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Standard approach: Absolute accuracy

Problem: f* % mig f(x), where Q C R" is a closed convex set.
IS

Fore >0, find Xxe Q satisfying f(x)<f*"+e.

Problem classes

Bounds on the growth. (Strong) convexity with p > 0:
Fy) > F(x) + {F'(x),y = x) + zuly = x|, xy€Q.

B Bounds on derivatives. For example,
£/« <M, or, |If"(x)| <L, etc.

Important: operation f = f + const does not change
complexity.
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Relative accuracy (RA)

def . .
Problem: f* = min f(x) >0, where Q is a closed convex set.
S

Definition:
For 0 € (0,1), find X € Q satisfying (1 —9)f(X) < f* < f(%).

Condition f* > 0 must be guaranteed. How?

1. Homogeneous model [N.08]: Let 0 ¢ Q. For f(x) = ma§<(s,x>
se

with 0 € int B define 70, 71: 7ollx[| < f(x) < mllx|l, a=2.

Then, by smoothing technique, we get complexity O*(%).
2. Polyhedral model [N.09]: if B = Conv (+a;,i=1...m) C R",

then we need O*(”lé/z) iterations.

(An appropriate norm is constructed by preprocessing.)

Question: Can we address RA in Black-Box Framework? =- Need
new problem classes. (Invariant with respect to multiplication.)
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Barrier subgradient method [N.10]

Problem:  max¢(x),
xeQ

m Q@ is a closed convex set endowed with a v-self-concordant
barrier F(x).

m ¢ is a concave function, which is non-negative on Q.

Method:  (potential f = In ¢)

K e
Xep1 = argmax [E()(‘f;((x,’)),x — i) — <1 + %) F(X)} :

Convergence: Jmax, o(xi) > o* (1 - O0"(\/&1 + kLH))

r

Complexity:  O* (%) iterations.
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Strictly positive functions

Convex function f is called strictly positive on @ if

fy) + f(x) +(f'(x),y —x) >0, x,y€Q.

Corollary:  f(y) > |f(x) + (f'(x),y —x)|, x,y €Q.

Simple properties

m f(x) = const > 0 is strictly positive.

m Strict positivity is an affine-invariant property.

m Class of strictly positive functions is a convex cone.
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Simple examples

Lemma 1. Let B be bounded, closed, and centrally symmetric.

Then f(x) = ma;(s x) is strictly positive on R".
Proof: Since f(x) = (f'(x),x) and —f'(x) € B, we have

fly) > (=f(x),y) = —f(x) = (f'(x),y — x). O

The simplest examples of strictly positive functions are norms.

Lemma 2. Let fi(x) and f5(x) be strictly positive on Q.

Then f(x) = max{fi(x), fa(x)} is also strictly positive.
Proof: For arbitrary x € Q, assume fi(x) > f(x). Then,

fly) = Aly) = —Ak) = {f(x),y —x)
= —f(x) = (f'(x),y — x). O
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Particular examples

All functions below are strictly positive:

f(x) = max [[Ax— b,

flx) = ;||Aix—bi”7

f(x) = Omax <i A,‘X(i)) ,
i=1

f(x) = f)ffj ( 3 A,-x(")>,
=1 i—1

1

where A; € R™*" and b; ¢ R™, i=1...n.

Yu. Nesterov Quasi-Newton methods for strictly positive functions



General convex functions

Theorem 1. Let ¢ be convex function on @ with uniformly
bounded subgradients:  ||[¢'(X)||* < L, x€ Q.

Then f(x) = max{¢(x), L||x||} is strictly positive on Q.
Proof: Clearly, ||f'(x)||* < L. Therefore,

F(y) + £(x) + (F(x),y =x) = Lyl + Llix|| + {f'(x),y — x)
> Lyl + Llix|l = Llly = x| = 0.

0l
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Shifted general optimization problem

Consider the problem: mig #(x), where ¢ has bounded
x€

subgradients. Let x* € Q be its optimal solution.

Lemma 3. For xp € Q define

f(x) = max{p(x) — &(x0) + 2LR, L||x — xo]| }.
It is strictly positive. If |[x — xo|| < R then f(x) = ¢(x) + const.

If ||xo — x*|| < R, then the optimal value f* of the equivalent
problem mig f(x) satisfies LR <f* < 2LR.
P(S

PrOOf: If HX —XoH S R, then
d(x) — d(x0) + 2LR > 2LR — L||x — xo|| > L||x — xoll-

Further, f* < f(xo) = 2LR, and
f(x) > max{2LR — L||x — xol|, L||x — xo||} > LR. O
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Optimization problem with squared objective

Problem: mig f(x) , where f is strictly positive on Q.
x€e

New objective:  f(x) = 3f2(x), #'(x) = f(x)- f'(x).

Lemma 4. Let f be strictly positive on Q. Then for x,y € Q

Fly) = F(x)+(F(x),y —x) + 2{F(x),y — x)2.
Pr09f: Indeed,
Fly) = 3f2y) > 5[F(x) + (F(x),y — x)]?

= )+ (F(x),y —x) +3{f(x)y = x> O

Important: We have nonlinear support function!
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Quasi-Newton Method

Let us fix Go > 0, starting point xp € Q, and accuracy § € (0,1).
Define ho(x) = 3/lx — xol|%,. For k >0, consider the process:

Xk = arg)r(réigwk(x),
VYrr1(x) = Yr(x) + ak ['A’(Xk) +(F (k) x = xic) + 3 (F (), x — xi)?]
where
a = %m, Gk = y(x), k=0,
and ||hllg = (Gh, )2, ||z = (g, G &)/,
Denote A, = li: ai. Clearly, | (x) < Akf(x) 4 tho(x), x € Q.

1

We can use the technique of estimate sequences!
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Evolution of the Hessians

Since 1k (x) are quadratic, their Hessians Gy > 0 are updated as

/(x (x T
Grs1 = G+ ai - F/(x)f (i) T = G/Hrf%yW? k > 0.
k

G (xi)f (k)T Gt
((IHERIF )2

Therefore, ijrl1 = Gk_1 —4-

Important:  det Gg1 = ﬁ det G, = = 5)k+1 det Gp.
Moreover,
3P ), = @ Few) - (I )G,

A

= ap ) - (1=0) - (IF(x)llg,)?

= §-ap-F(x).
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Main Lemma

k=1
Forany k> 0,| 5 o mig Yi(x) > (1—=0) > aif(xi).
X€E i=0

Proof: Assume this is true for some k > 0. Since 1x(x) quadratic,
Di(x) = ¥k + (Wi 0a), x = xi) + 3llx = xellg, = vk + 3lx — xellg, -
Therefore,
k1 = Vit

min { 31— xl, + alFOx) + (70, x = x) + 3{F/ 06, x = x|
=i+ arf(xi) + )r(ryg {%Hx - kasz+1 + ar(F' (), x — xk)}

> 0+ ad () = 3317 (0)lIE,,, = v+ (1 —0) af(x). O
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Rate of convergence

k—1
Denote % = 2~ > aixi. Recall: Gyy1 = Gx + ax - F/(xe) (i) T
i=0

Theorem: Assume that for SP-function f, ||f'(*)||%. < L.

Go

A 2 L?||xo—x*||2
Then, (1-06)f(%) < f(x*)+ 2n[eé(k+1)/ni]_]'
Proof: We have (1 — 6)f(x;) < F(x*) + 2A1ﬁHX0 - x*HQGO.

Let us estimate the growth of A,. Denote Gy = G(;l/sz Ggl/2.

k—1 k—1 _
Ac = > a > % > a,~Hf’(x,-)H2GO = é[TraceGk—n]
i=0 i=0
1 ok
2 ﬁ{u_a)k/n 1} > fplen-1]. O
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Mixed accuracy

Definition: point X € @ is a solution with mixed (e, §)-accuracy if

(1-0)Ff(x) < F(x*)+e
m ¢ > 0 serves as an absolute accuracy.

m § € (0,1) represents the relative accuracy.

Complexity: N,(e,9) def $1n (1 + %) iterations of Q-N

scheme.
Note:

m High absolute accuracy is easy to achieve.
m High relative accuracy is difficult. (No need?)
m # of iterations is proportional to §. (Compare with BSM.)

m We have a uniform bound: N,(e,0) < Nuo(e, ) &f L22552.
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Relative accuracy

Our goal: generate x € Q satisfying (1 —§)f(x) < f*.
After k iterations of Q-N method, we have

(1=8)(F0x) = £ < (1= 0)(F(x) —F(x*))

. I

Thus, we need k = R,(9) 4ef

= I (1+ 5(f*) ) iterations.
Note:

m The main factor § does not depend on the data. (Fully
polynomial approximation scheme.)
m Dependence in n is the same as for optimal methods.

m Each iteration of Q-N method is very simple same as in
Ellipsoid Method (complexity O(n?In

M*) iterations).

m We have a uniform bound R,(d) < Rso(6) def %.

Yu. Nesterov
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Absolute accuracy

Our goal: for problem mig p(x) findxe Q: ¢(x) <o +e
X€

Assume ¢ has bounded subgradients and ||x — x|| < R, ¥x € Q.
Define now a new SP-objective

f(x) = max{e(x) — ¢(x0) +2LR, Ll|Ix — o[}
= ¢(x) — d(x0) +2LR Vx € Q.

Applying now Q-N method to 7, we get

" . * * SF* L2R?
o) =" = ) -1 < 55+ 2n[ /1 1] (1_5)F-

IN

0 1
LR m+2n[e‘5(k+1)/"—l]~(1—5) .
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Choice of parameters

Let us find 0 = 6(¢) from equation

def

= n(1+258) In (1 + =2LR)

2ne

iterations. At the same time,
2
Ra(e) < Ruo(e) = %(1+2%) .

Note: worst-case complexity bound of Q-N method is
always better than that of the standard subgradient scheme.
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Discussion

Schemes of Q-N methods look very natural.
1. Minimization in relative scale: (No parameters!)

_ : (F(xi)+(F () x=xi))?
Xk4+1 = arg)r(nelg |:HX XOH + 1— 5 Z (Hf/(xl_)”»&i)z :| .

2. Minimization in absolute scale:

N (6(05)~0(0)+ (¢ () x—x) +2LR)?
Merl = A8 00 {HX olle, + 7 Z W& CN5)? ] '

Compare: Dual gradient method

s =g Ix =0l + & 3(006) + (@0x)x )

=0

for C,}’l : L, =L, and for C,%/;O - Vk - %
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Revival of old questions

1. Roles of dimension and accuracy in complexity estimates.
Denote by 7 complexity of the oracle.

Available methods Complexity
Subgradient® LR (n+T)
Quasi-Newton # In (1+ %) (M +T)
Ellipsoids nintB . (n? +7)
Inscribed ellipsoids® nintE . (n®+7)

If% < nln% and 7 ~ n?, then QN is the best.
Questions:

What are the best methods for all spectrum of n, €, and 77

Are n, €, and 7 really independent? =- Accuracy of the
model?

(Finite elements, Truss topology, Optimal Control, PDE, etc.)
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Revival of old questions

2. Do we have a future for Quasi-Newton methods?
m Two decades of intensive research (60's, 70's).
Good computational performance.
m r-algorithm by Shor for nonsmooth minimization.

m Excellence and failure of Ellipsoid Method.
(Wrong application?)

m 25 years of complete silence.

Can we finally do a proper global complexity analysis for these
schemes?
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