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Introduction

Consider the following underdetermined linear system

p

n

A x =

=

b

where A ∈ Rn×p, with p ≥ n.

Can we find the sparsest solution?
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Introduction

• Signal processing: We make a few measurements of a high dimensional
signal, which admits a sparse representation in a well chosen basis (e.g.
Fourier, wavelet). Can we reconstruct the signal exactly?
(Donoho, 2004; Donoho and Tanner, 2005; Donoho, 2006)

• Coding: Suppose we transmit a message which is corrupted by a few errors.
How many errors does it take to start losing the signal?
(Candès and Tao, 2005, 2006)

• Statistics: Variable selection & regression (LASSO, . . . ).
(Zhao and Yu, 2006; Meinshausen and Yu, 2008; Meinshausen et al., 2007; Candes and Tao,

2007; Bickel et al., 2007)

Simplification: the observations could be noisy, an approximate solutions might
be sufficient, we might have strict computational limits on the decoding side.
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l1 relaxation

minimize Card(x)
subject to Ax = b becomes

minimize ‖x‖1
subject to Ax = b

• Donoho and Tanner (2005), Candès and Tao (2005):

For some matrices A, when the solution e is sparse enough, the solution of the
ℓ1-minimization problem is also the sparsest solution to Ax = Ae.

• This happens even when

Card(e) = O

(

n

log(p/n)

)

asymptotically in p when n = ρp, which is provably optimal.
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Introduction

Illustration: fix A, draw many random sparse signals e and plot the probability
of perfectly recovering e when solving

minimize ‖x‖1
subject to Ax = Ae

in x ∈ Rp over 100 sample signals, with p = 50 and n = 30.
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Introduction

Explicit conditions on the matrix A for perfect recovery of all sufficiently sparse
signals e.

• Nullspace Property (NSP): Donoho and Huo (2001), Cohen et al. (2009).

• Restricted Isometry Property (RIP): Candès and Tao (2005).

Candès and Tao (2005) and Baraniuk et al. (2008) show that these conditions are
satisfied by certain classes of random matrices: Gaussian, Bernoulli, etc. for
near optimal values of Card(e). Donoho and Tanner (2005) used a geometric
argument to obtain similar results.
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Nullspace Property (NSP)

Given A ∈ Rn×p and k > 0, Donoho and Huo (2001) or Cohen et al. (2009)
among others, define the Nullspace Property of the matrix A as

‖x‖k,1 ≤ αk‖x‖1

for all vectors x ∈ Rp with Ax = 0, for some αk ∈ [0, 1). Here ‖x‖k,1 is the
ℓ1 norm of the k largest (magnitude) coefficients in x.

Good CS matrices: nullspace populated with incoherent vectors.

Two thresholds:

• α2k < 1 means recovery is guaranteed by solving a ℓ0 minimization problem.

• αk < 1/2 means recovery is guaranteed by solving a ℓ1 minimization problem.
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Nullspace Property (NSP)

The nullspace property constant controls reconstruction error when exact
recovery does not occur. Suppose that there is some αk < 1/2 such that

‖x‖k,1 ≤ αk‖x‖1

for all x ∈ Rp with Ax = 0, then

‖xlp − e‖1 ≤
2

(1− 2αk)
rk(e).

Here
rk(e) = min

Card(u)≤k
‖u− e‖1

is the best possible approximation error.
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Restricted Isometry Property (RIP)

• Given 0 < k ≤ p, Candès and Tao (2005) define the restricted isometry
constant δk(A) from sparse eigenvalue problems

(1± δ
max/min
k ) = max./min. xT (AAT )x

s.t. Card(x) ≤ k
‖x‖ = 1,

in x ∈ Rp, with δk(A) = max{δmin
k , δmax

k }.

• If δ2k(A) <
√
2− 1, we can recover the vector e exactly by solving

minimize ‖x‖1
subject to Ax = Ae

in the variable x ∈ Rp. Here also, δ2k(A) controls reconstruction error when
exact recovery does not occur, with
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Limits of performance

One small problem. . . Testing these conditions on general matrices is harder
than finding the sparsest solution to an underdetermined linear system for
example.

• SDP relaxation in d’Aspremont and El Ghaoui (2008) can prove exact recovery
at cardinality k = O(

√
k∗) when A satisfies RIP at the threshold k∗.

It cannot do better than k = O(
√
k∗).

• LP relaxation in Juditsky and Nemirovski (2008) guarantees the same
k = O(

√
k∗) when A satisfies RIP at k∗. It cannot do better than this.

• The SDP relaxation for NSP in d’Aspremont et al. (2007) also fails beyond this
threshold k = O(

√
k∗).

This means that all current convex relaxations for testing sparse recovery
conditions (with known perf. bounds) cannot prove recovery beyond O(

√
k∗) for

matrices satisfying sparse recovery conditions up to signal cardinality k∗. . .
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Weak recovery conditions

Requiring recovery conditions to hold for all vectors e is perhaps too conservative.

• In many applications, satisfying these conditions with high probability,
assuming a reasonable model on the signal e, would be sufficient.

• Main objective: produce conditions that can be tested efficiently to produce a
tractable measure of performance for ℓ1 recovery on arbitrary matrices.

Weak recovery conditions:

• Assume a distribution over e (ideally. . . we will take a shortcut here).

• Produce explicit conditions on the design matrix A for the NSP to hold with
high probability, under this model.

• Derive tractable algorithms to check these conditions for values of the
cardinality k much closer to the true threshold k∗.
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Weak recovery conditions

Ideally. . .

• Start by defining a model for the sparse (or power law) signal e.

• Study the distribution of
xlp = argmin

Ax=Ae
‖x‖1

• Produce conditions on A for the NSP to hold with high probability on this
distribution (the reconstruction errors (xlp − e) are in the nullspace of A).

In practice here

• Extracting the distribution of xlp − e from a model on e is hard (harder than
the problem we are trying to solve).

• Instead, we directly posit models on the nullspace.

• Two different models: Gaussian or (rotated) bounded independent.

• Of course, these models could have zero measure w.r.t. the true model for the
reconstruction error xlp − e.
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Weak recovery conditions

Some severe shortcomings

• We posit a model on the reconstruction error (xlp − e) to test the NSP
condition, which ultimately ensures that bounds on the norm ‖(xlp − e)‖1
hold. A bit wasteful at first sight. . .

• Favor tractability over statistical fidelity. Some empirical evidence that this is
not completely off.

But a few interesting byproducts. . .

• Interesting link between concentration of norms and classic graph problems.

• These weak recovery conditions depend on good, tractable approximations.

• Cheap way of producing rough quantitative metrics on the quality of
compressed sensing (i.e. design) matrices.

Only a thought experiment at this point. . .
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Numerical results
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Projected reconstruction error vT (xlp − e), along a fixed randomly chosen
direction v, using a single Gaussian design matrix with p = 100, n = 30 and a
thousand samples of a random sparse signal e ∈ R100 with 15 uniformly
distributed coefficients.
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Weak recovery conditions: Gaussian model

Let us assume a Gaussian model Fy on the nullspace. Here F ∈ Rp×m is a basis
for the nullspace, so AF = 0. Can we check that

‖Fy‖k,1 ≤ αk‖Fy‖1

with high probability, when y ∼ N (0, Im)?

We can write ‖Fy‖k,1 = max{‖u‖∞≤1,‖u‖1≤k} u
TFy as a max. of Gaussians.

Concentration inequalities on Lipschitz functions of Gaussian variables then yield

• Prob

[

‖Fy‖k,1 ≥
(

√

2k
(

1 + log 2p
k

)

+ β

)

σk(F )

]

≤ e−β2/2

• Prob
[

‖Fy‖1 ≤
(

√

2/π
∑p

i=1 ‖Fi‖2 − βL(F )
)]

≤ e−β2/2

where

σ2
k(F ) = max

{u∈{0,1}2p,1Tu≤k}
uT

(

1 −1
−1 1

)

⊗ FFTu and L(F ) = σp(F ).
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Bounding σk(F ) and L(F )

σk(F )

√

2k
(

1 + log
2p
k

)

√

2
π
∑p

i=1
‖Fi‖2

σk(F ) L(F )

‖Fy‖k,1 and ‖Fy‖1

In a Gaussian model:

• σk(F ) computed by k-Dense-Subgraph.

• L(F ) computed by MAXCUT.
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Weak recovery conditions: Gaussian model

Here




√

2k

(

1 + log
2p

k

)

+ β



σk(F ) ≤
(

√

2

π

p
∑

i=1

‖Fi‖2 − βL(F )

)

αk

ensures ‖Fy‖k,1 ≤ αk‖Fy‖1 holds with high probability.

• Computing σk(F ) means solving a k-Dense-Subgraph problem

σ2
k(F ) = max

{u∈{0,1}2p, 1Tu≤k}
uTMu, with M =

(

1 −1
−1 1

)

⊗ FFT

• Computing L(F ) means solving a MaxCut type problem, directly related to
the MatrixCube and MatrixNorm problems discussed in Nemirovski (2001)
and Steinberg and Nemirovski (2005), or Ising spin glass models.

L2(F ) = max
v∈{−1,1}p

vTFFTv.
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Weak recovery conditions: bounded model

Let us assume a bounded model on the nullspace. Let F ∈ Rp×m be a basis for
the nullspace, so AF = 0. Can we check that

‖Fy‖k,1 ≤ αk‖Fy‖1

with high probability, when the coefficients of y are bounded and independent?
Note that F is defined up to a rotation, so we can assume some correlation in y.

‖Fy‖k,1 is Lipschitz, convex in y so concentration inequalities yield

• Prob [‖Fy‖k,1 ≥ E[‖Fy‖1,k] + βσk(F )] ≤ e−β2/2

• Prob [‖Fy‖1 ≤ E[‖Fy‖1]− βL(F )] ≤ e−β2/2

using the same quantities σk(F ) and L(F ) as in the Gaussian model. The
expectations can be computed efficiently by simulation.
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Bounding σk(F ) and L(F )

• A simple backward greedy algorithm produces a bound on σk(F ) tight up to a
factor (k/p)2.

• We can also bound σk(F ) using semidefinite relaxations, e.g.

SDPk(M) = max. TrMX
s.t. 0 ≤ Xij ≤ 1

TrX = k, X � 0,

which is a semidefinite program in X ∈ Sp.

• For L(F ), the classic MaxCut relaxation is tight up to a factor 2/π, with

L2(F ) ≤ max. Tr(XFFT )
s.t. diag(X) = 1,X � 0,

which is a semidefinite program in X ∈ Sp.
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Bounding σk(F )

Proposition 1

SDP tightness. Suppose M ∈ Sp is positive semidefinite and k ≥ p1/3. Define

Dk(M) = max
u∈{0,1}p

1Tu≤k

uTMu,

the relaxation
SDPk(M) = max. TrMX

s.t. 0 ≤ Xij ≤ 1
TrX = k, X � 0,

(1)

satisfies

k

p

(

1− o(1)

k1/3

)(

1

4
TrMG+

1

2π
SDPk(M)

)

≤ Dk(M) ≤ SDPk(M),

where Gij =
√

XiiXjj, i, j = 1, . . . , p, so in particular TrMG ≥ 0.
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Bounding σk(F )

Approximation bounds (roughly match results on nonnegatively weighted graphs).

Proof (sketch). Hybrid randomization procedure, mixing sparse samples from
Feige and Seltser (1997) and the argument of Nesterov (1998) on correlation.
Generate points w ∈ {0, 1}p, with wi = uiyi, where

ui =







1 with probability qi = k

√
Xii

∑p
i=1

√
Xii

,

0 otherwise.
and yi =

{

1 if zi ≥ 0,
0 otherwise.

with z ∈ N (0, C) and Cij = Xij/
√

XiiXjj, i, j = 1, . . . n. Then

E[wTMw] =
k2

S2

(

1

4
TrMG+

1

2π
Tr(M(arcsin(C) ◦G))

)

≥ k

p

(

1

4
TrMG+

1

2π
SDPk(M)

)

and Prob
[

Card(u) ≥ k
(

1 + k−1/3
)]

≤ e−k1/3/3.
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Weak NSP versus RIP

Computing the RI constant δk means solving

(1 + δmax
k ) = max

u∈{0,1}p

1Tu≤k

max
‖x‖=1

uT (FFT ◦ xxT )u

in x ∈ Rp, u ∈ {0, 1}p.

Computing the weak NSP constant σk(F ) defined above

σk(F ) = max
u∈{0,1}2p

1Tu≤k

uTMu

in u ∈ {0, 1}2p, where M =

(

1 −1
−1 1

)

⊗ FFT .

Another interpretation: σk(F ) is a wider measure of incoherence (on
submatrices of dimension k).
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Limits of performance

Suppose the matrix FT ∈ Rm×p satisfies the restricted isometry property (RIP)
with constant δk > 0 at cardinality k, then

σk(F ) ≤
√

k(1 + δk) and ‖Fi‖2 ≥
√

1− δ1

and L(F ) ≤ p
√

(1 + δk)/k.

In the Gaussian model, we can show that weak NSP is indeed weaker than RIP
(and much easier to test).

Proposition 2

Weak recovery and RIP. Let n = µp and k = κn log−1(p/k) for some µ, κ ∈
(0, 1). Suppose FT ∈ Rm×p satisfies the restricted isometry property with
constant δk with 0 < δk < c < 1 at cardinality k, where c is an absolute constant,
then F satisfies the weak recovery condition for p large enough.
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Limits of performance

Proposition 3

Tightness. Suppose the matrix F ∈ Rp×m satisfies the weak recovery condition
up to cardinality k∗ = γ(p)p for some γ(p) ∈ (0, 1), β > 0 and αk∗ ∈ [0, 1], i.e.

(

√

2k∗ log
2p

k∗
+ β

)

σk∗(F ) ≤
(

√

2

π

p
∑

i=1

‖Fi‖2 − βL(F )

)

αk∗,

and let SDPk(·) be defined as in (1), we have

(

√

2k log
2p

k
+ β

)

(SDPk(M))1/2 ≤
(

√

2

π

p
∑

i=1

‖Fi‖2 − βL(F )

)

αk∗,

for p sufficiently large, when k ≤ γ(p)(log p)−1k∗, with M .

In other words, if F satisfies the weak recovery conditions at cardinality
k∗ = γ(p)p, the SDP relaxation will certify it up to k = γ2(p)(log p)−1p.
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Numerical results
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Left: Loglog plot of mean values of L(F ) (blue circles), σk(F ) (brown diamonds)
and

∑p
i=1 ‖Fi‖2 (black squares) for Gaussian matrices of increasing dimensions p,

with m = p/2.
Right: Predicted (blue circles) versus empirical (brown squares) probability of
recovering the true signal e, where F ∈ Rp×n is Gaussian with n = p/2, for
various values of the relative cardinality k/n.
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Conclusions

• Testing that the NSP holds with high probability seems to be much easier than
checking that it always holds.

• When the design matrix satisfies RIP at the optimal regime where
Card(e) = O (n/log(p/n)), the corresponding weak conditions also hold.

• The constant αk in the weak conditions provides a rough but tractable
measure of performance for ℓ1 recovery using arbitrary design matrices.

Some important questions unanswered here.

• Our model is defined on the reconstruction error. Ideally, we should have
modeled the signal e directly.

• Even if that’s not possible in the general case, can we at least calibrate a good
model for xlp − e using statistics on e?

• Better approximation bounds on sparse eigenvalues, NSP, σk(F )?
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