Efficiency of Quasi-Newton methods on strictly positive functions

Yurii Nesterov, CORE/INMA (UCL)

October 12, 2010, UCLA

IPAM Workshop II: Numerical methods for Continuous Optimization

- 1 Problem classes for absolute and relative accuracy
- 2 Strictly positive functions
- 3 Quasi-Newton method
- 4 Interpretation of approximate solution
- 5 Conclusion & Discussion

Standard approach: Absolute accuracy

Problem:
$$f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$$
, where $Q \subseteq R^n$ is a closed convex set.

Definition:For $\epsilon > 0$, find $\bar{x} \in Q$ satisfying $f(\bar{x}) \leq f^* + \epsilon$.

Problem classes

Bounds on the growth. (Strong) convexity with $\mu \ge 0$: $f(y) \ge f(x) + \langle f'(x), y - x \rangle + \frac{1}{2}\mu ||y - x||^2, \quad x, y \in Q.$

2 Bounds on derivatives. For example, $\|f'(x)\|_* \le M$, or, $\|f''(x)\| \le L$, etc.

Important: operation $f \Rightarrow f + \text{const}$ does not change complexity.

イロト 不得 トイヨト イヨト 一日

Relative accuracy (RA)

Problem: $f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x) > 0$, where Q is a closed convex set.

Definition:

 $\text{For } \delta \in (0,1) \text{, find } \ \bar{x} \in Q \ \text{ satisfying } \ (1-\delta)f(\bar{x}) \leq f^* \leq f(\bar{x}).$

Condition $f^* > 0$ must be guaranteed. How?

1. <u>Homogeneous model</u> [N.08]: Let $0 \notin Q$. For $f(x) = \max_{s \in B} \langle s, x \rangle$ with $0 \in \text{int } B$ define $\gamma_0, \gamma_1: \gamma_0 \|x\| \le f(x) \le \gamma_1 \|x\|, \quad \alpha = \frac{\gamma_0}{\gamma_1}$. Then, by smoothing technique, we get complexity $O^*(\frac{1}{\alpha\delta})$.

2. Polyhedral model [N.09]: if $B = \text{Conv}(\pm a_i, i = 1...m) \subset \mathbb{R}^n$, then we need $O^*(\frac{n^{1/2}}{\delta})$ iterations. (An appropriate norm is constructed by preprocessing.)

Question: Can we address RA in Black-Box Framework? \Rightarrow Need new problem classes. (Invariant with respect to multiplication.)

Barrier subgradient method [N.10]

Problem: $\max_{x \in Q} \phi(x)$,

- Q is a closed convex set endowed with a ν-self-concordant barrier F(x).
- ϕ is a concave function, which is *non-negative* on Q.

Method: (potential $f = \ln \phi$)

$$x_{k+1} = \arg \max_{x \in Q} \left[\sum_{i=0}^{k} \langle \frac{\phi'(x_i)}{\phi(x_i)}, x - x_i \rangle - \left(1 + \sqrt{\frac{k+1}{\nu}} \right) F(x) \right].$$

Convergence: $\max_{0 \le i \le k} \phi(x_i) \ge \phi^* \left(1 - O^*\left(\sqrt{\frac{\nu}{k+1}} + \frac{\nu}{k+1}\right)\right).$ **Complexity:** $O^*\left(\frac{\nu}{\lambda^2}\right)$ iterations.

イロト イポト イヨト イヨト

Definition

Convex function f is called strictly positive on Q if

$$f(y)+f(x)+\langle f'(x),y-x
angle\geq 0,\quad x,y\in Q.$$

Corollary:
$$f(y) \ge |f(x) + \langle f'(x), y - x \rangle|, x, y \in Q.$$

Simple properties

- $f(x) \equiv \text{const} > 0$ is strictly positive.
- Strict positivity is an *affine-invariant* property.
- Class of strictly positive functions is a convex cone.

イロト イポト イラト イ

Simple examples

Lemma 1. Let B be bounded, closed, and centrally symmetric.

Then
$$f(x) = \max_{x \in B} \langle s, x \rangle$$
 is strictly positive on \mathbb{R}^n .
Proof: Since $f(x) = \langle f'(x), x \rangle$ and $-f'(x) \in B$, we have
 $f(y) \geq \langle -f'(x), y \rangle = -f(x) - \langle f'(x), y - x \rangle$.

The simplest examples of strictly positive functions are norms.

Lemma 2. Let $f_1(x)$ and $f_2(x)$ be strictly positive on Q.

Then $f(x) = \max\{f_1(x), f_2(x)\}\$ is also strictly positive. **Proof:** For arbitrary $x \in Q$, assume $f_1(x) \ge f_2(x)$. Then,

$$egin{array}{rll} f(y) &\geq & f_1(y) \geq & -f_1(x) - \langle f_1'(x), y - x
angle \ &= & -f(x) - \langle f'(x), y - x
angle. \end{array}$$

All functions below are strictly positive:

$$\begin{split} f(x) &= \max_{\substack{1 \leq i \leq m \\ m}} \|A_i x - b_i\|, \\ f(x) &= \sum_{i=1}^m \|A_i x - b_i\|, \\ f(x) &= \sigma_{\max} \left(\sum_{i=1}^n A_i x^{(i)}\right), \\ f(x) &= \sum_{j=1}^m \sigma_j \left(\sum_{i=1}^n A_i x^{(i)}\right), \end{split}$$

where $A_i \in \mathbb{R}^{m \times n}$, and $b_i \in \mathbb{R}^m$, $i = 1 \dots n$.

・ 回 と ・ ヨ と ・ ヨ と

3

Theorem 1. Let ϕ be convex function on Q with uniformly bounded subgradients: $\|\phi'(x)\|^* \leq L$, $x \in Q$. Then $f(x) = \max\{\phi(x), L\|x\|\}$ is strictly positive on Q. **Proof:** Clearly, $\|f'(x)\|^* \leq L$. Therefore, $f(y) + f(x) + \langle f'(x), y - x \rangle \geq L\|y\| + L\|x\| + \langle f'(x), y - x \rangle$ $\geq L\|y\| + L\|x\| - L\|y - x\| \geq 0$.

Shifted general optimization problem

Consider the problem: $\min_{x \in Q} \phi(x)$, where ϕ has bounded subgradients. Let $x^* \in Q$ be its optimal solution.

Lemma 3. For $x_0 \in Q$ define

$$f(x) = \max\{\phi(x) - \phi(x_0) + 2LR, L \|x - x_0\|\}.$$

It is strictly positive. If $||x - x_0|| \le R$ then $f(x) \equiv \phi(x) + \text{const.}$

If $||x_0 - x^*|| \le R$, then the optimal value f^* of the equivalent problem $\min_{x \in Q} f(x)$ satisfies $LR \le f^* \le 2LR$. **Proof:** If $||x - x_0|| \le R$, then

$$\phi(x) - \phi(x_0) + 2LR \ge 2LR - L \|x - x_0\| \ge L \|x - x_0\|.$$

Further, $f^* \leq f(x_0) = 2LR$, and

 $f(x) \geq \max\{2LR - L \| x - x_0 \|, L \| x - x_0 \|\} \geq LR.$

Optimization problem with squared objective

Problem: $\min_{x \in Q} f(x)$, where f is strictly positive on Q. **New objective:** $\hat{f}(x) = \frac{1}{2}f^2(x)$, $\hat{f}'(x) = f(x) \cdot f'(x)$. **Equivalent problem:** $\min_{x \in Q} \hat{f}(x)$.

Lemma 4. Let f be strictly positive on Q. Then for $x, y \in Q$

$$\hat{f}(y) \geq \hat{f}(x) + \langle \hat{f}'(x), y - x \rangle + \frac{1}{2} \langle f'(x), y - x \rangle^2.$$

Proof: Indeed,

$$f^{2}(y) = \frac{1}{2}f^{2}(y) \geq \frac{1}{2}[f(x) + \langle f'(x), y - x \rangle]^{2}$$

$$= \hat{f}(x) + \langle \hat{f}'(x), y - x \rangle + \frac{1}{2} \langle f'(x), y - x \rangle^2.$$

Important:

We have nonlinear support function!

ヘロン 人間 とくほ とくほ とう

Let us fix $G_0 \succ 0$, starting point $x_0 \in Q$, and accuracy $\delta \in (0, 1)$. Define $\psi_0(x) = \frac{1}{2} ||x - x_0||_{G_0}^2$. For $k \ge 0$, consider the process:

$$\begin{aligned} x_k &= \arg\min_{x\in Q}\psi_k(x),\\ \psi_{k+1}(x) &= \psi_k(x) + a_k\left[\hat{f}(x_k) + \langle \hat{f}'(x_k), x - x_k \rangle + \frac{1}{2}\langle f'(x_k), x - x_k \rangle^2\right], \end{aligned}$$

where

$$\begin{aligned} a_k &= \frac{\delta}{1-\delta} \cdot \frac{1}{(\|f'(x_k)\|_{G_k}^*)^2}, \quad G_k = \psi_k''(x), \quad k \ge 0, \\ \text{and } \|h\|_G &= \langle Gh, h \rangle^{1/2}, \ \|g\|_G^* = \langle g, G^{-1}g \rangle^{1/2}. \\ \text{Denote } A_k &= \sum_{i=0}^{k-1} a_i. \ \text{Clearly,} \quad \boxed{\psi_k(x) \le A_k \hat{f}(x) + \psi_0(x), \, x \in Q.} \end{aligned}$$

We can use the technique of estimate sequences!

(3)

Evolution of the Hessians

Since $\psi_k(x)$ are quadratic, their Hessians $G_k \succ 0$ are updated as

$$G_{k+1} = G_k + a_k \cdot f'(x_k) f'(x_k)^T = G_k + \frac{\delta}{1-\delta} \cdot \frac{f'(x_k)f'(x_k)^T}{(\|f'(x_k)\|_{G_k}^*)^2}, \quad k \ge 0.$$

Therefore, $G_{k+1}^{-1} = G_k^{-1} - \delta \cdot \frac{G_k^{-1} f'(x_k) f'(x_k)^T G_k^{-1}}{(\|f'(x_k)\|_{G_k}^*)^2}$. **Important:** det $G_{k+1} = \frac{1}{1-\delta} \det G_k = \frac{1}{(1-\delta)^{k+1}} \det G_0$. Moreover,

$$\begin{split} \frac{1}{2}a_k^2(\|\hat{f}'(x_k)\|_{G_{k+1}}^*)^2 &= a_k^2 \cdot \hat{f}(x_k) \cdot (\|f'(x_k)\|_{G_{k+1}}^*)^2 \\ &= a_k^2 \cdot \hat{f}(x_k) \cdot (1-\delta) \cdot (\|f'(x_k)\|_{G_k}^*)^2 \\ &= \delta \cdot a_k \cdot \hat{f}(x_k). \end{split}$$

通 とう ほう とう マン・

Main Lemma

For any
$$k \geq 0$$
, $\psi_k^* \stackrel{\text{def}}{=} \min_{x \in Q} \psi_k(x) \geq (1-\delta) \sum_{i=0}^{k-1} a_i \hat{f}(x_i).$

Proof: Assume this is true for some $k \ge 0$. Since $\psi_k(x)$ quadratic, $\psi_k(x) = \psi_k^* + \langle \psi'_k(x_k), x - x_k \rangle + \frac{1}{2} ||x - x_k||_{\mathcal{G}_k}^2 \ge \psi_k^* + \frac{1}{2} ||x - x_k||_{\mathcal{G}_k}^2$.

Therefore,

$$\psi_{k+1}^* \ge \psi_k^* +$$

$$\min_{x \in Q} \left\{ \frac{1}{2} \|x - x_k\|_{G_k}^2 + a_k [\hat{f}(x_k) + \langle \hat{f}'(x_k), x - x_k \rangle + \frac{1}{2} \langle f'(x_k), x - x_k \rangle^2] \right\}$$

$$= \psi_k^* + a_k \hat{f}(x_k) + \min_{x \in Q} \left\{ \frac{1}{2} \|x - x_k\|_{\mathcal{G}_{k+1}}^2 + a_k \langle \hat{f}'(x_k), x - x_k \rangle \right\}$$

$$\geq \psi_k^* + a_k \hat{f}(x_k) - \frac{1}{2} a_k^2 \| \hat{f}'(x_k) \|_{G_{k+1}}^2 = \psi_k^* + (1-\delta) \cdot a_k \hat{f}(x_k). \qquad \Box$$

Rate of convergence

Denote
$$\tilde{x}_k = \frac{1}{A_k} \sum_{i=0}^{k-1} a_i x_i$$
. Recall: $G_{k+1} = G_k + a_k \cdot f'(x_k) f'(x_k)^T$.

Theorem: Assume that for SP-function f, $||f'(\cdot)||_{G_0}^* \leq L$.

Then,
$$(1-\delta)\hat{f}(\tilde{x}_k) \leq \hat{f}(x^*) + rac{L^2 \|x_0 - x^*\|_{G_0}^2}{2n[e^{\delta(k+1)/n} - 1]}.$$

Proof: We have $(1 - \delta)\hat{f}(x_k^*) \leq \hat{f}(x^*) + \frac{1}{2A_{k+1}} ||x_0 - x^*||_{G_0}^2$. Let us estimate the growth of A_k . Denote $\bar{G}_k = G_0^{-1/2} G_k G_0^{-1/2}$.

$$\begin{array}{rcl} A_k & = & \sum\limits_{i=0}^{k-1} a_i \ \geq \ \frac{1}{L^2} & \sum\limits_{i=0}^{k-1} a_i \| f'(x_i) \|_{G_0}^2 \ = \ \frac{1}{L^2} \left[\ \mathrm{Trace} \ \bar{G}_k - n \right] \\ \\ & \geq & \frac{n}{L^2} \left[\ \frac{1}{(1-\delta)^{k/n}} - 1 \right] \ \geq & \frac{n}{L^2} \left[\ e^{\delta k/n} - 1 \right]. \end{array}$$

(4月) (4日) (4日) 日

Definition: point $\bar{x} \in Q$ is a solution with *mixed* (ϵ, δ) -accuracy if

$$(1-\delta)\hat{f}(ar{x}) \leq \hat{f}(x^*) + \epsilon.$$

- $\epsilon > 0$ serves as an absolute accuracy.
- $\delta \in (0,1)$ represents the relative accuracy.

Complexity: $N_n(\epsilon, \delta) \stackrel{\text{def}}{=} \frac{n}{\delta} \ln \left(1 + \frac{L^2 R^2}{2n \cdot \epsilon}\right)$ iterations of Q-N scheme.

Note:

- High absolute accuracy is *easy* to achieve.
- High relative accuracy is *difficult*. (No need?)
- # of iterations is proportional to $\frac{n}{\delta}$. (Compare with BSM.)

• We have a uniform bound: $N_n(\epsilon, \delta) < N_{\infty}(\epsilon, \delta) \stackrel{\text{def}}{=} \frac{L^2 R^2}{2\epsilon \delta}$.

Our goal: generate $\bar{x} \in Q$ satisfying $(1 - \delta)f(\bar{x}) \leq f^*$. After k iterations of Q-N method, we have

$$egin{aligned} (1-\delta)(f(x_k^*)-f^*)f^* &\leq (1-\delta)(\hat{f}(x_k^*)-\hat{f}(x^*))\ &\leq &\delta\hat{f}(x^*)+rac{L^2R^2}{2n[e^{\delta(k+1)/n}-1]} &\stackrel{(?)}{\leq} &\delta(f^*)^2. \end{aligned}$$

Thus, we need $k = R_n(\delta) \stackrel{\text{def}}{=} \frac{n}{\delta} \ln \left(1 + \frac{L^2 R^2}{n\delta(f^*)^2}\right)$ iterations. **Note:**

- The main factor ⁿ/_δ does not depend on the data. (Fully polynomial approximation scheme.)
- Dependence in *n* is the same as for optimal methods.
- Each iteration of Q-N method is very simple, same as in Ellipsoid Method (complexity $O(n^2 \ln \frac{LR}{\delta f^*})$ iterations).

• We have a uniform bound $R_n(\delta) < R_{\infty}(\delta) \stackrel{\text{def}}{=} \frac{L^2 R^2}{\delta^2 (f^*)^2}$.

Our goal: for problem $\min_{x \in Q} \phi(x)$ find $\bar{x} \in Q$: $\phi(\bar{x}) \le \phi^* + \epsilon$. Assume ϕ has bounded subgradients and $||x - x_0|| \le R$, $\forall x \in Q$. Define now a new SP-objective

$$f(x) = \max\{\phi(x) - \phi(x_0) + 2LR, L \| x - x_0 \|\}$$

$$= \phi(x) - \phi(x_0) + 2LR \quad \forall x \in Q.$$

Applying now Q-N method to \hat{f} , we get

$$\begin{split} \phi(x_k^*) - \phi^* &= f(x_k^*) - f^* \leq \frac{\delta f^*}{2(1-\delta)} + \frac{L^2 R^2}{2n [e^{\delta(k+1)/n} - 1] \cdot (1-\delta) f^*} \\ &\leq LR \left[\frac{\delta}{1-\delta} + \frac{1}{2n [e^{\delta(k+1)/n} - 1] \cdot (1-\delta)} \right]. \end{split}$$

Choice of parameters

Let us find $\delta = \delta(\epsilon)$ from equation

$$\frac{\delta}{1-\delta} = \frac{\epsilon}{2LR} \Rightarrow \delta(\epsilon) = \frac{\epsilon}{\epsilon+2LR}.$$

Then, we need at most

$$k = R_n(\epsilon) \stackrel{\text{def}}{=} \frac{n}{\delta(\epsilon)} \ln \left(1 + \frac{LR}{n\epsilon(1-\delta(\epsilon))} \right)$$
$$= n \left(1 + 2\frac{LR}{\epsilon} \right) \cdot \ln \left(1 + \frac{\epsilon + 2LR}{2n\epsilon} \right)$$

iterations. At the same time,

$$egin{array}{rcl} {\cal R}_n(\epsilon) &<& {\cal R}_\infty(\epsilon) \;=\; rac{1}{2} \left(1+2rac{LR}{\epsilon}
ight)^2. \end{array}$$

Note: worst-case complexity bound of Q-N method is always better than that of the standard subgradient scheme.

Discussion

Schemes of Q-N methods look very natural.

1. Minimization in relative scale: (No parameters!)

$$x_{k+1} = \arg\min_{x \in Q} \left[\|x - x_0\|_{G_0}^2 + \frac{\delta}{1-\delta} \sum_{i=0}^k \frac{(f(x_i) + \langle f'(x_i), x - x_i \rangle)^2}{(\|f'(x_i)\|_{G_i}^*)^2} \right]$$

2. Minimization in absolute scale:

$$x_{k+1} = \arg\min_{x \in Q} \left[\|x - x_0\|_{G_0}^2 + \frac{\epsilon}{LR} \sum_{i=0}^k \frac{(\phi(x_i) - \phi(x_0) + \langle \phi'(x_i), x - x_i \rangle + 2LR)^2}{(\|\phi'(x_i)\|_{G_i}^*)^2} \right]$$

Compare: Dual gradient method

$$x_{k+1} = \arg\min_{x \in Q} \left[\|x - x_0\|_{G_0}^2 + \frac{2}{L_k} \sum_{i=0}^k (\phi(x_i) + \langle \phi'(x_i), x - x_i \rangle) \right].$$

for $C_L^{1,1}$: $L_k \equiv L$, and for $C_M^{1,0}$: $L_k \approx \sqrt{k} \cdot \frac{M}{R}$ Quasi-Newton methods for strictly positive functions 20/22 1. Roles of *dimension* and *accuracy* in complexity estimates. Denote by \mathcal{T} complexity of the oracle.

Available methods	Complexity
Subgradient*	$rac{L^2R^2}{\epsilon^2}\cdot(n+\mathcal{T})$
Quasi-Newton	$\frac{nLR}{\epsilon} \ln \left(1 + \frac{LR}{n\epsilon}\right) \cdot (n^2 + T)$
Ellipsoids	$n^2 \ln \frac{LR}{\epsilon} \cdot (n^2 + T)$
Inscribed ellipsoids*	$n\ln rac{L\breve{R}}{\epsilon} \cdot (n^3 + T)$

If $\frac{1}{\epsilon} < n \ln \frac{1}{\epsilon}$ and $\mathcal{T} \approx n^2$, then QN is the best.

Questions:

- **1** What are the best methods for all spectrum of n, ϵ , and T?
- 2 Are n, ϵ , and \mathcal{T} really independent? \Rightarrow Accuracy of the model?

(Finite elements, Truss topology, Optimal Control, PDE, etc.)

Revival of old questions

- 2. Do we have a future for Quasi-Newton methods?
 - Two decades of intensive research (60's, 70's).
 Good computational performance.
 - *r*-algorithm by Shor for nonsmooth minimization.
 - Excellence and failure of Ellipsoid Method. (Wrong application?)
 - 25 years of complete silence.

Can we finally do a proper global complexity analysis for these schemes?

・ 同 ト ・ ヨ ト ・ ヨ ト