L2(Ω), Dirichlet boundary conditions;

Ls := −∆ + V in L2(Ωs), s ∈ [τ, 1], τ ∈ (0, 1), Dirichlet boundary conditions;

L̂s := −∆ + V s in L2(Ω), V s(x) := s2V (sx), x ∈ Ω, Dirichlet boundary

conditions; thus L̂s is Ls pulled back to L2(Ω).

Define: Kλ,s :=
{
u ∈ H1(Ω) : −∆u + V su − s2λu = 0

}
for λ ∈ R, s ∈ [τ, 1];

G :=
{

(0, g) ∈ H1/2(∂Ω)×H−1/2(∂Ω) : g ∈ H−1/2(∂Ω)
}

, the Dirichlet subspace,

Trs = (γD ,
1
s γN) : H1(Ω)→ H1/2(∂Ω)× H−1/2(∂Ω) the rescaled trace

Then λ0 ∈ Sp
(
Ls0 ; L2(Ωs0 )

)
if and only if s2

0λ0 ∈ Sp
(
L̂s0 ; L2(Ω)

)
if and only if Trs0

(
Kλ0,s0

)
∩ G 6= {0}

Assume: λ0 = λ(s0) is a simple eigenvalue of Ls0 , us0 is the eigenfunction of L̂s0 .

Take λ(s), simple eigenvalues of Ls with the eigenfunctions us of L̂s for s near s0.
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Hadmard-type Formulas for the Derivative of Eigenvalues

Maslov vs Hadamard: simple Dirichlet eigenvalues

Claim: dλ(s0)
ds = 1

s0
ms0

(
Trs0 us0 ,Trs0 us0

)
,

where ms0 (p, q) = ω(p, dR(s0)
ds q) is the (Maslov) crossing form on Trs0

(
Kλ0,s0

)
∩ G

for the flow Υ : s 7→ Trs
(
Kλ0,s

)
in FΛ(G) of H := H1/2(∂Ω)× H−1/2(∂Ω) with

the symplectic form ω
(
(f1, g1), (f2, g2)

)
= 〈g2, f1〉1/2 − 〈g1, f2〉1/2 and

Υ(s) = graphR(s) for R(s) : ranPs0 → kerPs0 where Ps0 is the orthogonal
projection in H onto Υ(s0). Fix q = Trs0 us0 ∈ Υ(s0).

(A little lemma:) There exists a smooth family s 7→ ws ∈ Kλ0,s such that
q + R(s)q = Trs ws and ws0 = us0 . Therefore (a little calculation),
ms0 (q, q) = ω

(
Trs0 ws0 ,

d
ds

(
Trs ws

)∣∣
s=s0

)
= − 1

s0
〈γ

N,∂Ω
us0 , γD,∂Ω

(
dws

ds

∣∣
s=s0

)
〉1/2

Since ws ∈ Kλ0,s , we have −∆ws + V sws − s2λ0ws = 0. We s-differentiate,
L2(Ω)-multiply by ws , use Green’s formula to get
〈γ

N,∂Ω
ws0 , γD,∂Ω

(
dws

ds

∣∣
s=s0

)
〉1/2 + 〈 dV

s

ds

∣∣
s=s0

ws0 ,ws0〉L2(Ω) − 2s0λ0 = 0.

Since us is the normalized eigenfunction we have −∆us + V sus = s2λ(s)us . We

s-differentiate, L2(Ω)-multiply by us , use that L̂s is self-adjoint to get

〈 dV
s

ds

∣∣
s=s0

us0 , us0〉L2(Ω) = 2s0λ0 + s2
0
dλ(s0)
ds . Combining the above proves the claim.
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Hadmard-type Formulas for the Derivative of Eigenvalues

Schrödinger operator: Robbin BCs, star-shaped
domains

• Ω ⊂ Rd is a Lipshitz star-shaped domain centered at zero,
Ωs =

{
x = σy ∈ Ω : σ ∈ [0, s), y ∈ ∂Ω

}
, s ∈ (0, 1], are subdomains in Ω = Ω1,

and V (·) = V (·)> is a continuous (n × n) matrix function.
• Θ : H1/2(∂Ω)→ H−1/2(∂Ω) is a given compact selfadjoint operator. Need more
assumptions on Θ, very technical, will skip this.
• Consider L = −∆ + V on L2(Ω) with dom L =

{
u ∈ H1(Ω) :

u satisfies general Robbin boundary conditions γ
N,∂Ω

u = Θγ
D,∂Ω

u on ∂Ω
}

• Lsu = −∆u + V (x)u, x ∈ Ωs , s ∈ [τ, 1], τ ∈ (0, 1), acts in L2(Ωs), satisfies
Robbin boundary conditions on ∂Ωs .

Ω

y ∈ ∂Ω

x = sy ∈ ∂Ωs

Ωs =
{
x = σy ∈ Ω : σ ∈ [0, s), y ∈ ∂Ω

}
, s ∈ (0, 1]
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Hadmard-type Formulas for the Derivative of Eigenvalues

Schrödinger operator: star-shaped domains

• Denote (U∂s h)(x) = s(d−1)/2h(sy), y ∈ ∂Ω,
(U∂1/s f )(z) = s−(d−1)/2f (s−1z), z ∈ ∂Ωs ,

(Usw)(x) = sd/2w(sx), x ∈ Ω; ΘD = γ∗
D,∂Ω

Θγ
D,∂Ω
∈ B(H1(Ω), (H1(Ω))∗).

• Rescaling L̂s of Ls from L2(Ωs) onto L2(Ω) is given by

L̂sv = −∆v + V s(x)v(x), V s(x) = s2V (sx), x ∈ Ω, with Robbing boundary
conditions γ

N,∂Ω
u = Θγ

D,∂Ω
u on ∂Ω.

• Kλ,s , λ ∈ R, s ∈ (0, 1], the subspace of H1(Ω) of the weak solutions of the
rescaled eigenvalue equation −∆v + Vλ,s(x)v = 0, where Vλ,s(x) = V s(x)− s2λ,
x ∈ Ω.
• Flow Υλ : s 7→ trs(Kλ,s) of Lagrangian subspaces in the boundary space
H1/2(∂Ω)× H−1/2(∂Ω) with ω

(
(f1, g1), (f2, g2)

)
= 〈g2, f1〉1/2 − 〈g1, f2〉1/2,

where trs(v) = (γ
D,∂Ω

v , 1
s γN,∂Ω

v) is the rescaled trace.

• A Lagrangian subspace G = {(f ,Θf ) : f ∈ H1/2(∂Ω)} corresponds to the
Robbin boundary conditions.
• Conclusion: λ0 ∈ Sp(Ls0 ) if and only if trs0 (Kλ0,s0 ) ∩ G 6= {0}.
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Hadmard-type Formulas for the Derivative of Eigenvalues

Perturbation theory for Schrödinger operators on
star-shaped domains

A general finite dimensional reminder from [Kato]:
Assume T (s) = λs0 Im×m + (s − s0)T (1) + (s − s0)2T (2) + o(s − s0)2 as s → s0

is a family of m-dimensional operators where λs0 ∈ Sp(Ts0 ) has multiplicity m.

Let λ
(1)
j , j = 1, . . . ,m, denote m eigenvalues of T (1) (may be repeated). Then

λsj ∈ Sp(T (s)) are given as follows:

λsj = λs0 + (s − s0)λ
(1)
j + o(s − s0) as s → s0

Back to Schrödinger operators on L2(Ω) and L2(Ωs) with Robbin BCs.
Assume λ0 = λ(s0) ∈ Sp(Ls0 ) is an eigenvalue of Ls0 on L2(Ωs) of multiplicity m.
Consider eigenvalues λj(s) ∈ Sp(Ls), j = 1, . . . ,m, of Ls for s near s0.

Objective: Want asymptotic formulas for λj(s) or for λsj = s2λj(s) ∈ Sp(L̂s) as
above.
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Hadmard-type Formulas for the Derivative of Eigenvalues

Perturbation theory for Schrödinger operators on
star-shaped domains: the main lemma

• Let λ0 = λ(s0), s0 ∈ (0, 1], be a fixed eigenvalue of Ls0 of multiplicity m and let
λj(s), j = 1, . . . ,m, be the eigenvalues of Ls for s near s0.

• Denote: Ps0 , the Riesz projection in L2(Ω) for L̂s0 onto ker(L̂s0 − s2
0λ0IL2(Ω))

• Ps , the Riesz projection in L2(Ω) for L̂s that corresponds to the eigenvalues

λsj = s2λj(s) of L̂s that bifurcate from the eigenvalue λs0 = s2
0λ(s0) of L̂s0 .

• Introduce m-dimensional operators T (1) and T (2) acting in ranPs0 by
T (1) = Ps0

(
V̇ s
∣∣
s=s0
−ΘD

)
Ps0 , where ΘD = γ∗

D,∂Ω
Θγ

D,∂Ω
∈ B(H1(Ω), (H1(Ω))∗);

T (2) =
Ps0
(

1
2 V̈

s
∣∣
s=s0
− V̇ s

∣∣
s=s0

SV̇ s
∣∣
s=s0
−ΘDSΘD + V̇ s

∣∣
s=s0

SΘD + ΘDSV̇
s
∣∣
s=s0

)
Ps0 ;

S = (2πi)−1
∫

Γ
(ζ − s2

0λ0)−1(L̂s0 − ζ)−1 dζ is the reduced resolvent of L̂s0 .
Main Lemma:
For s near s0 the restriction L̂s

∣∣
ran Ps acting in ranPs is similar to the operator

T (s) = λs0Ps0 + (s − s0)T (1) + (s − s0)2T (2) + o(s − s0)2 as s → s0 on ranPs0 .

Hence, λsj = λs0 + (s − s0)λ
(1)
j + o(s − s0) as s → s0 where λ

(1)
j ∈ Sp(T (1)).
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Hadmard-type Formulas for the Derivative of Eigenvalues

Maslov vs Hadamard: general Robbin eigenvalues

• Let λ0 = λ(s0), s0 ∈ (0, 1], be a fixed eigenvalue of Ls0 of multiplicity m and let
λj(s), j = 1, . . . ,m, be the eigenvalues of Ls for s near s0.
• Consider the normalized basis {us0

j }mj=1 of ran(Ps0 ) consisting of the eigenvectors

of T (1) and corresponding to its eigenvalues λ
(1)
j so that T (1)us0

j = λ
(1)
j us0

j ,

j = 1, . . . ,m, and denote by qj = (γ
D,∂Ω

us0

j ,
1
s0
γ

N,∂Ω
us0

j ) the respective rescaled
traces located in Υλ0 (s0) ∩ G.

Theorem (Hadamard-type formula for Ls = −∆ + V in L2(Ωs))

dλj(s)

ds

∣∣∣
s=s0

=
1

s2
0

(
λ

(1)
j − 2s0λ(s0)

)
=

1

s0
ms0 (qj , qj), j = 1, . . . ,m,

where the (Maslov) crossing form ms0 for the path s 7→ Υλ(s0)(s) = trs
(
Kλ(s0),s

)
at s0 can be computed as follows:

ms0 (qj , qj) =
1

s0
〈V̇λ(s0),s

∣∣
s=s0

us0

j , u
s0

j 〉L2(Ω) −
1

s2
0

〈γ
N,∂Ω

us0

j , γD,∂Ω
us0

j 〉1/2.
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Hadmard-type Formulas for the Derivative of Eigenvalues

Hadamard-type formula via the Maslov form

The “infinitesimal” formula relating the derivatives of the eigenvalues and the
value of the crossing form implies the relations between the Maslov index, the
spectral flow, and the Morse index.

Theorem (Hadamard-type formula for Ls = −∆ + V in L2(Ωs))

If dom(L̂s) ⊂ H2(Ω) and the strong trace γs
N,∂Ω

us0

j is defined then

dλj(s)

ds

∣∣∣
s=s0

=
1

s0
ms0 (qj , qj)

=
1

(s0)3

∫
∂Ω

((
∇us0

j · ∇u
s0

j )(ν · x)− 2〈∇us0

j · x , γ
s
N,∂Ω

us0

j (x)〉RN

+ (1− d)〈γs
N,∂Ω

us0

j (x), us0

j (x)〉RN + 〈(V (s0x)− λ(s0))us0

j (x), us0

j (x)〉RN (ν · x)
)
dx .

For the Dirichlet case:

dλj(s)

ds

∣∣∣
s=s0

=
1

s0
ms0 (qj , qj) = − 1

(s0)3

∫
∂Ω

‖γs
N,∂Ω

us0

j ‖
2
RN (ν · x) dx < 0.
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Hadmard-type Formulas for the Derivative of Eigenvalues

Asymptotic formula up to quadratic terms

Renumber the eigenvalues of the operator T (1), and let {λ(1)
i }m

′

i=1 denote the m′

distinct eigenvalues of the operator T (1), so that m′ ≤ m, let m
(1)
i denote their

multiplicities, and let P
(1)
i denote the orthogonal Riesz spectral projections of T (1)

corresponding to the eigenvalue λ
(1)
i . Let λ

(2)
ik , i = 1, . . . ,m′, k = 1, . . . ,m

(1)
i ,

denote the eigenvalues of the operator P
(1)
i T (2)P

(1)
i in ran(P

(1)
i ). Renumber the

eigenvalues λj(s) of Ls as λik(s).

Theorem (Quadratic asymptotic formula)

λik(s) = λ(s0) +
( 1

s2
0

λ
(1)
i −

2

s0
λ(s0)

)
(s − s0)

+
( 1

s2
0

λ
(2)
ik −

2

s3
0

λ
(1)
i +

3

s2
0

λ(s0)
)
(s − s0)2

+ o(s − s0)2, i = 1, . . . ,m′, k = 1, . . . ,m
(1)
i as s → s0.
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Proofs: Pulses are unstable

Proofs: Pulses are unstable
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Proofs: Pulses are unstable

The Schrödinger operators on the line and half-line

We study Lu := −Du′′ + V (x)u = λu, D = diag{di} > 0, u ∈ Rn, x ∈ R, where
dom(L) = H2(R;Rn), the Sobolev space, and V (x) ∈ Rn×n satisfies the following
hypotheses.

Hypothesis H
1 The potential V ∈ C (R,Rn×n) takes values in the set of symmetric matrices

with real entries.

2 The limits limx→±∞ V (x) = V± exist, and are positive-definite matrices, i.e.
Sp(V±) > 0.

3 The functions x 7→
(
V (x)− V±

)
are in L1(R±;Rn×n).

Hypothesis (H1): the spectrum of L is real. Hypothesis (H2): the essential
spectrum of L is strictly positive, i.e., k2D + V± > 0 for every k ∈ R if and only if
V± > 0. Hypothesis (H3): applying the theory of exponential dichotomies. Our
strategy is to first consider the eigenvalue problem on the half line

Lau := −Du′′ + V (x)u = λu, u ∈ Rn, x ∈ (−∞, a],

dom(La) =
{
u ∈ H2((−∞, a];Rn)

∣∣∣ u(a) = 0
}

and a ∈ R is fixed.
52



Proofs: Pulses are unstable

The first order system

Setting p1 := u ∈ Rn, p2 := Du′ ∈ Rn and p := (p1, p2)> ∈ R2n, we can write the
eigenvalue problem Lu = λu as

p′ = A(x , λ)p, A(x , λ) =

(
0n D−1

−λIn + V (x) 0n

)
.

This equation is asymptotically autonomous:

A±(λ) = lim
x→±∞

A(x , λ) =

(
0n D−1

−λIn + V± 0n

)
.

By Hypothesis H, p′ = A±(λ)p has exponential dichotomy on R± and then
p′ = A(x , λ)p has exponential dichotomy on R±. We consider the dichotomy
subspaces for p′ = A(x , λ)p, in particular, Eu

−(x , λ), the unstable dichotomy
subspace for x ≤ 0, and Eu

−(−∞, λ), the spectral subspace of A−(λ), so that
Eu
−(x , λ)→ Eu

−(−∞, λ) as x → −∞.
Let Yλ denote the n-dimensional space of solutions p(·) of the system
p′ = A(x , λ)p that decay at −∞. Define the trace map Φx : Yλ → R2n by
Φx : p(·) 7→ p(x) ∈ R2n for any x ∈ R.
Then Φx(Yλ) = Eu

−(x , λ) for any x ∈ [−∞,+∞).
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Proofs: Pulses are unstable

Eigenvalues are the conjugate points

Writing the eigenvalue problem Lu = λu as

p′ = A(x , λ)p, A(x , λ) =

(
0n D−1

−λIn + V (x) 0n

)
, x ∈ R,

we let Yλ denote the n-dimensional space of solutions p(·) of the system
p′ = A(x , λ)p that decay at −∞.
The Dirichlet boundary condition at x = a for the operator Lau = −Du′′ + V (x)u
in L2((−∞, a])n corresponds to p(a) ∈ D, where D is the Dirichlet subspace
defined by D = {(p1, p2)> ∈ R2n

∣∣ p1 = 0}.
Recall the trace map Φa : p(·) 7→ p(a) ∈ R2n for any a ∈ R.
A critical observation: λ is an eigenvalue of La on (−∞, a] if and only if the
subspace Φa(Yλ) intersects D nontrivially.
Fix a ∈ R. For a given λ ∈ R, a point s ∈ (−∞, a] is called a λ-conjugate point of
p′ = A(x , λ)p if Φs(Yλ) ∩ D 6= {0}. In the special case λ = 0, s is simply called a
conjugate point. For any λ ∈ R and s ∈ (−∞, a] the following assertions are
equivalent: (i) λ is an eigenvalue of Ls ; (ii) s is a λ-conjugate point.
Moreover, the multiplicity of the eigenvalue λ is equal to the dimension of the
subspace Φs(Yλ) ∩ D.

54



Proofs: Pulses are unstable

Lagrangian framework

Recall that Yλ denotes the n-dimensional space of solutions p(·) of the system
p′ = A(x , λ)p that decay at −∞ and the trace map Φs : p(·) 7→ p(s) ∈ R2n for
any s ∈ R. A direct calculation gives:

Theorem

For all s ∈ [−∞,+∞) and λ ∈ (−∞, 0] the plane Φs(Yλ) = Eu
−(s, λ) belongs to

the space Λ(n) of Lagrangian n-planes in R2n, with the Lagrangian structure
ω(v1, v2) = 〈v1,Ωv2〉, where

Ω =

(
0n −In
In 0n

)
.

Thus we can define the Maslov index Ai,a, i = 1, 2, 3, 4, for the flow
Γi,a 3 (s, λ) 7→ Φs(Yλ) ∈ Λ(n) parametrized by the sides Γi,a of the magic square
pictured below. Here, we fix any a (potentially, large) and any λ∞ > 0 so large
that Ls has no eigenvalues λ ≤ −λ∞ for all s ∈ (−∞, a]. A homotopy property of
the Maslov index yields A1,a + A2,a + A3,a + A4,a = 0.
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Proofs: Pulses are unstable

The magic square

−λ∞

6

?
-

Γ2,a

Γ4,a
no conjugate

points
conjugate
points

Γ3,a

Γ1,a

λ

s

6
0

-

� a

−∞

sss seigenvalues

no eigenvalues

Figure: Illustrating the proof of Morse=Maslov Theorem: When λ∞ is large enough,
there are no crossings on Γ1,a and Γ4,a, and the Morse index equals the number of
crossings on Γ3,a. By homotopy invariance, the Morse index is equal to the number of
crossings on Γ2,a; these are precisely the conjugate points in (−∞, a).
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Proofs: Pulses are unstable

Counting eigenvalues for La via the Maslov index

Morse=Maslov Theorem on half line

Consider the operator La = −D∂2
x + V (x) defined in L2((−∞, a])n. Fix large

a < +∞ and λ∞ > 0, and let Ai,a = Mas(Γi,a,D). Then the following assertions
hold.

1 The Maslov index of the curve Γa is zero.

2 A3,a = −A2,a.

3 A3,a ≤ 0 and |A3,a| is equal to the number of nonpositive eigenvalues for La,
counting multiplicities:

|A3,a| = Mor
(
La
)

+ dim ker
(
La
)
.

4 A2,a ≥ 0 and A2,a is equal to the number of the conjugate points in (−∞, a],
counting multiplicities.

5 The Morse index Mor(La) is equal to the number of conjugate points in
(−∞, a), counting multiplicities.
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Counting eigenvalues for L via the Maslov index

The Morse=Maslov Theorem on half line can be extended to count eigenvalues of

the Schrödinger operator L = −D d2

dx2 + V (x) on L2(R;Rn), the whole real line.

Morse=Maslov Theorem on whole line
There exists a∞ ∈ R such that for all a > a∞ the following hold:

(i) Mor(L) = Mor(La);

(ii) a is not a conjugate point;

(iii) La is invertible.

In particular, the number of conjugate points is finite and independent of a, hence

Mor(L) = # conjugate points in (−∞,+∞). (3)

Since A2,a converges as a→∞ to the number of conjugate points in (−∞,+∞),
we can interpret this number as the Maslov index for the whole-line problem.
Proof: Mor(L) is the number of negative zeros of Es

+(0, λ) ∧ Eu
−(0, λ) while

Mor(La) is that of D ∧ Eu
−(a, λ); they are close for large a.
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Proofs: Pulses are unstable

Pulse solutions to gradient reaction diffusion systems

Consider a reaction–diffusion system

ut = Duxx + G (u), u ∈ Rn

where G (u) = ∇F (u) for some C 2 function F : Rn → R, and D is a diagonal
diffusion matrix. We assume that there exists a stationary, spatially homogeneous
solution u∗(x , t) = u0; without loss of generality we take u0 = 0. We also assume
that k2D −∇2F (0) > 0 for all k ∈ R. This ensures that the spectrum of the
linearization of the reaction-diffusion equation about u0, which is given by

{λ ∈ R : det(k2D + λ−∇2F (0)) = 0 for some k ∈ R},

lies in the open left half plane.
We further suppose there is a stationary solution φ(x , t) = φ(x). A typical
example is Allen-Cahn system [Chardar,Dias,Bridges]:

ut = uxx − 4u + 6u2 − c(u − v), vt = vxx − 4v + 6v2 + c(u − v),

that has a pulse φ(x) =
(
sech 2x , sech 2x

)
.

Since ∇2F (0) is nondegenerate, the invariant manifold theorem implies that φ
decays exponentially as |x | → ∞. We thus call this a pulse, or pulse-type solution.
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Proofs: Pulses are unstable

The linearization

We now show how the Maslov index can be used to establish the instability of a
generic pulse-type solution. The eigenvalues for the linearization about ϕ(x) solve

λv = D∂2
xv +∇2F (φ(x))v ,

and so it suffices to prove that the operator

L = −D∂2
x −∇2F (φ(x)) (4)

has at least one negative eigenvalue. We first show that L satisfies Hypothesis H
for the Schrödinger operator, where V (x) = −∇2F (φ(x)).

(H1) Since F is C 2, the matrix −∇2F (φ(x)) is symmetric and continuous in x .

(H2) Since |φ(x)| → 0 as |x | → ∞, the limits limx→±∞ V (x) = −∇2F (0) exist.
Moreover, V± = −∇2F (0) > 0 because it was assumed that
Dk2 −∇2F (0) > 0 for all k ∈ R (and in particular k = 0).

(H3) The functions V (x)− V± = −∇2F (φ(x)) +∇2F (0) are in L1(R±;Rn×n)
since φ(x) approaches 0 exponentially fast as |x | → ∞.

Thus Morse=Maslov Theorem on whole line applies, so the existence of a
conjugate point is enough to guarantee instability.
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Proofs: Pulses are unstable

Dichotomy subspaces for the first order system

Writing the eigenvalue equation Lv = λv as a first order system, we obtain

p′ = A(x , λ)p, A(x , λ) =

(
0n D−1

−λIn −∇2F (φ(x)) 0n

)
,

where p1 = v , p2 = Dv ′ and p = (p1, p2)> ∈ R2n. Differentiating the
reaction-diffusion equation with respect to x , we find that (φx(x), φxx(x))> is a
solution to p′ = A(x , λ)p with λ = 0; thus (φx(x), φxx(x))> ∈ Eu

−(x , 0). Let
(vj(x), ∂xvj(x))>, j ∈ {1, . . . , n − 1}, denote the remaining n − 1 basis vectors for
Eu
−(x , 0), which are unknown. Denoting the ith component of φ(x) by φi (x) and

the ith component of vj(x) by vj,i (x), we have

Eu
−(x , 0) = span





∂xφ1(x)
...

∂xφn(x)
∂xxφ1(x)

...
∂xxφn(x)


,



v1,1(x)
...

v1,n(x)
∂xv1,1(x)

...
∂xv1,n(x)


, . . . ,



vn−1,1(x)
...

vn−1,n(x)
∂xvn−1,1(x)

...
∂xvn−1,n(x)




.
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Existence of a conjugate point

As above, s is a conjugate point is and only if Eu
−(s, 0) ∩ D 6= {0} if and only if

det

∂xφ1(s) v1,1(s) · · · vn−1,1(s)
...

...
. . .

...
∂xφn(s) v1,n(s) · · · vn−1,n(s)

 = 0. (5)

If we can find an x0 so that all of the derivatives ∂xφi (x0) are simultaneously zero,
then this is satisfied for s = x0, regardless of the vectors vj(x0).

We will show that such an x0 exists by showing that the original pulse solution
φ(x) is even-symmetric about some x0 and therefore ∂xφ(x)

∣∣
x=x0

= 0.
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Main assumption

Consider the first-order system of equations describing stationary solutions to the
reaction-diffusion equation: ux = D−1v and vx = −G (u), and let Ws(x) and
Wu(x) denote the stable and unstable manifolds of (u, v)> = 0.

Hypothesis P

We assume that (φ(x), φx(x))> is the unique, up to spatial translation, stationary
solution of the reaction-diffusion equation contained in the intersection
Ws(x) ∩Wu(x).

This assumption is generic. Since φ(x) is a pulse solution to the
reaction-diffusion equation, dim(Ws(x) ∩Wu(x)) ≥ 1. The assumption that this
dimension is exactly equal to one is generic: Indeed, we append the x direction so
that the manifolds Ws(x) and Wu(x) are n + 1 dimensional manifolds in a 2n + 1
dimensional ambient space. Then it is a well known fact of differential topology
that the dimension of a transverse intersection of two manifolds X and Z in the
ambient space Y is given by dim(X ∩ Z ) = dim(X ) + dim(Z )− dim(Y ) which in
our case gives dim(Ws(x) ∩Wu(x)) = (n + 1) + (n + 1)− (2n + 1) = 1.
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Proofs: Pulses are unstable

The even-symmetry of φ(x) and the main result

Claim

Assume Hypothesis P. Then there exists some x0 ∈ R so that φ(x) is
even-symmetric about x = x0.

Proof: The reaction-diffusion equation is reversible: if u(x) is a solution, so is
u(−x). By the definition of a pulse, both φ(x) and φ(−x) are contained in the
intersection Ws(x) ∩Wu(x). By Hypothesis P, φ(x) and φ(−x) are the same up
to spatial translations. This can only be true if φ(x) is even-symmetric about
some point x0. More precisely, if φ(x) = φ(−x + δ) for all x ∈ R and some fixed
δ, then φ(x0 + x) = φ(x0 − x) for all x ∈ R, where x0 = δ/2.

Pulse Instability Theorem

Assume Hypothesis P. Then the pulse φ(x) of the reaction-diffusion gradient
system is unstable.

Proof: Since φ(x) is even-symmetric about some x0 we have ∂xφ(x)
∣∣
x=x0

= 0 and

so Eu
−(s, 0) ∩D 6= {0} is satisfied for s = x0. Thus Mor(H) = Maslov > 0; hence,

instability.
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Maslov Index: the Definition
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Maslov Index of a Path of Lagrangian Planes

We will now define the Maslov index of a path of Lagrangian planes in a complex
Hilbert space relative to a reference plane. Let ω : X × X → C be a sesquilinear,
bounded, skew-Hermitian (ω(u, v) = −ω(v , u)), non-degenerate form. We denote
the annihilator of a subset F ⊂ X by

F◦ := {u ∈ X : ω(u, v) = 0 for all v ∈ F}.

The subspace F is called Lagrangian if F = F◦. A pair of Lagrangian planes
F ,Z is called Fredholm pair if

dim(F ∩ Z) <∞, F + Z is closed in X , and codim(F + Z) <∞.

The Fredholm-Lagrangian-Grassmannian is the space

FΛ(Z) := {F ⊂ X : F is Lagrangian, and the pair (F ,Z) is Fredholm},

equipped with metric

d(F1,F2) := ‖PF1 − PF2‖B(H), F1,F2 ∈ FΛ(Z),

where PF denotes the orthogonal projection onto F .
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Maslov Index of a Path of Lagrangian Planes, Contd.

There exists a bounded operator J : X → X , such that

ω(u, v) = 〈Ju, v〉X , u, v ∈ X ,

and
J2 = −IX , J∗ = −J.

Moreover,
X = ker(J − iI )⊕ ker(J + iI ).

The Lagrangian plane F can be uniquely represented as a graph of a bounded
operator U ∈ B(ker(J + iIX ), ker(J − iIX )), i.e., one has

F = graph(U) := {y + Uy : y ∈ ker(J + iIX )}.

Moreover, U is isometric, one-to-one, and onto. Here, Uy is defined as the unique
(a lemma) vector in ker(J − iIX ) such that y + Uy ∈ F .
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Maslov Index of a Path of Lagrangian Planes, Contd.

Let I = [α, β] ⊂ R be an interval of parameters. Let us fix a continuous path in
FΛ(Z)

Υ : I → FΛ(Z), Υ(s) = Fs , Υ ∈ C (I,FΛ(Z)),

and introduce the corresponding family of unitary operators Us and V such that

Fs = graph(Us), s ∈ I, Z = graph(V ),

υ : I → B(ker(J + iIX ), ker(J − iIX )), υ(s) = Us .

Then

υ ∈ C (I,B(ker(J + iIX ), ker(J − iIX )))

UsV
−1 is unitary in ker(J − iIX ), s ∈ I

UsV
−1 − IX is Fredholm in ker(J − iIX ), s ∈ I

dim(Fs ∩ Z) = dim ker(UsV
−1 − IX ), s ∈ I

68



Maslov Index: the Definition

Maslov Index of a Path of Lagrangian Planes, Contd.

The Maslov index of Υ(s) is the spectral flow through the point 1 ∈ C of the
family UsV

−1, s ∈ I.

In other words, the Maslov index is the net number of eigenvalues of UsV
−1 that

crossed through 1. In formulas: Since UsV
−1 − IX is Fredholm, there exists a

partition a = s0 < s1 < · · · < sN = b of [a, b] and positive numbers εj ∈ (0, π)
such that e±iεj 6∈ Sp(UsV

−1) if s ∈ [sj−1, sj ], for each 1 ≤ j ≤ N (a lemma). For
any ε > 0 and s ∈ [a, b] we let

k(s, ε) :=
∑

0≤κ≤ε
dim ker(UsV

−1 − eiκ),

and define the Maslov index

Mas(Υ,Z) :=
N∑
j=1

(k(sj , εj)− k(sj−1, εj)) . (6)

The number Mas(Υ,X ) is well defined, i.e., it is independent on the choice of the
partition sj and εj .
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Maslov index via the crossing forms

Assume Υ ∈ C 1(I,FΛ(X )) and let s∗ ∈ I. There exists a neighbourhood I0 of s∗
and a family Rs ∈ C 1(I0,B(Υ(s∗),Υ(s∗)

⊥)), such that (a lemma)

Υ(s) = {u + Rsu
∣∣u ∈ Υ(s∗)}, for s ∈ I0.

Let Z be a Lagrangian subspace and Υ ∈ C 1(I,FΛ(Z)).
(i) We call s∗ ∈ I a conjugate point or crossing if Υ(s∗) ∩ Z 6= {0}.
(ii) The finite dimensional form is called the crossing form at the crossing s∗:

ms∗,Z(u, v) :=
d

ds
ω(u,Rsv)

∣∣
s=s∗

= ω(u, Ṙs=s∗v), for u, v ∈ Υ(s∗) ∩ Z.

(iii) The crossing s∗ is called regular if the form ms∗,Z is non-degenerate, positive
if ms∗,Z is positive definite, and negative if ms∗,Z is negative definite.

Theorem. If all crossings are regular then they are isolated, and one has

Mas (Υ,Z) = −n−(ma,Z) +
∑

a<s<b

sign(ms,Z) + n+(mb,Z),

where n+, n− are the numbers of positive and negative squares, sign = n+ − n−.
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