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Problem

Given a nonempty compact semialgebraic subset

F = {x ∈ R
n : fk(x) ≥ 0 (k = 1, 2, . . . ,m)}

of R
n, find a “small” ellipsoid enclosing F . Here fk : R

n → R

denotes a polynomial (k = 1, 2, . . . ,m).

“small” needs to be specified.
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Formulation 1: Minimum volume ellipsoid

F : a nonempty compact semialgebraic subset of R
n.

E(M , c) ≡ {x ∈ R
n : (x − c)TM (x − c) ≤ 1}.

minimize volume of E(M , c)

sub.to F ⊂ E(M , c), M ≻ O, c ∈ R
n.

The most popular in theory

F consists of a finite number of points ⇒ lots of studies ⊃
(Khachiyan’s method 1996)

Ideal but too difficult in general
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Formulation 2: Nie and Demmel 2005

F : a nonempty compact semialgebraic subset of R
n.

E(P−1, c) ≡ {x ∈ R
n : (x − c)T P−1(x − c) ≤ 1}.

minimize Trace P

sub.to F ⊂ E(P−1, c), P ≻ O, c ∈ R
n.

⇐= SOS (Sum Of Squares) relaxation

A little more general to include parameters.
Theoretical convergence.
Still very expensive to apply it to large-scale problems.

The SOS relaxation problem becomes a dense problem.

⇒ Less expensive formulation: Fix the
shape of the ellipsoid and minimize the size

— Ours, next
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Our Formulation:
M ∈ S

n
+ (n× n positive semidefinite matrices, shape). Define

ϕ(x, c) ≡ (x − c)T M(x − c),∀x, ∀c ∈ R
n (center),

Ellipsoidal set E(c, γ) ≡ {x ∈ R
n : ϕ(x, c) ≤ γ} , ∀γ > 0 (size).

F : a nonempty compact semialgebraic subset of R
n

A min. enclosing ellipsoidal set : γ∗ = min
γ, c

{γ : F ⊂ E(c, γ)}.
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Our Formulation:
M ∈ S

n
+ (n× n positive semidefinite matrices, shape). Define

ϕ(x, c) ≡ (x − c)T M(x − c),∀x, ∀c ∈ R
n (center),

Ellipsoidal set E(c, γ) ≡ {x ∈ R
n : ϕ(x, c) ≤ γ} , ∀γ > 0 (size).

Application to error bounds in Polynomial Optimization

POP : f ∗
0 = min f0(x) subject to fk(x) ≥ 0 (k = 1, 2, . . . , p).

Here fk : R
n → R : a polynomial (k = 0, 1, . . . , p).

Suppose that f̂0 ≥ f ∗
0 or f̂0 = f0(x̂) for ∃ feasible x̂. Let

F = {x ∈ R
n : fk(x) ≥ 0, (k = 1, 2, . . . , p), f0(x) ≤ f̂0}

F ⊂ E(c, γ) =⇒ E(c, γ) contains all opt. solutions of POP.

M = I ⇒ ‖x − c‖ ≤ √
γ for ∀ opt. sol. x

M = diag(1, 0, . . . , 0) ⇒ |x1 − c1| ≤
√
γ for ∀ opt. sol. x

This method can be combined with the SDP relaxation
(Lasserre ’01) and its sparse variant (Waki et al. ’06).
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M ∈ S
n
+ (n× n positive semidefinite matrices, shape),

ϕ(x, c) ≡ (x − c)T M(x − c),∀x, ∀c ∈ R
n (center),

Ellipsoidal set E(c, γ) ≡ {x ∈ R
n : ϕ(x, c) ≤ γ} , ∀γ > 0 (size).

F : a nonempty compact semialgebraic subset of R
n.

min-max
formulation

γ∗ = min
c∈R

n

max
x∈F

ϕ(x, c) = max
x∈F

ϕ(x, c∗).

Suppose that M = the 2 × 2 identity matrix

c

x E(γ,c)

F

c*

x

E(γ∗,c*)
F

ϕ(x, c) = M • xxT − 2xT Mc + cT Mc,∀x,∀c ∈ R
n.

. – p.10/37



M ∈ S
n
+ (n× n positive semidefinite matrices, shape),

ϕ(x, c) = M • xxT − 2xT Mc + cT Mc,∀x,∀c ∈ R
n (center),

Ellipsoidal set E(c, γ) ≡ {x ∈ R
n : ϕ(x, c) ≤ γ} , ∀γ > 0 (size).

F : a nonempty compact semialgebraic subset of R
n.

min-max
formulation

γ∗ = min
c∈R

n

max
x∈F

ϕ(x, c) = max
x∈F

ϕ(x, c∗). Lifting
⇒

Define ψ(x,W , c) ≡ M • W − 2xT Mc + cT Mc,

C∗ ≡ the convex hull of {(x,xxT ) ∈ R
n × S

n : x ∈ F}.

convex-linear
min-max formulation

γ∗ = min
c∈R

n

(
max

(x,W )∈C∗

ψ(x,W , c)

)
.

m
linear-convex
max-min problem

γ∗ = max
(x,W )∈C∗

min
c∈R

n

ψ(x,W , c).

minc∈R
nM • W − 2xT Mc + cT Mc m c∗ = x : a minimizer

concave maxization γ∗ = max
(x,W )∈C∗

M • W − xT Mx.
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M ∈ S
n
+ (n× n positive semidefinite matrices, shape),

ϕ(x, c) = M • xxT − 2xT Mc + cT Mc,∀x,∀c ∈ R
n (center),

Ellipsoidal set E(c, γ) ≡ {x ∈ R
n : ϕ(x, c) ≤ γ} , ∀γ > 0 (size).

F : a nonempty compact semialgebraic subset of R
n.

concave maxization γ∗ = max
(x,W )∈C∗

M • W − xT Mx.

Here C∗ ≡ the convex hull of {(x,xxT ) ∈ R
n × S

n : x ∈ F}.

⇓

• Relax the intractable C∗ by a tractable convex Ĉ;

L ≡
{

(x,W ) ∈ R
n × S

n :

(
1 xT

x W

)
� O

}
⊃ Ĉ ⊃ C∗.

• Describe Ĉ in terms of LMIs.

SDP-SOCP γ̂ = max
(x,W )∈ bC

M • W − xT Mx ⇒ γ∗ ≤ γ̂.

Under an assumption, {Ck : described in terms of LMIs};
L ⊃ Ck ⊃ Ck+1 ⊃ C∗ and ∩kC

k = C∗

by using Lasserre’s hierarchy of LMI relaxation ’01.
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M ∈ S
n
+ (n× n positive semidefinite matrices, shape),

ϕ(x, c) = M • xxT − 2xT Mc + cT Mc,∀x,∀c ∈ R
n (center),

Ellipsoidal set E(c, γ) ≡ {x ∈ R
n : ϕ(x, c) ≤ γ} , ∀γ > 0 (size).

F : a nonempty compact semialgebraic subset of R
n.

concave maxization γ∗ = max
(x,W )∈C∗

M • W − xT Mx.

Here C∗ ≡ the convex hull of {(x,xxT ) ∈ R
n × S

n : x ∈ F}.

⇓

• Relax the intractable C∗ by a tractable convex Ĉ;

L ≡
{

(x,W ) ∈ R
n × S

n :

(
1 xT

x W

)
� O

}
⊃ Ĉ ⊃ C∗.

• Describe Ĉ in terms of LMIs.

SDP-SOCP γ̂ = max
(x,W )∈ bC

M • W − xT Mx ⇒ γ∗ ≤ γ̂.

When Ĉ is described in terms of sparse LMIs, take M

which fits their sparsity.
⇒ a sparse SDP-SOCP which we can solve efficiently.
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M ∈ S
n
+ (n× n positive semidefinite matrices, shape),

ϕ(x, c) = M • xxT − 2xT Mc + cT Mc,∀x,∀c ∈ R
n (center),

Ellipsoidal set E(c, γ) ≡ {x ∈ R
n : ϕ(x, c) ≤ γ} , ∀γ > 0 (size).

QOP case
F =

{
x ∈ R

n : αk + 2bT
k x + xT Qkx ≥ 0 (1 ≤ k ≤ p)

}

=

{
x ∈ R

n :

(
αk bT

k

bk Qk

)
•
(

1 xT

x xxT

)
≥ 0 (1 ≤ k ≤ p)

}
,

Let

Ĉ =






(x,W ) :

(
αk bT

k

bk Qk

)
•
(

1 xT

x W

)
≥ 0 (1 ≤ k ≤ p),

(
1 xT

x W

)
� O






,

SDP-
SOCP

γ̂ = max
(x,W )∈ bC

M • W − xT Mx = M • Ŵ − ĉT Mĉ

=⇒ F ⊂ E(ĉ, γ̂).
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SparsePOP (Waki et al. ’08) for constructing sparse SDP
relaxation problems of POPs.
SeDuMi1.21 (Sturm, Polik ’09) for solving SDP relaxation
problems to compute an approx. opt. sol. of POPs and for
solving SDP-SOCPs to compute error bounds.
MATLAB Optimization Toolbox to refine the approx. opt.
sol. obtained by SeDuMi for constrained optimization
problems.
2.8GHz Intel Xeon with 4GB Memory.
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Unconstrained min. of ChainedWood function fC(x)

fC(x) = 1 +
∑

i∈J

(
100(xi+1 − x2

i )
2 + (1 − xi)

2 + 90(xi+3 − x2
i+2)

2

+(1 − xi+2)
2 + 10(xi+1 + xi+3 − 2)2 + 0.1(xi+1 − xi+3)

2)
Here J = {1, 3, 5, . . . , n− 3} and n is a multiple of 4.

Sparsity pattern of the Hessian matrix
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nz = 58
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700
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900
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nz = 2998

n = 20, 20 × 20 matrix
no. of nonzeros =

58

400

n = 1000, 1000 × 1000 matrix
no. of nonzeros =

2, 988

1, 000, 000
Sparse enough to solve larger scale problems.
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Unconstrained min. of ChainedWood function fC(x)

fC(x) = 1 +
∑

i∈J

(
100(xi+1 − x2

i )
2 + (1 − xi)

2 + 90(xi+3 − x2
i+2)

2

+(1 − xi+2)
2 + 10(xi+1 + xi+3 − 2)2 + 0.1(xi+1 − xi+3)

2)
Here J = {1, 3, 5, . . . , n− 3} and n is a multiple of 4.

M = the n× n identity matrix.

RelObjErr E.Time Error bound
n at x̂ for x̂ E.time

√
γ̂/‖ĉ‖

1000 4.4e-4 2.4 4.7 4.9e-3

2000 8.8e-4 5.7 11.6 4.9e-3

4000 1.8e-3 14.6 30.3 1.5e-3

x̂ = an approx. optimal solution,

RelObjErr =
|lbd. for opt. val. − fC(x̂)|

|fC(x̂)|
‖x − ĉ‖/‖ĉ‖ ≤

√
γ̂/‖ĉ‖, ∀ global minimizer x
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alkyl.gms from globallib

min −6.3x5x8 + 5.04x2 + 0.35x3 + x4 + 3.36x6

sub.to x5x12 − x2(1.12 + 0.132x9 − 0.0067x2
9) = 0,

x8x13 − 0.01x9(1.098 − 0.038x9) − 0.325x7 = 0.574,

0.98x4 − x7(0.01x5x10 + x4) = 0, −x2x9 + 10x3 + x6 = 0,

−0.820x2 + x5 − 0.820x6 = 0, x1x11 − 3x8 = −1.33,

x10x14 + 22.2x11 = 35.82, lbdi ≤ xi ≤ ubdi (i = 1, 2, . . . , 14).

|lbd for opt.val. − approx. opt.val f0(x̂)|
|approx. opt.val f0(x̂)| = 6.7e-6

max error in equalities at x̂ = 5.2e-9
F = {x ∈ R

14 : feasible and f0(x) ≤ f0(x̂)} ⊂ E(ĉ, γ̂)

M = I ∈ S
14 ⇒ ĉ = (1.7037030, 1.5847109, . . .),

√
γ̂ = 1.6e-4.

‖x − ĉ‖ ≤ √
γ̂ for ∀ opt. sol. x ∈ R

14.
M = diag(1, 0, . . . , 0) ∈ S

14 ⇒ ĉ1 = 1.7037017,
√
γ̂ = 1.0e-5.

|x1 − ĉ1| ≤
√
γ̂ for ∀ opt. sol. x ∈ R

14.
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Nonconvex QPs from globalib

M = the n× n identity matrix

Error bound E.time
Problem n RelObjErr

√
γ̂

√
γ̂/||ĉ|| sdpa

ex2_1_3 13 1.1e-9 4.9e-4 4.9e-4 0.5

ex2_1_5 10 3.5e-10 4.7e-4 1.7e-4 0.8

ex2_1_8 24 3.5e-9 5.4e-2 1.3e-3 9.5

ex9_1_2† 10 1.8e-2 4.2 0.53 0.2

ex9_1_5† 13 6.2e-2 4.7 1.0 0.3

ex9_2_3 16 2.8e-7 1.4e-2 2.6e-4 0.2

RelObjErr =
|approx. otp. val. − l. bd. for otp. val.|

|approx. otp. val.|
‖x − ĉ‖ ≤

√
γ̂, ∀ global minimizer x

† : multiple solutions
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More details on ex9_1_2†

min. −x1 − 3x2

sub. to 5 linear equations in xj (j = 1, 2, . . . , 10),

x3x7 = 0, x4x8 = 0, x5x9 = 0, x6x10 = 0,

0 ≤ xj ≤ 5 (j = 1, 2, . . . , 10).

M = diag(the ith unit coordinate vector) (i = 3, 4, 5, 6, 8, 9)

⇒ |xi − ĉi| ≤
√
γ̂ for ∀ opt. sol. x

i ĉi
√
γ̂ at ∀ opt. sol.

3 2.9995 0.0089 ⇒ x3 > 0, x7 = 0

4 0.0002 0.0279

5 0.0009 0.0148

6 4.0002 0.0123 ⇒ x6 > 0, x10 = 0

8 1.000 1.0001

9 3.000 2.0004 ⇒ x9 > 0, x5 = 0

Fixing x5 = x7 = x10 = 0, we obtain the reduced problem ⇒
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Reduced ex9_1_2† with fixing x5 = x7 = x10 = 0

min. −x1 − 3x2

sub. to 5 linear equations in xj (j = 1, 2, 3, 4, 6, 8, 9),

x4x8 = 0, 0 ≤ xj ≤ 5 (j = 1, 2, 3, 4, 6, 8, 9).

M = diag(the ith unit coordinate vector) (i = 1, 2, 3, 4, 6, 8, 9)

⇒ |xi − ĉi| ≤
√
γ̂ for ∀ opt. sol. x

i ĉi
√
γ̂ i ĉi

√
ρ∗

1 4.0000 0.0002 2 4.0000 0.0002

3 3.0000 0.0006 4 0.0000 0.0006

6 4.0000 0.0004

8 1.0000 1.0000 ⇒ 0.0000 ≤ x8 ≤ 2.0000

9 3.0000 2.0000 ⇒ 1.0000 ≤ x9 ≤ 5.0000

We can verify that the optimal solutions are:
x1 = x2 = x6 = 4, x3 = 3, x4 = 0,

0 ≤ x8 = (x9 − 1)/2 ≤ 2, 1 ≤ x9 ≤ 5.
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A Sensor Network Localization Problem with Exact Distance
xp ∈ R

2 : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
2 : known location of anchors (r = m+ 1, . . . , n),

d2
pq = ‖xp − xq‖2 — given for (p, q) ∈ E (1)

E = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors Sensors’ locations are

unknown.

Anchors’ locatios are known.

A distance is given for ∀ edge.

Compute locations of sensors.
⇒ Nonconvex QOPs
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A Sensor Network Localization Problem with Exact Distance
xp ∈ R

2 : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
2 : known location of anchors (r = m+ 1, . . . , n),

d2
pq = ‖xp − xq‖2 — given for (p, q) ∈ E (1)

E = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors Sensors’ locations are

unknown.

Anchors’ locatios are known.

A distance is given for ∀ edge.

Compute locations of sensors.
⇒ Nonconvex QOPs
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A Sensor Network Localization Problem with Exact Distance
xp ∈ R

2 : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
2 : known location of anchors (r = m+ 1, . . . , n),

d2
pq = ‖xp − xq‖2 — given for (p, q) ∈ E (1)

E = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}

FSDP by Biswas-Ye ’06, SDP relaxation of (1)
— Powerful in theory;

FSDP computes exact locations xp (p = 1, 2, . . . ,m) if
“(1) is uniquely localizable”
= “the rigidity of G({1, 2, . . . ,m}, E) + a certain condition”.
But expensive in computation.
SFSDP by Kim, Kojima, Waki ’09 = a sparse version of
FSDP which is as effective as FSDP in theory but is more
efficient in computation.
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A Sensor Network Localization Problem with Exact Distance
xp ∈ R

2 : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
2 : known location of anchors (r = m+ 1, . . . , n),

d2
pq = ‖xp − xq‖2 — given for (p, q) ∈ E (1)

E = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}

Numerical Results: 20,000 sensors randomly distributed in
[0, 1] × [0, 1], 4 anchors at the corner and ρ = 0.1

σ RMSD SDPA E.time

0.0 6.9e-6 182.9
0.1 7.6e-3 403.0
0.2 1.1e-2 402.6

RMSD =(
1

m

m∑

p=1

‖xp − ap‖
)1/2

.

ap : true location of p

σ > 0 ⇒ dpq = (1 + ξ) × true distance, diferrent formulation:
min

∑
(p,q)∈E |‖xp − xq‖2 − d2

pq| ⇐ sparse SDP relaxation.

Here ξ is chosen from N(0, σ).
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A Sensor Network Localization Problem with Exact Distance
xp ∈ R

2 : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
2 : known location of anchors (r = m+ 1, . . . , n),

d2
pq = ‖xp − xq‖2 — given for (p, q) ∈ E (1)

E = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}

Some numerical results of SFSD combined with our
method for an ellipoidal set enclosing
F = {(x1, . . . ,xm) : d2

pq=‖xp − xq‖2 for (p, q) ∈ E}.
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A Sensor Network Localization Problem with Exact Distance
xp ∈ R

2 : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
2 : known location of anchors (r = m+ 1, . . . , n),

d2
pq = ‖xp − xq‖2 — given for (p, q) ∈ E (1)

E = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}

Problem: For each sensor p = 1, 2, . . . ,m, compute cp ∈ R
2

and γp > 0 such that the distance from cp to its unknown loca-
tion is bounded by (γp)1/2.

c
p

(γ

xp

  p)1/2
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A Sensor Network Localization Problem with Exact Distance
xp ∈ R

2 : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
2 : known location of anchors (r = m+ 1, . . . , n),

d2
pq = ‖xp − xq‖2 — given for (p, q) ∈ E (1)

E = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}
When ρ is not large enough or E does not contain enough
number of edges, (1) is underdetermined and/or its SDP
relaxation is too weak to locate all sensors uniquely.

Our method + SFSDP computes cp ∈ R
2 and γp > 0 for

each sensor p such that the distance from cp to its
unknown location xp is bounded by (γp)1/2.

⇓
If γp = 0 then cp = the exact
location of p (Biswas-Ye ’06).

c
p

(γ

xp

  p)1/2
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m = 200 sensors randomly distributed in [0, 1]2, n−m = 4
anchors at the corner of [0, 1]2, ρ = 0.14.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

* : cp = a computed location of censor p.
the true location xpof sensor p is within (γp)1/2 ≤ 0.18 from cp
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m = 200 sensors randomly distributed in [0, 1]2, n−m = 4
anchors at the corner of [0, 1]2, ρ = 0.14.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

* : cp = a computed location of censor p
the true location ◦ of sensor p is within (γp)1/2 ≤ 0.18 from cp

◦ ◦ : the edge (xp,xq) with a given exact distance
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m = 200 sensors randomly distributed in [0, 1]2, n−m = 4
anchors at the corner of [0, 1]2, ρ = 0.15.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

* : cp = a computed location of censor p.
the true location xp of sensor p is within (γp)1/2 ≤ 0.04 from cp
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m = 200 sensors randomly distributed in [0, 1]2, n−m = 4
anchors at the corner of [0, 1]2, ρ = 0.15.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

* : cp = a computed location of censor p
the true location xp of sensor p is within (γp)1/2 from cp

◦ ◦ : the edge (xp,xq) with a given exact distance
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m = 200 sensors randomly distributed in [0, 1]2, n−m = 4
anchors at the corner of [0, 1]2, ρ = 0.16.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3
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* : cp = a computed location of censor p.
the true location xp of sensor p is within (γp)1/2 ≤ 6.0e-3 from cp
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m = 200 sensors randomly distributed in [0, 1]2, n−m = 4
anchors at the corner of [0, 1]2, ρ = 0.16.
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* : cp = a computed location of censor p
the true location xp of sensor p is within (γp)1/2 from cp

◦ ◦ : the edge (xp,xq) with a given exact distance
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Outline

1 Problem and Some Formulations

2 Theory: Lifting and SDP Relaxation

3 Numerical Results
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Concluding Remarks

We can apply the proposed method to sensor network
localization problems with inexact distance involving
measurement error, but the results are not sharp.

Polynomial optimization problems with a 0-1 variable x to
determine whether x = 0 or x = 1.
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