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Standard approach: Absolute accuracy

Problem: f ∗
def
= min

x∈Q
f (x), where Q ⊆ Rn is a closed convex set.

Definition:

For ε > 0, find x̄ ∈ Q satisfying f (x̄) ≤ f ∗ + ε.

Problem classes

1 Bounds on the growth. (Strong) convexity with µ ≥ 0:

f (y) ≥ f (x) + 〈f ′(x), y − x〉+ 1
2µ‖y − x‖2, x , y ∈ Q.

2 Bounds on derivatives. For example,

‖f ′(x)‖∗ ≤ M, or, ‖f ′′(x)‖ ≤ L, etc.

Important: operation f ⇒ f + const does not change
complexity.
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Relative accuracy (RA)

Problem: f ∗
def
= min

x∈Q
f (x) > 0, where Q is a closed convex set.

Definition:

For δ ∈ (0, 1), find x̄ ∈ Q satisfying (1− δ)f (x̄) ≤ f ∗ ≤ f (x̄).

Condition f ∗ > 0 must be guaranteed. How?

1. Homogeneous model [N.08]: Let 0 6∈ Q. For f (x) = max
s∈B
〈s, x〉

with 0 ∈ int B define γ0, γ1: γ0‖x‖ ≤ f (x) ≤ γ1‖x‖, α = γ0
γ1

.

Then, by smoothing technique, we get complexity O∗( 1
αδ ).

2. Polyhedral model [N.09]: if B = Conv (±ai , i = 1 . . .m) ⊂ Rn,

then we need O∗(n1/2

δ ) iterations.
(An appropriate norm is constructed by preprocessing.)

Question: Can we address RA in Black-Box Framework? ⇒ Need
new problem classes. (Invariant with respect to multiplication.)
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Barrier subgradient method [N.10]

Problem: max
x∈Q

φ(x),

Q is a closed convex set endowed with a ν-self-concordant
barrier F (x).

φ is a concave function, which is non-negative on Q.

Method: (potential f = lnφ)

xk+1 = arg max
x∈Q

[
k∑

i=0
〈φ
′(xi )
φ(xi )

, x − xi 〉 −
(

1 +
√

k+1
ν

)
F (x)

]
.

Convergence: max
0≤i≤k

φ(xi ) ≥ φ∗
(

1− O∗(
√

ν
k+1 + ν

k+1)
)

.

Complexity: O∗
(
ν
δ2

)
iterations.
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Strictly positive functions

Definition

Convex function f is called strictly positive on Q if

f (y) + f (x) + 〈f ′(x), y − x〉 ≥ 0, x , y ∈ Q.

Corollary: f (y) ≥ |f (x) + 〈f ′(x), y − x〉|, x , y ∈ Q.

Simple properties

f (x) ≡ const > 0 is strictly positive.

Strict positivity is an affine-invariant property.

Class of strictly positive functions is a convex cone.
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Simple examples

Lemma 1. Let B be bounded, closed, and centrally symmetric.

Then f (x) = max
x∈B
〈s, x〉 is strictly positive on Rn.

Proof: Since f (x) = 〈f ′(x), x〉 and −f ′(x) ∈ B, we have

f (y) ≥ 〈−f ′(x), y〉 = −f (x)− 〈f ′(x), y − x〉.

The simplest examples of strictly positive functions are norms.

Lemma 2. Let f1(x) and f2(x) be strictly positive on Q.

Then f (x) = max{f1(x), f2(x)} is also strictly positive.
Proof: For arbitrary x ∈ Q, assume f1(x) ≥ f2(x). Then,

f (y) ≥ f1(y) ≥ −f1(x)− 〈f ′1(x), y − x〉
= −f (x)− 〈f ′(x), y − x〉.
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Particular examples

All functions below are strictly positive:

f (x) = max
1≤i≤m

‖Aix − bi‖,

f (x) =
m∑

i=1
‖Aix − bi‖,

f (x) = σmax

(
n∑

i=1
Aix

(i)

)
,

f (x) =
m∑

j=1
σj

(
n∑

i=1
Aix

(i)

)
,

where Ai ∈ Rm×n, and bi ∈ Rm, i = 1 . . . n.
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General convex functions

Theorem 1. Let φ be convex function on Q with uniformly
bounded subgradients: ‖φ′(x)‖∗ ≤ L, x ∈ Q.

Then f (x) = max{φ(x), L‖x‖} is strictly positive on Q.

Proof: Clearly, ‖f ′(x)‖∗ ≤ L. Therefore,

f (y) + f (x) + 〈f ′(x), y − x〉 ≥ L‖y‖+ L‖x‖+ 〈f ′(x), y − x〉

≥ L‖y‖+ L‖x‖ − L‖y − x‖ ≥ 0.
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Shifted general optimization problem

Consider the problem: min
x∈Q

φ(x), where φ has bounded

subgradients. Let x∗ ∈ Q be its optimal solution.

Lemma 3. For x0 ∈ Q define

f (x) = max{φ(x)− φ(x0) + 2LR, L‖x − x0‖}.
It is strictly positive. If ‖x − x0‖ ≤ R then f (x) ≡ φ(x) + const.

If ‖x0 − x∗‖ ≤ R, then the optimal value f ∗ of the equivalent
problem min

x∈Q
f (x) satisfies LR ≤ f ∗ ≤ 2LR.

Proof: If ‖x − x0‖ ≤ R, then

φ(x)− φ(x0) + 2LR ≥ 2LR − L‖x − x0‖ ≥ L‖x − x0‖.

Further, f ∗ ≤ f (x0) = 2LR, and

f (x) ≥ max{2LR − L‖x − x0‖, L‖x − x0‖} ≥ LR.
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Optimization problem with squared objective

Problem: min
x∈Q

f (x) , where f is strictly positive on Q.

New objective: f̂ (x) = 1
2 f 2(x), f̂ ′(x) = f (x) · f ′(x).

Equivalent problem: min
x∈Q

f̂ (x).

Lemma 4. Let f be strictly positive on Q. Then for x , y ∈ Q

f̂ (y) ≥ f̂ (x) + 〈f̂ ′(x), y − x〉+ 1
2〈f
′(x), y − x〉2.

Proof: Indeed,

f̂ (y) = 1
2 f 2(y) ≥ 1

2 [f (x) + 〈f ′(x), y − x〉]2

= f̂ (x) + 〈f̂ ′(x), y − x〉+ 1
2〈f
′(x), y − x〉2.

Important: We have nonlinear support function!
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Quasi-Newton Method

Let us fix G0 � 0, starting point x0 ∈ Q, and accuracy δ ∈ (0, 1).
Define ψ0(x) = 1

2‖x − x0‖2G0
. For k ≥ 0, consider the process:

xk = arg min
x∈Q

ψk(x),

ψk+1(x) = ψk(x) + ak

[
f̂ (xk) + 〈f̂ ′(xk), x − xk〉+ 1

2〈f
′(xk), x − xk〉2

]
,

where

ak = δ
1−δ ·

1
(‖f ′(xk )‖∗Gk

)2
, Gk = ψ′′k (x), k ≥ 0,

and ‖h‖G = 〈Gh, h〉1/2, ‖g‖∗G = 〈g ,G−1g〉1/2.

Denote Ak =
k−1∑
i=0

ai . Clearly, ψk(x) ≤ Ak f̂ (x) + ψ0(x), x ∈ Q.

We can use the technique of estimate sequences!
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Evolution of the Hessians

Since ψk(x) are quadratic, their Hessians Gk � 0 are updated as

Gk+1 = Gk + ak · f ′(xk)f ′(xk)T = Gk + δ
1−δ ·

f ′(xk )f ′(xk )T

(‖f ′(xk )‖∗Gk
)2
, k ≥ 0.

Therefore, G−1
k+1 = G−1

k − δ · G−1
k f ′(xk )f ′(xk )T G−1

k
(‖f ′(xk )‖∗Gk

)2
.

Important: det Gk+1 = 1
1−δ det Gk = 1

(1−δ)k+1 det G0.

Moreover,

1
2a2

k(‖f̂ ′(xk)‖∗Gk+1
)2 = a2

k · f̂ (xk) · (‖f ′(xk)‖∗Gk+1
)2

= a2
k · f̂ (xk) · (1− δ) · (‖f ′(xk)‖∗Gk

)2

= δ · ak · f̂ (xk).

Yu. Nesterov Quasi-Newton methods for strictly positive functions 13/22



Main Lemma

For any k ≥ 0, ψ∗k
def
= min

x∈Q
ψk(x) ≥ (1− δ)

k−1∑
i=0

ai f̂ (xi ).

Proof: Assume this is true for some k ≥ 0. Since ψk(x) quadratic,

ψk(x) = ψ∗k + 〈ψ′k(xk), x − xk〉+ 1
2‖x − xk‖2Gk

≥ ψ∗k + 1
2‖x − xk‖2Gk

.

Therefore,
ψ∗k+1 ≥ ψ∗k+

min
x∈Q

{
1
2‖x − xk‖2Gk

+ ak [f̂ (xk) + 〈f̂ ′(xk), x − xk〉+ 1
2〈f
′(xk), x − xk〉2]

}
= ψ∗k + ak f̂ (xk) + min

x∈Q

{
1
2‖x − xk‖2Gk+1

+ ak〈f̂ ′(xk), x − xk〉
}

≥ ψ∗k + ak f̂ (xk)− 1
2a2

k‖f̂ ′(xk)‖2Gk+1
= ψ∗k + (1− δ) · ak f̂ (xk).
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Rate of convergence

Denote x̃k = 1
Ak

k−1∑
i=0

aixi . Recall: Gk+1 = Gk + ak · f ′(xk)f ′(xk)T .

Theorem: Assume that for SP-function f , ‖f ′(·)‖∗G0
≤ L.

Then, (1− δ)f̂ (x̃k) ≤ f̂ (x∗) +
L2‖x0−x∗‖2G0

2n[eδ(k+1)/n−1]
.

Proof: We have (1− δ)f̂ (x∗k ) ≤ f̂ (x∗) + 1
2Ak+1

‖x0 − x∗‖2G0
.

Let us estimate the growth of Ak . Denote Ḡk = G
−1/2
0 GkG

−1/2
0 .

Ak =
k−1∑
i=0

ai ≥ 1
L2

k−1∑
i=0

ai‖f ′(xi )‖2G0
= 1

L2

[
Trace Ḡk − n

]
≥ n

L2

[
1

(1−δ)k/n − 1
]
≥ n

L2

[
eδk/n − 1

]
.

Yu. Nesterov Quasi-Newton methods for strictly positive functions 15/22



Mixed accuracy

Definition: point x̄ ∈ Q is a solution with mixed (ε, δ)-accuracy if

(1− δ)f̂ (x̄) ≤ f̂ (x∗) + ε.

ε > 0 serves as an absolute accuracy.

δ ∈ (0, 1) represents the relative accuracy.

Complexity: Nn(ε, δ)
def
= n

δ ln
(

1 + L2R2

2n·ε

)
iterations of Q-N

scheme.
Note:

High absolute accuracy is easy to achieve.

High relative accuracy is difficult. (No need?)

# of iterations is proportional to n
δ . (Compare with BSM.)

We have a uniform bound: Nn(ε, δ) < N∞(ε, δ)
def
= L2R2

2εδ .
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Relative accuracy

Our goal: generate x̄ ∈ Q satisfying (1− δ)f (x̄) ≤ f ∗.

After k iterations of Q-N method, we have

(1− δ)(f (x∗k )− f ∗)f ∗ ≤ (1− δ)(f̂ (x∗k )− f̂ (x∗))

≤ δf̂ (x∗) + L2R2

2n[eδ(k+1)/n−1]

(?)

≤ δ(f ∗)2.

Thus, we need k = Rn(δ)
def
= n

δ ln
(

1 + L2R2

nδ(f ∗)2

)
iterations.

Note:

The main factor n
δ does not depend on the data. (Fully

polynomial approximation scheme.)

Dependence in n is the same as for optimal methods.

Each iteration of Q-N method is very simple, same as in
Ellipsoid Method (complexity O(n2 ln LR

δf ∗ ) iterations).

We have a uniform bound Rn(δ) < R∞(δ)
def
= L2R2

δ2(f ∗)2
.
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Absolute accuracy

Our goal: for problem min
x∈Q

φ(x) find x̄ ∈ Q : φ(x̄) ≤ φ∗ + ε.

Assume φ has bounded subgradients and ‖x − x0‖ ≤ R, ∀x ∈ Q.
Define now a new SP-objective

f (x) = max{φ(x)− φ(x0) + 2LR, L‖x − x0‖}

= φ(x)− φ(x0) + 2LR ∀x ∈ Q.

Applying now Q-N method to f̂ , we get

φ(x∗k )− φ∗ = f (x∗k )− f ∗ ≤ δf ∗

2(1−δ) + L2R2

2n[eδ(k+1)/n−1]·(1−δ)f ∗

≤ LR

[
δ

1−δ + 1
2n[eδ(k+1)/n−1]·(1−δ)

]
.
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Choice of parameters

Let us find δ = δ(ε) from equation

δ
1−δ = ε

2LR ⇒ δ(ε) = ε
ε+2LR .

Then, we need at most

k = Rn(ε)
def
= n

δ(ε) ln
(

1 + LR
nε(1−δ(ε))

)
= n

(
1 + 2LR

ε

)
· ln
(
1 + ε+2LR

2nε

)
iterations. At the same time,

Rn(ε) < R∞(ε) = 1
2

(
1 + 2LR

ε

)2
.

Note: worst-case complexity bound of Q-N method is
always better than that of the standard subgradient scheme.
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Discussion

Schemes of Q-N methods look very natural.
1. Minimization in relative scale: (No parameters!)

xk+1 = arg min
x∈Q

[
‖x − x0‖2G0

+ δ
1−δ

k∑
i=0

(f (xi )+〈f ′(xi ),x−xi 〉)2
(‖f ′(xi )‖∗Gi

)2

]
.

2. Minimization in absolute scale:

xk+1 = arg min
x∈Q

[
‖x − x0‖2G0

+ ε
LR

k∑
i=0

(φ(xi )−φ(x0)+〈φ′(xi ),x−xi 〉+2LR)2

(‖φ′(xi )‖∗Gi
)2

]
.

Compare: Dual gradient method

xk+1 = arg min
x∈Q

[
‖x − x0‖2G0

+ 2
Lk

k∑
i=0

(φ(xi ) + 〈φ′(xi ), x − xi 〉)
]
.

for C 1,1
L : Lk ≡ L, and for C 1,0

M : Lk ≈
√

k · M
R .
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Revival of old questions

1. Roles of dimension and accuracy in complexity estimates.
Denote by T complexity of the oracle.

Available methods Complexity

Subgradient∗ L2R2

ε2
· (n + T )

Quasi-Newton nLR
ε ln

(
1 + LR

nε

)
· (n2 + T )

Ellipsoids n2 ln LR
ε · (n2 + T )

Inscribed ellipsoids∗ n ln LR
ε · (n3 + T )

If 1
ε < n ln 1

ε and T ≈ n2, then QN is the best.

Questions:

1 What are the best methods for all spectrum of n, ε, and T ?

2 Are n, ε, and T really independent? ⇒ Accuracy of the
model?
(Finite elements, Truss topology, Optimal Control, PDE, etc.)

Yu. Nesterov Quasi-Newton methods for strictly positive functions 21/22



Revival of old questions

2. Do we have a future for Quasi-Newton methods?

Two decades of intensive research (60’s, 70’s).
Good computational performance.

r -algorithm by Shor for nonsmooth minimization.

Excellence and failure of Ellipsoid Method.
(Wrong application?)

25 years of complete silence.

Can we finally do a proper global complexity analysis for these
schemes?
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