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1. Problem and Goal

We consider the problem

max{vTx : x ∈ C},

C ⊂ IRn: nonempty, convex, compact,
v ∈ IRn.

• Traditional viewpoint: C uncertain, model so that result
computationally tractable.

• Our viewpoint: v uncertain, how much is lost?



2. A Model Case

Suppose first that C is the unit ball, v has unit norm.
The solution to our problem with the nominal objective vector v

is x = v, with objective value 1.

If the true objective vector is w := w(α), a unit vector making
an angle α, 0 ≤ α ≤ π, with v, then v attains a true objective
value of cos α, with a loss of 1− cos α. Since the range of wTx

over C is 2 (from -1 to +1),

scaled loss =
loss

range
=

1− cos α

2
.

We show that this scaled loss formula holds “on average” for
arbitrary C.



Model Case, II

The loss is the length of the red line segment; the range is the
combined lengths of the red and green line segments.



3. Definitions

max(v) := max{vTx : x ∈ C};

min(v) := min{vTx : x ∈ C};

range(v) := max(v)−min(v);

loss(v, w) := max(w)−min{wTx : x ∈ C, vTx = max(v)}.
(The loss in the true objective wTx possible when implementing
a best solution for the nominal objective vTx.)

scaled loss(v, w) := loss(v,w)
range(w) .



4. A Very Bad Case

On the other hand, the scaled loss is terrible in the case that C

is the line segment joining [−1; 0] and [+1; 0], v is [0; 1], and
w := w(α) is [sin α; cos α].
Then [−1; 0] is optimal for v but attains the worst objective
value for w, so that scaled loss(v, w) is 1.



5. The Well-Rounded Case

Now let us assume that C is contained in a ball of radius 1, and
contains a ball of radius r, both centered at the origin, and let
ρ :=

√
1− r2. Without loss of generality, C is 2-dimensional.

We suppose v = [0; 1] and w := w(α) = [sin α; cos α], and
consider the feasible region that is the convex hull of the points
[−ρ; r], [ρ; r], and the ball of radius r.
Then, as long as sin α ≤ r ≤ cos α, we have

scaled loss(v, w(α)) =
2ρ sin α

r(1 + cos α) + ρ sin α
≤ sin α

r
.



The Well-Rounded Case, II



6. Two Probabilistic Models

(i) Suppose v and u are independently drawn from the
standard Gaussian distribution N(0, I), and let
w := w(α) := cos α v + sin α u.

The angle between v and w is with high probability very
close to α as n approaches infinity. Also, (w, v) has the
same distribution as (v, w). We denote expectations with
respect to this distribution by E1.

(ii) Suppose v̄ and ū are independently drawn from N(0, I).
Let û := (I − v̄v̄T/v̄T v̄)ū, v := v̄/‖v̄‖, u := û/‖û‖, and
w := w(α) := cos α v + sin α u.

It is not hard to see that the angle between v and w is now
exactly α, and again, (w, v) has the same distribution as
(v, w). We denote expectations with respect to this
distribution by E2.



7. Results

Note: −min(v) = max{−vTx : x ∈ C}. So

Proposition:

E1[max(w)] = E1[max(v)],

E1[range(w)] = E1[range(v)] = 2E1[max(v)].

Let xv ∈ C maximize vTx over C. Then

w(α)Txv = cos α vTxv + sin α uTxv.

Proposition:

E1[loss(v, w(α))] = (1− cos α)E1[max(v)].



Results, II

Theorem:

E1[loss(v, w(α))]

E1[range(w(α))]
=

1− cos α

2
.

Similarly, we obtain

Theorem:

E2[loss(v, w(α))]

E2[range(w(α))]
=

1− cos α

2
.

Note that both results refer to the ratio of expectations,
rather than the expectation of the ratio, the scaled loss.



8. Comparison of Ratio of Expectations to
Expectation of Ratio





9. Graphs of Percentiles





10. Conclusion

Under two probabilistic models, the loss in objective value
from even a fairly large misspecification of a linear objective
function is likely to be quite modest, for any compact
convex feasible region.


